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In this work, we outline an automated method for the extraction and quantification of
material parameters characterizing collagen fibre orientations from two-dimensional
images. Morphological collagen data among different length scales were obtained by combin-
ing the established methods of Fourier power spectrum analysis, wedge filtering and
progressive regions of interest splitting. Our proposed method yields data from which we
can determine parameters for computational modelling of soft biological tissues using fibre-
reinforced constitutive models and gauge the length scales most appropriate for obtaining
a physically meaningful measure of fibre orientations, which is representative of the true
tissue morphology of the two-dimensional image. Specifically, we focus on three parameters
quantifying different aspects of the collagen morphology: first, using maximum-likelihood
estimation, we extract location parameters that accurately determine the angle of the princi-
pal directions of the fibre reinforcement (i.e. the preferred fibre directions); second, using a
dispersion model, we obtain dispersion parameters quantifying the collagen fibre dispersion
about these principal directions; third, we calculate the weighted error entropy as a measure
of changes in the entire fibre distributions at different length scales, as opposed to their aver-
age behaviour. With fully automated imaging techniques (such as multiphoton microscopy)
becoming increasingly popular (which often yield large numbers of images to analyse), our
method provides an ideal tool for quickly extracting mechanically relevant tissue parameters
which have implications for computational modelling (e.g. on the mesh density) and can also
be used for the inhomogeneous modelling of tissues.
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1. INTRODUCTION

The mechanical behaviour of the arterial wall is mainly
governed by the organization and composition of the
three major microstructural components: collagen, elas-
tin and smooth muscle cells [1–3]. The influence of
these components on the cardiovascular function in
health and disease has been the subject of extensive
research [4–10]. While elastin is load-bearing at low
and (to a smaller extent) high strains, it is collagen
that endows the arterial wall with strength and load
resistance, thus making it the most relevant mechanical
tissue constituent [11–14]. Research indicates that
changes in the mechanical properties of the healthy arter-
ial wall play a role in arterial disease and degeneration [7].
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For example, increased stiffening of the vessel wall with
age may (among other factors) be related to an increased
ratio of collagen to elastin as well as increased collagen
cross-linking [4,15]. Higher wall stiffness may also be a
contributing factor for atherosclerosis [6]. Furthermore,
changes in the mechanical environment can lead to
growth and rearrangement of collagen, which can cause
enlargement of intracranial aneurysms, with an associ-
ated elevated rupture risk and mortality rate of
35–50% [8]. Collagen remodelling is also believed to
play a role in the healing of dissecting aortic aneur-
ysms [16]. Therefore, evaluating and monitoring
morphological data on collagen within the arterial wall
is essential to facilitate a better understanding of the
underlying mechanical principles governing the behav-
iour of the vessel wall. Additionally, such data can be
This journal is q 2012 The Royal Society
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Figure 1. Two binary test images, each 1511�1511 pixels, containing 100 randomly distributed straight lines with varying
lengths according to a Gaussian distribution (s.d.: 35%). In (a), all lines are oriented at 258 (08 is circumferential); in (b),
30% of the lines have been randomly rotated to match a Gaussian distribution with a mean of 458 and a s.d. of 108.
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used to improve modelling of the cardiovascular system
and increase our understanding of disease progression.

Many problems related to the mechanical function of
arteries can be studied in the framework of finite
element (FE) analysis. FE-based constitutive models
for arterial tissues are available, even in commercial
codes such as ABAQUS (SIMULIA, Providence, RI,
USA), and numerical modelling is a well-accepted
means by which to gain insights into the functional
relationships between structural and mechanical prop-
erties within arterial tissues, as well as studying
tissue- and organ-level deformations or stresses [17].
Collagen fibres generally display wavy patterns in the
unstressed arterial wall. When strain is applied, it
leads to a progressive recruitment of collagen fibres,
which align themselves in preferred (principal) direc-
tions, causing the characteristic nonlinear mechanical
response of arterial tissues. Higher strains effect the
orientations of collagen fibres [18], resulting in an
improved fibre orientation coherence and smaller dis-
persions of the entire fibre families [1,19]. Anisotropic,
fibre-reinforced material laws have been developed for
modelling such tissues [2,3], and some of these models
also include a measure of the fibre dispersion [20–23].

To visualize collagen, one can make use of either
stained histological sections (common stains: picrosirius
red (PSR), haematoxylin and eosin, Masson’s trichrome,
Movat’s pentachrome), or differentmicroscopy techniques,
for example polarized microscopy [19,24]; electron
microscopy (Xia & Elder [25] and references therein);
fluorescence microscopy [26]; multiphoton microscopy
(MPM) [27–30], featuring enhanced penetration depth in
soft biological tissues, good optical sectioning and good
resolution. Both, fluorescence microscopy and MPM
use collagen as a source of second harmonic generation
(SHG) [31–33] and autofluorescence [34–36], which
allows for direct observation without staining. For a brief
overview of structural quantification of collagen fibres in
arterial walls, see Holzapfel [37].

To assess morphological collagen data from two-
dimensional images in a simple, fast and automated
fashion, we use a Fourier-based image analysis
approach in combination with wedge filtering and
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progressive regions of interest (ROI) splitting. Fourier
power spectrum analysis and wedge filtering are both
well-established techniques for characterizing collagen
organization, based on the autocorrelation of intensity
fluctuations within a given image [25,38–43]. ROI split-
ting is a tool for extracting morphological data from
sub-images, allowing us to assess changes of such data
among varying length scales.

Our approach differs from aforementioned works, in
that we focus on extracting relevant biomechanical
material parameters that can beuseddirectly innumerical
modelling. We aim to provide an automated method to
span the work of an experimentalist focused on obtaining
high-quality images from soft tissues, and a computation-
alist focused on modelling of such tissues using material
parameters extracted from two-dimensional images.
Specifically, we demonstrate the following: first, the accu-
rate determination of the principal directions of fibre
reinforcement (i.e. the preferred fibre directions); second,
the quantification of the fibre dispersion about this princi-
pal direction; third, the gauging of appropriate length
scales for characterizing important features of the tissue
morphology (which has implications on the FE mesh den-
sity of the geometrical model); finally, a comparison of the
entire fibre distributions (instead of averaged measures)
among different length scales using higher-order statistics.
2. METHODS

2.1. Images

To validate and demonstrate our methods in a controlled
setting, we generated two binary test images, as shown in
figure 1. Both test images are made of 1511�1511 pixels
and contain 100 straight white lines, randomly distribu-
ted so that no two lines touch each other. The lengths
of the lines vary according to a Gaussian distribution
with a standard deviation of 35 per cent of the mean
length. In figure 1a, all lines are aligned parallel at 258
(08 and 908 correspond to the horizontal and vertical
axes of the image, respectively). In figure 1b, 30 per
cent of the lines have been randomly rotated to yield a
Gaussian distribution with a mean of 458 and a standard
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Figure 2. Representative experimental images: (a) displays an in-plane section of a human intima of the thoracic aorta (image
size: 1936 � 1936 pixels), showing two collagen fibre families almost symmetrically arranged with respect to the major cylinder
axes (indicated by the white dashed lines, 08 and 908 correspond to the circumferential and axial direction of the vessel, respect-
ively); (b) shows an in-plane section of the human media (image size: 1237�1237 pixels) featuring one collagen fibre family;
(c) shows collagen fibres in a transversal section of the chicken cartilage (image size: 1443�1443 pixels). The greyscale image
in (a) was obtained using polarized light and picrosirius red staining. Images in (b) and (c) were obtained using second harmonic
generation microscopes.

Collagen fibre orientations from 2D images A. J. Schriefl et al. 3083
deviation of 108. All random numbers were generated
using Matlab (MathWorks Inc., MA, USA).

Figure 2 gives an overview of the three microscopy
images that we chose for our studies. Figure 2a shows
a greyscale version of a representative micrograph of a
PSR-stained, in-plane tissue section of the human
intima (image size: 1936 � 1936 pixels). We obtained
the image via polarized microscopy through the
course of a different research study; details regarding
the tissue preparation and histological procedures can
be found in Schriefl et al. [44]. The image features two
almost symmetrically arranged collagen fibre families
with respect to the main cylinder axes, indicated by
the white dashed lines in figure 2a). The circumferential
and axial directions of the vessel correspond to 08 and
908, respectively. Figure 2b shows an MPM image of
one collagen fibre family taken from an in-plane section
of the human media (image size: 1237�1237 pixels).
The SHG signal of collagen was detected using a com-
mercially available coherent anti-Stokes Raman
scattering and SHG microscope system based on a
Leica SP5 (Leica Microsystems, Inc.). The device is
equipped with a picosecond solid-state laser-based
light source (picoEmerald; APE, Germany; HighQ
Laser, Austria) with an integrated optical parametric
oscillator (OPO). The SHG signal of collagen was gen-
erated by tuning the OPO to 830 nm. Backscattered
SHG signal was collected in epi-mode using a non-des-
canned detector and a BP 465/170 filter. Imaging was
performed using a Leica HCX PL APO CS 40.0�0.25
oil objective. Figure 2c shows a SHG image of collagen
fibres from a transversal section of chicken cartilage
(image size: 1443 � 1443 pixels). For details regarding
tissue preparation and imaging, see Lilledahl et al. [43].
2.2. Fourier transformation and wedge filtering

To obtain material parameters for applications in compu-
tational modelling, our first task is to extract quantitative
data regarding collagen fibre orientations from two-
dimensional images. Towards this end, we represent the
original greyscale image by a distribution function
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f(x,y), where (x,y) defines a point in the real two-dimen-
sional image. Using a two-dimensional fast Fourier
transformation (FFT), we obtain Fð f ðx; yÞÞ ¼ Fðu; vÞ;
where (u,v) is a point in the Fourier space. To avoid
frequency-domain effects originating from periodic dis-
continuities at the boundaries of the original image, we
first apply a window using a raised cosine function that
reduces the greyscale values to 0 at the image periphery
(figure 3a). After FFT, we perform a coordinate shift,
transforming the lowest spatial frequency to the origin,
from where it increases as we move towards the image
edges. The FT is then multiplied with its complex conju-
gate F*, yielding the power spectrum P, namely

Pðu; vÞ ¼ Fðu; vÞ � F�ðu; vÞ: ð2:1Þ
Figure 3b displays the Fourier power spectrum shown
with a logarithmic intensity scale of the windowed
image of figure 3a. Note the 908 shift of the axes
owing to the Fourier transformation. Frequency compo-
nents of the collagen fibres along different orientations
are represented as changes in amplitude, I(F), along a
specific angle F. The two fibre families are visible as
two white, elongated clouds oriented between the
major axes.

The collagen fibres are now discriminated by spatial
frequency and orientation. We use wedge-shaped orien-
tation filters to extract the fibre angles and their
corresponding amplitudes from the power spectrum [38].
The amplitudes I(F) are obtained by summation of
every P(u,v) within individual wedges (18 wedge
width), yielding a discrete distribution of relative ampli-
tudes as a function of the angle F. For these angles to
correlate with the real image, we shift them back by
908, as shown in figure 3c. For subsequent fitting, we
smooth the relative amplitudes using a moving average
filter with a span range of 58. The effect of data smooth-
ing is illustrated in figure 3d.

2.3. Distribution fitting

To describe the angular distribution of fibres, say ~rðFÞ,
we use a p-periodic von Mises distribution similar
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Figure 3. (a) The windowed greyscale image of the intima, as shown in figure 2a. (b) The Fourier power spectrum of (a), visu-
alized with a logarithmic intensity scale and the lowest frequency at the origin. (c) The discrete angular distribution of relative
amplitudes I(F) of the windowed greyscale image, obtained through 18 wedge filtering of the power spectrum shown in (b). (d)
The effect of smoothing the amplitudes using a moving average filter with a span range of 58. The frequency components in (a) of
the collagen fibres along different orientations are represented in (b) as changes in amplitude along a specific angle F. Two fibre
families are visible in (b) as two white elongated clouds oriented between the major axes. Note the 908 shift of the axes from (a) to
(b) owing to the Fourier transformation. All angles in (c) are shifted back by 908 to correlate with the angles of the collagen fibres
in the real image.
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to [3,21], given by

~rðFÞ ¼ exp½b cosð2ðF� mÞÞ�
2pI0ðbÞ

; ð2:2Þ

where F denotes the angle, b [ ½0;1� the concentration
parameter determining the shape of the distribution,
and m [ ½�p=2;p=2Þ the location parameter describing
the mean (or principal) fibre orientation (figure 4a).
J. R. Soc. Interface (2012)
Both parameters (b and m) are determined during the
fitting process. I0(b) in (2.2) is the modified Bessel’s
function of the first kind of order zero and the function
of order n is defined by

InðbÞ ¼
1
p

ðp
0

exp½b cosðaÞ�cosðnaÞda: ð2:3Þ

Note that the von Mises distribution is an angular dis-
tribution and a close approximation to the wrapped
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Figure 4. (a) A graphical representation of five two-dimensional von Mises distributions rðFÞ for five different concentration par-
ameters. For b ¼ 0, rðFÞ ¼ 1 is a uniform distribution (representing an isotropic fibre distribution), whereas for b! 1; the
distribution becomes a Dirac delta function at angle m (here centred at zero). Each distribution is normalized to p. (b) shows
the unit vector M defined by the angle F in a two-dimensional Cartesian coordinate system with the basis vectors e1 and e2.
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normal distribution (which is the normal distribution
wrapped around the circle) [45]. The von Mises distri-
bution is normalized according to Holzapfel & Ogden
[3], such that

1
p

ðp=2
�p=2

rðFÞ dF ¼ 1; ð2:4Þ

which yields the density function

rðFÞ ¼ exp½b cosð2ðF� mÞÞ�
I0ðbÞ

: ð2:5Þ

Note that the location parameter m becomes zero in the
model because the x1-axis of the coordinate system
and the mean fibre direction are made to coincide
(figure 4b). From equation (2.5), we can compute the
dispersion parameter

k ¼ 1
p

ðp=2
�p=2

rðFÞ sin2ðFÞdF ¼ 1
2

1� I1ðbÞ
I0ðbÞ

� �
; ð2:6Þ

with k [ ½0; 12�. For an isotropic fibre distribution k ¼ 1
2

(b ¼ 0), in the case of complete fibre alignment, i.e. no
dispersion, k! 0 ðb! 1Þ, as illustrated in figure 4a.

We obtained an analytical solution for k using the
trigonometric identity sin2x ¼ ð1� cos 2xÞ=2, yielding
the result shown in (2.6). Because rðFÞ is p-periodic,
(2.3) also holds for the integration limits ½�p=2;p=2�.
Note that k is half of the circular variance [46]. The dis-
persion measure k can be used to construct a symmetric
structure tensor H that describes the fibre distribution
in a continuum mechanical framework. Note that this
approach assumes a planar, symmetric fibre distri-
bution and is appropriate only for modelling thin
lamellar structures or a subset of three-dimensional pro-
blems under the assumption of an in-plane arrangement
of the fibres (see §4 for more details).

To fit the distribution from figure 3d, we use maxi-
mum-likelihood estimation (MLE). The fundamental
J. R. Soc. Interface (2012)
properties of the FT (see §4) allow us to generate the
fibre angle dataset (required for MLE) from the ampli-
tude distribution. For this purpose, we treat the
distribution of relative amplitudes as a histogram,
where the number of fibre angles equates to the value
of the corresponding amplitude. For instance, from a
relative amplitude value of 20 per cent at 08 we generate
20 angles with 08. This approach ensures that the cre-
ated angular dataset can reproduce the original
amplitude distribution and provides us with a sufficient
number of angles for the MLE.

As can be seen in figure 3d, the distribution is com-
posed of two fibre families, with a summation of the
amplitudes at the overlapping region. Therefore, we
use a mixture of two von Mises distributions, given by

rmixðFÞ ¼ r1ðFÞ þ r2ðFÞ

¼
X2

i¼1

exp½bi cosð2ðF� miÞÞ�
I0ðbiÞ

: ð2:7Þ

Thus, four parameters are fitted, namely the concen-
tration parameters b1 and b2 and the location
parameters m1 and m2 of the two distinct distributions.
Note that the mixture of the two von Mises distri-
butions in (2.7) does not need to be normalized to p

by a constant factor, because it is only used in the fit-
ting process for determining the four fitting
parameters [47], and is not used further in the model.

2.4. Varying length-scale analysis

To determine meaningful measures of fibre orientations
at different length scales, we divide the original image
continuously into ever smaller sub-images, denoted as
ROIs. With each subsequent dividing step n, the
number of ROIs grows exponentially by n2, as illus-
trated for n ¼ 1 2 4 in figure 5a. Every ROI is
windowed (see earlier text) and the Fourier power spec-
trum is calculated according to (2.1). We then fit a line



an
gu

la
r 

fr
eq

ue
nc

y

36

27

18

9

0
 –90 –45 0 45 90

u

v

(c)

(b)

n = 30

j (°)

j

jm = –36°

jmdn = –38°

(a)

n = 4

n = 1 n = 2

n = 3

Figure 5. Schematic of the steps to determine collagen fibre distributions at decreasing length scales (increasing dividing steps n).
The original image ((a), n ¼ 1) is continuously divided into an increasing number of regions of interest (ROIs), yielding n2 ROIs
at each step n, as illustrated for n ¼ 124 in (a). For every ROI, the Fourier power spectrum is calculated, from which the overall
fibre angle w of this ROI is determined by fitting a line through the centre of the power spectrum in a least-squares sense,
as shown in (b). (c) A representative histogram of all angles for n ¼ 30, yielding the angular distribution (900 angles) of the orig-
inal image from figure 2b at this length scale (08 corresponds to the horizontal direction of the image). Normalizing the histogram
by
Pn2

i¼1 I ðwiÞ ¼ 1 yields the computed probability mass function (PMF) pcðwÞ. To describe the average behaviour of this
distribution, the mean angle �wm and the median angle �wmdn are determined.
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through the centre of the power spectrum in a least-
squares sense [25], from which the overall fibre angle
w is determined for each ROI (figure 5b). Note that w

could also be determined by means of wedge filtering,
but because we are interested only in one parameter
for each ROI (instead of the entire angular distribution
of amplitudes for each ROI), it is computationally
(much) more efficient to fit a line through the power
spectrum. This yields n2 angles w within the original
image for each dividing step n, illustrated in figure 5c
as a histogram for n ¼ 30 (08 and 908 correspond to
the horizontal and vertical direction of the image,
respectively). From this angular distribution, we deter-
mine two measures describing the average behaviour of
the calculated fibre orientations: the mean angle �wm
and the median angle �wmdn. We provide both measures
in the illustrative example (n ¼ 30) in figure 5c. Nor-
malizing the histogram to

Pn2

i¼1 I ðwiÞ ¼ 1 yields the
computed probability mass function pcðwÞ that we use
in the subsequent analysis. Using both �wm and �wmdn,
J. R. Soc. Interface (2012)
we aim to determine an appropriate range for n,
where the resulting distribution of n2 fibre angles
wiði ¼ 1; n2Þ reflects the inhomogeneous morphology
of the collagen fibres in the image. We achieved this
goal by determining a range where �wm and �wmdn display
(relatively) stable behaviour among subsequent
partitions (n’s).

To test whether the calculated distributions from
dividing images into ROIs reflect the inhomogeneity
of the morphology, we plot statistical measures across
different subdivisions (i.e. different n’s) of images. In
this context, the weighted error entropy is the most rel-
evant statistical measure [48,49]. Error entropy has
been used in the context of stochastic learning as a
reliable metric, and has the ability to capture arbitrary
statistics [50]. The error entropy E is defined as

EðnÞ ¼ 1
p

Xp=2
i¼�p=2

pdðwi; nÞlog2½ pdðwi; nÞ�; ð2:8Þ
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Figure 6. Angular distribution of the collagen fibres in
figure 2a (08 corresponds to the circumferential direction of
the vessel). The two distinct peaks correspond to the two col-
lagen fibre families, almost symmetrically arranged around
the circumferential direction, visible in figure 2a. The fit was
performed using maximum-likelihood estimation and
two superimposed von Mises distributions with four fitting par-
ameters: one concentration and location parameter for each
fibre family (b1 ¼ 2:503;m1 ¼ �39:68; b2 ¼ 2:149;m2 ¼ 39:48).
The dispersion parameters for each family are
k1 ¼ 0:1173;k2 ¼ 0:1396.
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where

pdðwiÞ ¼ abs½ pcðwiÞ � paðwiÞ�: ð2:9Þ

While pd quantifies the difference between the com-
puted ( pc) and actual ( pa) PMF, the error entropy
E(n) quantifies the uncertainty in the difference
between the two distributions.

Hence, when the two distributions are identical,
the error entropy is zero. However, this assumes that
both distributions pc and pa are centred around the
same value (a difference distribution that is Dirac
delta at a different mean value has less error
entropy than a difference distribution, which is cen-
tred around the correct mean). To prevent this
occurrence, we weight the error entropy with difference
in mean values. The weighted error entropy (Ew) is
given by

EwðnÞ ¼ abs½mpc
ðnÞ � mpa

ðnÞ�½k þ EðnÞ�; ð2:10Þ

where k is a weighing constant, and mpc
and mpa

are the
mean values of the given distributions. In order to
determine the Ew, the actual PMF ( pa in equation (2.9))
must be computed if it is not known. For the first two
test images (figure 1a,b), pa is the input PMF (the nor-
malized angular distribution of the lines). Because pa is
usually unknown for experimental images (figure 2b,c),
we choose a specific PMF to be pa, where the gradient of
absolute entropy of the PMF stabilizes and reaches a
plateau. To ensure that the chosen pa is robust, we per-
form a perturbation analysis. If n yields the ROI size
when the gradient of absolute entropy stabilizes, we
also choose theoretical distributions corresponding to
(n 2 3) and (n þ 3). A robust choice would imply
that our results (the plots of Ew) do not change for
such small perturbations in the chosen theoretical
PDF pa.
3. RESULTS

We have developed automated methods to extract col-
lagen fibre orientations and associated dispersions at
different length scales from two-dimensional images
that can then be used in computational modelling. To
this end, we focused on three key parameters: first,
the dispersion parameter, k, which is a well established
and used measure of anisotropy [3,21,23]; second, the
fibre angles �wm and �wmdn, as a measure for the average
orientation of a given fibre distribution; third, the Ew,
which analyses and compares entire fibre distributions
rather than the averaged fibre orientations, which is,
therefore, useful when average measures are not suffi-
cient. Furthermore, the behaviour of the average fibre
angles and Ew at different length scales allows us to
determine an appropriate range of ROI sizes, which
will yield fibre distributions representing the tissue mor-
phology from the image, which has implications for
computational modelling (e.g. on the mesh density).
Our method is based on transforming an image to Four-
ier space where the power spectrum is calculated, from
which the earlier-mentioned parameters can be
extracted (figures 3 and 5).
J. R. Soc. Interface (2012)
3.1. Distribution fitting

To obtain the dispersion parameter k, we fit a given
angular distribution using MLE. As an illustrative
example, we choose the (more challenging) case of an
image featuring two (rather than one) collagen fibre
families (figure 2a). The result of fitting a mixture of
two von Mises distributions (equation (2.7)) is shown
in figure 6. The fitting parameters are b1 ¼ 2.503,
m1 ¼ 239.68 and b2 ¼ 2.149, m2 ¼ 39.48 for the two dis-
tributions, respectively (b denotes the concentration
parameter and m the location parameter). Using (2.6)
and the shape parameters b1 and b2, the dispersion par-
ameters k1 ¼ 0:1173 and k2 ¼ 0:1396 were calculated.
To quantify the goodness of the fit, we use the Pearson’s
x2 test (yielding a p-value) and the coefficient of
determination R2. For the fit in figure 6, we obtained
p ¼ 0.8535 and R2 ¼ 0.935.

3.2. Varying length-scale analysis

Figure 7a shows the behaviour of the average fibre
angles �wm and �wmdn with increasing n [ ½0; 75� (decreas-
ing ROI size) for the first test image from figure 1a.
Initially, both measures yield the correct angle of 258
in accordance with the actual input PMF ð paÞ, which
is a Dirac delta distribution located at 258 (figure 1a).
The mean angle starts to deviate from the correct
angle around n ¼ 13 (left arrow in figure 7a) marking
the upper cut-off point for �wm, whereas the median
angle shows a more stable behaviour yielding the appro-
priate angle ð+0:58Þ until the upper cut-off point for
�wmdn around n ¼ 36 (right arrow).

For the Ew in figure 7b, pa was chosen to be a Dirac
delta distribution located at 258, corresponding to the
actual PMF of the first test image. Note that if, instead
of the Dirac delta distribution, we choose pa, based on
the results of the perturbation analysis (not plotted),
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Figure 7. Results for the first test image (Figure 1a): (a) shows
the mean angle �wm and the median angle �wmdn for increasing
dividing steps n, and (b) shows the weighted error entropy,
Ew. Both measures �wm and �wmdn in (a) yield the correct
angle of 258 until around n ¼ 12, confirming the capability
of this method for extracting accurate angular data across
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cut-off point for �wmdn). The weighted error entropy in (b) is
relatively stable until around n ¼ 13, corresponding to minor
changes only in the probability mass functions (PMFs)
across these length scales.
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Figure 8. Results for the second test image that includes
dispersion (figure 1b): (a) shows the mean angle �wm (grey line)
and the median angle �wmdn (solid line) for increasing dividing
steps n, and (b) shows the weighted error entropy, Ew. In (a),
the mean angle �wm fluctuates and does not stabilize owing to
the dispersion, and is, therefore, not suited for identifying a
range of appropriate ROI sizes. On the other hand, the
median angle �wmdn initially fluctuates but stabilizes around
n ¼ 11, yielding a lower cut-off point (left arrow); �wmdn is then
stable up to n ¼ 24 (upper cut-off point) before it starts to
drift away. In the stable range of �wmdn from n ¼ 11 to n ¼ 24,
the n2 angles from all ROIs yield an angular distribution repre-
senting the orientation of lines in the input image. Theweighted
error entropy, Ew in (b) shows that after an initial increase the
PMFs do not change much until n ¼ 14.
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where the gradient of absolute entropy stabilizes
(rather than the knownDirac delta distribution), it results
in the theoretical distribution, verifying our scheme for
computing the unknown actual PMFs for images of soft
tissues. The Ew is quite stable until around n ¼ 13.
While the reliable estimate for the median holds until
n ¼ 36 (upper cut-off point for �wmdn in figure 7a), the
entire PMF shows only a relatively stable behaviour for
a third of that range (until n ¼ 13), similar to �wm.

The results in figure 8a for �wm and �wmdn of the second
test image, which includes some dispersion (figure 1b),
show a very different behaviour with respect to the
first test image. Initially, the mean angle �wm yields
increased values around 308 (owing to the fact that
30% of the fibre angles are distributed with a mean of
458) and starts to drift off at n ¼ 17. Overall, the
values for �wm fluctuate with increasing n, and a stable
behaviour is never observed. The median angle �wmdn
on the other hand fluctuates only in the beginning of
the analysis (n ¼ 1–10), and stabilizes at a lower cut-
off point of about n ¼ 11 (see arrow); �wmdn is then
stable up to n ¼ 24 (+0:58) before it starts to drift
away. The Ew in figure 8b indicates that after an initial
J. R. Soc. Interface (2012)
increase, the PMFs do not change much until n ¼ 14,
after which EwðnÞ shows a steeper increase.

Figure 9 displays the results of the average fibre
angles in (a), and the Ew in (b) of a SHG image featur-
ing collagen fibres in an in-plane section of the human
media (shown in figure 2b). Both �wm and �wmdn have a
lower cut-off point at n ¼ 3. After n ¼ 19, �wm drifts
away sharply, whereas �wmdn displays a (relatively)
stable range until the upper cut-off point at approxi-
mately n ¼ 40. The weighted error entropy curve
features two regimes: (i) a very stable region until
n ¼ 18, and (ii) a monotonic, almost linear increase
henceforth. This is similar to the drift in the curve for
�wm, whereas the drift is less steep for �wmdn.

The results from the analysis of the SHG image fea-
turing collagen fibres of the chicken cartilage (shown in
figure 2c) are displayed in figure 10. Both, �wm and �wmdn
in panel (a) have a lower cut-off point at n ¼ 4, followed
by a stable domain until the upper cut-off point at
n ¼ 25. In the stable domain, �wm yields values approxi-
mately 68 higher than �wmdn. The Ew in figure 10b has a
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Figure 9. Results for the second harmonic generation image of
collagen fibres in the human media (figure 2b): (a) shows the
mean angle �wm and the median angle �wmdn for increasing
dividing steps n, and (b) shows the weighted error entropy,
Ew. In (a) we observe a lower cut-off point for both angles
�wm and �wmdn at n ¼ 3. While �wm starts to drift away after
n ¼ 19, the median angle �wmdn displays a (relatively) stable
behaviour over a wider n-range until about n ¼ 40, followed
by a small angular drift at decreasing ROI sizes. The weighted
error entropy ðEw) in (b) displays small changes of the prob-
ability mass functions (PMFs) up to n ¼ 18. The entropy
increase beyond that point coincides to the length scale
where the stable region for �wm in (a) starts to break down.
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Figure 10. Results for the second harmonic generation image of
collagen fibres of chicken cartilage (figure 2c): (a) shows the
mean angle �wm and the median angle �wmdn for increasing divid-
ing steps n, and (b) shows the weighted error entropy, Ew. In (a)
we observe a lower cut-off point for both angles �wm and �wmdn at
n ¼ 4, below which both measures yield unstable values owing to
artefacts and different collagen fibre orientations at the per-
imeter of the cartilage. Both measures show a stable behaviour
up to n ¼ 25 (upper cut-off point), though the values for �wm
are approximately 68 higher than �wmdn. The behaviour of the
weighted error entropy, Ew up to around n ¼ 6 in (b) confirms
the existence of an initially unstable domain (highlighted in
(a)), followed by a stable and low Ew regime up to about n ¼ 21.
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trend similar to that in figure 9b, with a stable regime
followed by an almost linearly increasing curve. At
the beginning of figure 10b, up to around n ¼ 6, Ew

reveals changes in the PMF owing to aforementioned
artefacts. This is not the case for Ew in figure 9b,
because the analysed image (shown in figure 2b) does
not contain regions with very different fibre orientations
(compare figure 2b with 2c).
4. DISCUSSION

In this study, we outline an automated Fourier-based ima-
ging analysis method to extract and quantify material
parameters characterizing collagen fibre orientations
from two-dimensional images. Our method combines
Fourier power spectrum analysis and wedge filtering
(two well-established image analysis tools for morphologi-
cal data extraction; [25,38,40]). Additionally, we show
how ROIs (sub-images) can be used to obtain useful
orientation information among different length scales.

We aim to extract data from which we can (i) deter-
mine material parameters for computational modelling
J. R. Soc. Interface (2012)
of soft biological tissues using fibre-reinforced constitutive
models and (ii) gauge which length scales are most
appropriate to capture tissue morphology, which can
also have implications for computational modelling (e.g.
mesh density). Specifically, we focus on three key par-
ameters: first, we compute the dispersion parameter k, a
measure of anisotropy [3,21,23]. Mainly, k is based on
a three-dimensional (three-dimensional), rotationally
symmetric von Mises distribution. Because we deal
with two-dimensional images, we make use of the two-
dimensional equivalent as discussed in Holzapfel &
Ogden [3]. Second, we introduce two measures for the
average orientation of a given distribution ð�wm, �wmdnÞ
and show that �wmdn is the more appropriate measure to
use if the collagen fibres are dispersed. In the presence of
fibre families, the average orientation corresponds to the
preferred (or principal) fibre direction of one fibre
family [44], and hence can be used as a parameter for con-
tinuum mechanics-based constitutive models (see earlier
studies [2,51–54] and references therein). Third, we calcu-
late the Ew as a measure of changes in the entire fibre
distributions at different length scales, as opposed to
their average behaviour.
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4.1. Analysis validation

In our approach, three fundamental properties of the
FT are pertinent, ensuring that the distribution of rela-
tive amplitudes in the Fourier space is a representation
of the collagen fibre distribution. They are (i) the
rotation of a collagen fibre results in an equal rotation
in the Fourier space (the rotational property), (ii) the
Fourier transform of a region containing several fibres
is equal to the sum of the individual Fourier transforms
of the same fibres (the addition theorem), and (iii) a
spatial shift of a fibre does not affect the amplitude of
its Fourier transform (the shift theorem). Hence, Four-
ier space provides a proper representation of the fibre
orientations of a two-dimensional image.

Generally, the dimensions of any original image used
for our analysis should be much larger than the structures
of interest shown in the image (in our case, collagen fibres)
to ensure that they can still be contained within ROIs at
increasingly smaller length scales. To validate the func-
tionality of our method, we created two test images
shown in figure 1a,b. The purpose of the first test image
(figure 1a) is to verify the capability of the method to
extract correct angular data among various length
scales. The distribution of all lines in the first test image
corresponds to a Dirac delta function at 258. Both average
measures ð�wm, �wmdnÞ yield the correct angles of 258 in the
range of n ¼ 1–12 (figure 7a). As expected, �wmdn is more
stable at increasingly smaller ROI sizes (increasing n)
than �wm.

To investigate which of the two average measures is
more appropriate if the fibres are dispersed, we modified
the first test image to include some dispersion, resulting
in the second test image shown in figure 1b. From the
results in figure 8a, it becomes evident that the mean
average measure �wm does not stabilize. It is, therefore,
not suited for identifying a range of ROI sizes that
would yield angular distributions that are representa-
tive for the orientations of the lines (simulated fibres).
On the other hand, the behaviour of the median average
measure �wmdn shows three interesting characteristics:
(i) it yields a lower cut-off point, which represents a
maximum ROI size above which the average angles
�wmdn of the entire distributions fluctuate highly as n
changes; (ii) it yields an upper cut-off point which
marks a minimum ROI size below which the angular
values start to drift away; and (iii) it identifies a stable
range of ROI sizes between both cut-off points. Such
stable ranges can be observed only if the underlying dis-
tributions (from which �wmdn is determined) reflect the
orientations of the features in the image. If, for example,
a ROI size is too large, details within individual ROIs are
smeared out and information is lost. On the other hand,
if a ROI size is too small, the information within individual
ROIs is compromised by, for example, image artefacts,
resolution limits or edge effects.
4.2. Distribution fitting

We use MLE to fit a mixture of two von Mises distri-
butions to the angular distribution obtained from the
image in figure 2a, featuring two collagen fibre families
in the human intima of the thoracic aorta [44]. The
J. R. Soc. Interface (2012)
results of this fitting are shown in figure 6, and as a
measure of the goodness-of-fit we determined the
p and R2 values. Because the Pearson’s x2-test
depends on the size of the dataset (i.e. the number of
generated angles), we also calculate the coefficient
of determination R2. Because R2 is computed by com-
paring the original distribution with the estimated
PDF, it does not depend on the number of angles and
is, therefore, an additional measure for the goodness-
of-fit independent of p. We also emphasize that R2 is
not optimized during the fitting procedure.

We would like to note that although it is quite
common to fit a curve to a histogram using the least-
squares method, there are some drawbacks to this
approach that should be kept in mind. For one, least-
squares fitting depends on the bin size of the histogram.
Another potential pitfall arises from the normality
assumption, which states that the errors are normally
distributed with mean zero. Because bin counts in a
histogram are non-negative this assumption does not
hold. Also, the constant variance assumption and the
independent-errors assumption are not justified when
fitting distributions [55].
4.3. Fibre angles and dispersion

In the literature, the importance of collagen fibre orien-
tations on the mechanical behaviour of arterial walls
has been well established [3,37,44,56]. To account for
the effect of strain on changes in the fibre orientations
and the angular distributions, to approximate the in
vivo strain state of arteries and to ensure more straigh-
tened fibres necessary for angular measurements, the
investigated samples were usually either pressuri-
zed or pre-stretched biaxially beforehand [8,19,57,58].
Our approach allows us for a fast and automated
determination of the angular distribution from two-
dimensional images. By fitting a given distribution (in
our example a distribution of two fibre families, see
figures 2a and 3) with a mixture of two von Mises
distributions, we can compute the principal fibre
orientations m1, m2 and the corresponding dispersion
parameters k1, k2, one for each fibre family (figure 6).

Note that this approach assumes a planar, symme-
tric fibre dispersion for each fibre family individually.
Such two-dimensional data can be directly applied to
mechanical modelling of thin lamellar tissue structures
on the basis of membrane or thin shell theory, for
example, cerebral arteries, using appropriate constitutive
models (see earlier studies [3,21] for further discussion).
However, many arteries behave as thick-walled cylindri-
cal tubes (e.g. the human aorta), and hence three-
dimensional modelling approaches are required. In this
case, for a subset of fully three-dimensional problems,
one can make use of the (mainly) in-plane arrangement
of the collagen fibres in arterial walls. For example, in
the case of the human descending aorta and common
iliac arteries, the collagen fibres lie in the plane of the
tissue (angular deviation �+98) [44]. The assumption
of in-plane arranged collagen fibres is not necessarily
appropriate for other soft tissues. For example, in the
articular cartilage, the fibres display very different orien-
tations depending on the specific zone. In the tangential
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zone, they lie within the transversal plane, a variety of
orientations are observed for the middle zone, while in
the deep zone the fibre arrangement is perpendicular to
the transversal plane [59]. To ensure that our analysis
yields correct material parameters, most of the collagen
fibres should lie within the sectioning (imaging) plane
in order to avoid projections to this plane, which would
lead to deviations in length and (possibly) angles from
the true morphological state. Therefore, in the case of
an in-plane arrangement of the collagen fibres, the two-
dimensional collagen fibre data obtained through our
method may also be used for three-dimensional modell-
ing (using the two-dimensional k parameter according
to equation (2.6)) under the assumption of strictly
in-plane organized collagen fibres (neglecting the out-
of-plane deviations is a simplification of the problem
with regards to computational modelling, motivated by
experimental observations [44]).
4.4. Varying length-scale analysis

We developed an analysis method that continuously
splits an image into increasingly smaller ROIs to
obtain a physically meaningful measure of fibre orien-
tations across length scales. In most applications, mean
and median measures suffice when we are interested in
the average behaviour of fibre families. Using two test
images, we have shown that the median angle �wmdn is
the more appropriate measure to use for this purpose.

To demonstrate the applicability and usefulness of
our method on microscopy images of soft tissues contain-
ing collagen fibres, we ran our analysis on SHG images of
the human media and the chicken cartilage (figure 2b
and 2c, respectively). Results for both images, as
shown in figures 9a and 10a, reveal a stable range of
ROI sizes, located between the lower and upper cut-off
point, where �wmdn shows only small fluctuations (+38).
The advantage of the length-scale analysis can be seen
in figure 10a, where a ROI size in the range of n ¼ 1�4
leads to highly fluctuating values for �wmdn, followed by
a wide range (n ¼ 5225) of stable behaviour before
�wmdn slowly drifts away. Using our method, a finite
element analyst can, for example, determine an appro-
priate mesh density (based on a ROI size where �wmdn
shows stable behaviour) that also captures the relevant
tissue structure. For example, the cartilage tissue in
figure 2c features very different fibre orientations at the
perimeter compared with the centre of the tissue. If a
ROI size is too large, this specific tissue inhomogeneity
will be lost. Only if the ROI size is small enough, can
such spatial changes in orientation be resolved. Analysis
of the cartilage tissue shown in figure 10a tells us that a
mesh density corresponding to a ROI size between
n ¼ 5 and 25 is appropriate to capture important
structural features of the image.

However, if average measures are not sufficient (e.g.
quantification of the risk of a pathological condition
such as an abdominal aortic aneurysm [60]), and to
depict how higher-order statistical measures vary
across different values for n, we compare weighted
error entropies across different values n. There are
different measures that can be used to compute the dis-
tance between two distributions [61–63]. For example,
J. R. Soc. Interface (2012)
the Kullback–Leibler divergence [64] is a measure of dis-
tance between two distributions, but it is not symmetric
and is only defined for two distributions whose range of
non-zero values is the same (which is not the case in our
examples). Mutual information, as another example,
quantifies how much the knowledge of one variable
reveals about another variable. However, correlation
information between the two variables is needed, and
such information is not available in our case. The Ew is
an appropriate measure for our purpose. It compares
entire fibre distributions (rather than the averaged behav-
iour) and reveals how much of the tail information is lost
when averaged behaviour is considered. For the
microscopy images in our study, the Ew shows that
the entire fibre distributions start to change with increas-
ing n before a change in �wmdn can be observed (cf. (a) and
(b) in both figure 9 and figure 10). Therefore, if one is
interested in the behaviour of the entire fibre distri-
butions, then a study of Ew helps to identify ranges of n
where calculated fibre distributions are similar, and at
that length scale, they start to differ.

The usefulness of both parameters �wmdn and Ew is
illustrated in the results for the second test image
(figure 1b) in figure 8. For example, if one is interested
in determining an appropriate ROI size capturing local
changes in tissue morphology, then a corresponding
ROI size ranging from n ¼ 11 to n ¼ 20 is suitable,
because in this range �wmdn shows a (relatively) stable be-
haviour. On the other hand, if the behaviour of the entire
PMF is of interest, then the result for Ew tells us that we
are losing information starting around n ¼ 14, which is
insight that cannot be gained from average measures.

Another valuable aspect of our methods pertains
inhomogeneous computational modelling of tissues.
For this purpose, the location-specific structural par-
ameters (fibre angle k) obtained for every ROI can be
incorporated element-wise into an FE mesh. Such
patient-specific data allow for a more precise modelling
of the cardiovascular system and could help improve
our understanding of the interaction between collagen
fibre morphology and arterial wall mechanics.
4.5. Limitations

The method we present extracts morphological data
from two-dimensional images and is, therefore, not
able to capture true three-dimensional fibre orientations
and dispersions. As it is the case with other methods
that aim to quantify fibre angles, it is a prerequisite
for the collagen fibres to be (mostly) straightened (see
Schriefl et al. [44] and references therein). Such data
can be used for modelling within the framework of
membrane or thin shell theory, but are limited to a
subset of three-dimensional physical problems and soft
biological tissues (see §4). To fit the fibre distribution,
we use MLE that requires a sufficient number of fibre
angles. Our method does not measure fibre angles
directly, but extracts them from Fourier power spectra.
While this automated approach for extracting orienta-
tional information from images is well established, we
want to emphasize that the resulting fibre angle distri-
butions do not represent accurate fibre angle counts.
The choice for the upper and lower cut-off points
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to determine a (relatively) stable dividing range (n
range), with the aim of obtaining physically meaningful
fibre orientations which reflect the tissue morphology,
must be made manually. Depending on the input
image, this choice can either be very evident or in the
case of slow drifts with increasing n-values less defined.
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