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We propose a model that captures the dynamics of a carnivorous plant, Utricularia inflata.
This plant possesses tiny traps for capturing small aquatic animals. Glands pump water
out of the trap, yielding a negative pressure difference between the plant and its surround-
ings. The trap door is set into a meta-stable state and opens quickly as an extra pressure is
generated by the displacement of a potential prey. As the door opens, the pressure difference
sucks the animal into the trap. We write an ODE model that captures all the physics at play.
We show that the dynamics of the plant is quite similar to neuronal dynamics and we analyse
the effect of a white noise on the dynamics of the trap.

Keywords: bladderwort; carnivorous plant; fast motion;
excitable dynamics; Utricularia
1. INTRODUCTION

Utricularia inflata is an amazing, aquatic, rootless plant.
At first sight, they are long stems topped by yellow flow-
ers, but their underwater leaves are endowed with
millimetre-sized traps. These traps are ingenious systems
developed by the plant in order to survive in nutrient-
poor habitats. When a prey comes too close to the
trap, it touches some trigger hairs (figure 1a). This
mechanical stimulus allows the opening of the trap: the
door buckles, slides inwards and finally unlocks. Thus,
the prey and its surrounding water are quickly sucked
into the inflating trap (figure 1c). Then, Utricularia
deflates slowly, thanks to the activity of membranar
bifid glands, which actively pump the water out of the
trap. Actually, the pumping is based on the transport
of chloride ions, which creates a local osmotic gradient
in the trap membrane and an accompanying flux of
water [1,2]. As a result, the trap deflates and returns
into a capturing configuration (figure 1b).

In order to fully understand the mechanical behav-
iour of this trap, we built a full dynamical model.
Indeed, previous studies focus only on the mechanics
of the trap body [3], or on the door [4] but no model
was proposed to link those two aspects. Here, we intro-
duce the hydrodynamics in order to couple these two
elastic parts. We present our model in §2 by linking
the internal pressure and the position of the door
with a set of two coupled differential equations. Our
dynamical model predicts a wide range of behaviours,
including excitability leading to a fast suction, and
spontaneous or periodic firings, which are all observed
orrespondence (mederic.argentina@unice.fr).
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experimentally on Utricularia [5]. Note that our
purely mechanical system is described by a set of
equations that are similar to that of other models
developed for electrically excitable media, such as the
FitzHugh–Nagumo model for spike generation in
nerves [6]. We find the relevant parameters that com-
pletely characterize the whole dynamics. Numerical
results are analysed in §3. In §4, we discuss the suit-
ability of our model by comparing our results with
the real behaviour of Utricularia. Fluctuations are
introduced in the last section, in order to account for
the statistics of spontaneous firings of the trap [5].
2. DERIVATION OF THE MODEL

The mechanism for capturing prey is based on the
suction of the fluid near the door, induced by the trap
deformation. The bifid glands, by expelling water,
build up a high pressure difference between the
interior and the exterior of the trap, with a character-
istic time of a hundred minutes. For a critical volume,
the closed door can no longer sustain this pressure
difference, and the trap inflates in a few milliseconds
while sucking in the exterior fluid (with the potential
prey). The existence of a critical threshold yielding an
explosive response followed by a slow recovery are the
signature of an excitable system, like for the neuronal
dynamics [6].

We first describe the geometric properties of the trap,
then we model the temporal variations of the volume and
we approximate the door opening/closing dynamics.
Finally, we close our model by coupling this dynamics
with the volume equation.
This journal is q 2012 The Royal Society
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Figure 1. Trap of Utricularia inflata. (a) Frontal view of the trap. The light green disc is the door of the trap. (b,c) Top view of a
trap. The two extreme states of the trap are displayed. In (b), the trap is in the deflated, capturing configuration. The fine threads
are the trigger hairs. In (c), the trap has just fired and is inflated. Scale bars, 500mm. (Online version in colour.)
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Figure 2. Cylindrical geometry of the trap, with a diameter L
and a height e. The door is visible on the right as a circular
shell of radius R (R ¼ 3 � 1024 m) and thickness h (h ¼ 3 �
1025 m) [3].
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2.1. Geometry of the trap body

The trap, which is a biconcave disc, as pictured in
figures 1 and 2, can be approximated as a deformable
cylinder [4] of diameter L � 1.5 mm and variable
height e. The volume is approximated by

V ¼ p
L
2

� �2

e: ð2:1Þ

When the trap is fully inflated, e ¼ 0.8 mm, and the
maximum volume is Vmax ¼ 1.41 mm3. As the trap is
fully deflated, e ¼ 0.4 mm, and the minimal volume is
Vmin ¼ 0.67 mm3 [4]. The area of the membrane of the
trap Sm is approximately given by

Sm ¼
p

2
L2 þ pLe: ð2:2Þ

2.2. Temporal variation of the volume

We now consider the temporal variations of V, as
observed in [5]. Experiments show that V decays expo-
nentially to a final volume V0 [4]. The fluid flux has
three contributions. First, the bifid glands of the mem-
brane actively pump the water out of the trap to
decrease V. The flow rate corresponding to this mech-
anism is 2q with q positive. The second effect is
related to the porosity of the trap. The membrane
pores induce a Darcy flow that is proportional to the
pressure difference DP, the surface of the membrane
Sm and the porosity de. Osmotic pressure could also
be at the origin of this leakage. Finally, if the door is
opened, there is an additional flux that tends to equili-
brate the pressure difference between the exterior and
the interior of the trap. For now, we simply write the
balance of fluxes related to the membrane:

@V
@t
¼ �q þ deSmDP; ð2:3Þ

where q ¼ 2.3 � 10213 m3 s21 [4] (equivalent to a
transport velocity of 4 � 1028 m s21 through the surface
J. R. Soc. Interface (2012)
Sm) and we choose de ¼ 2.4 � 10212 m s21 Pa21 of the
same order of magnitude as those reported for vegetal
cells [7,8]. The membrane elasticity connects the
volume loss to the pressure load: the pressure difference
DP varies almost linearly with V in experiments and in
simulations [4]:

DP ¼ �dðV � VmaxÞ; ð2:4Þ

with Vmax the volume for which the bending energy of
the trap is minimum. Here, d mixes the effects of
the elasticity and the geometry of the trap. Experi-
mental results show that a variation from V ¼ Vmax

to V ¼ Vmin yields a pressure difference equal to 0.15
bar [4]; so we evaluate d ¼ 2.027 � 1013 Pa m23. As a
consequence, we conclude from (2.3) and (2.4):

_V ¼ 1
t
ðV0 � V Þ; ð2:5Þ

where 1/t ¼ de dSm and V0 ¼ Vmax 2 qt is the volume
at final equilibrium.

At this stage, we can model the action of the door
with the following argument: as V becomes smaller
than Vc, the door opens and V is settled instantly
to a given value Vmax. This crude approximation
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Figure 3. Temporal variations of the volume V, with a simple
model neglecting the door dynamics. (a) Vc,V0: convergence
of the trap volume to V0. (b) Vc.V0: oscillations of the
volume V.
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Figure 4. Experimental images of the opening of the door
of Utricularia australis. (a) Initial shape prior opening,
(b) 7.6 ms after opening and (c) full opening at 8.6 ms. The
height of the door is around 400 mm. It is thicker near top.
The pictures are based on light-sheet fluorescence microscopy
recording and they are here displayed in grey inversion. (d)
The conventions for the position of the centre of the door Z
are represented. When the door is closed and the trap is in
the ‘ready to capture’ configuration, Z ¼þZ0. The door is
buckling: Z ¼ 0. The curvature of the door is inverted and
the door is open: Z ¼2Z0. (Online version in colour.)
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will be refined as we develop the model of the door
displacement (§2.3).

If at t ¼ 0, V ¼ Vmax, then the temporal evolution of
the volume is

V ðtÞ ¼ V0 þ ðVmax � V0Þ e�t=t: ð2:6Þ

Consequently, depending on the relative value of V0

to Vc, we can observe two distinct behaviours (figure 3):

— if Vc , V0, the volume of the trap converges to V0.
Furthermore, if Vc � V0, the trap dynamics is simi-
lar to an excitable system [9]. A small external
perturbation can potentially decrease V under Vc,
leading to the opening of the door, which in turn
increases V up to Vmax.

— if Vc . V0, the volumewill oscillate between the value
Vmax and Vc. The period of the oscillation TV can be
easily obtained. At t ¼ TV, the door opens as V ¼ Vc.
We therefore deduce from (2.6) that

TV ¼ t log
Vmax � V0

Vc � V0
: ð2:7Þ

These two distinct behaviours have been described in
Vincent et al. [5].

The critical volume Vc will be assessed by studying
the door dynamics.
J. R. Soc. Interface (2012)
2.3. Dynamics of the door

We model the door as an elastic circular shell of radius
R ¼ 3 � 1024 m and thickness h ¼ 3 � 1025 m [4], with
half of its edge clamped in the membrane. This door is
compressed against a flat and rigid substrate, leading to
a bent shape as pictured in figure 4a. In this configur-
ation, we assume that no fluid leaks through the door,
which slightly deforms to sustain an increase in pressure
difference DP. When this latter exceeds a critical value,
a buckling instability occurs (figure 4b), yielding to a
fast opening of the door that permits a fast entrance
of the fluid that equilibrates the pressure (figure 4c).
Once DP vanishes, the door comes back quickly to
its original configuration (figure 4a), driven by the
minimization of its elastic energy.

We note Z the position of the centre of mass of the
door. The door is subject to elastic forces, to the exter-
nal load 2pR2DP exerted by the pressure and to
damping. The effective mass m of the door can be
approximated by

m ¼ rpR2h þ krR3; ð2:8Þ

where r measures its density (approx. equal to rwater ¼

103 kg m23). The first term is the mass of the door, and
the second term represents the added mass. The factor
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Figure 5. E versus Z for c ¼ 0, 0.2, 0.4.
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k is of order 1 [10]. The cubic dependance models the
fluid volume that the door needs to displace during its
motion. We consequently write:

m€Z ¼ felastic þ fdamping � pR2DP: ð2:9Þ

Very roughly, the damping terms can be written
with a sum of two contributions. As the door moves
fast, the fluid is at a high Reynolds number and gener-
ates a drag proportional to rð _ZÞ2 [11]. For small
movements, the latter damping is small compared
with the viscous friction, proportional to the Stokes
force hR _Z [11], where h is the dynamical viscosity of
water. Consequently, we write:

fdamping ¼ �arR2ð _ZÞ2signð _ZÞ � bhR _Z ; ð2:10Þ

where the two constants a and b are of order 1, and
depends on the geometry of the door. It remains to
define the elastic forces. We approximate the door
with a cylindrical shell, against a rigid substrate using
a bending energy E:

felastic ¼ �
@E
@Z

: ð2:11Þ

For such systems, the plate has two stable buckled equi-
libria separated by an unstable state. The bending
energy should display two minima separated by one
maximum, this is why we propose

E ¼ �PbR
Z2

2
1� 1

2
Z
Z0

� �2
 !

; ð2:12Þ

where Pb is the critical pressure provoking the door
buckling. In the case of a spherical shell of radius R
and thickness h, it writes Pb ¼ Eh2/R2 [12].

The energy (2.12) predicts an unstable state Z ¼ 0
with two stable states Z ¼+Z0. Following figure 4, we
choose the door to be closed when Z . 0 and opened
when Z , 0. The door is not articulated on freely rotat-
ing hinges, as would be a real door. Actually, it is
clamped to the main body by a thicker and less deform-
able part (figure 4). The deformation of this thicker
part means that the opened state is energetically unfa-
voured. To account for the deformation cost of the thick
part, we therefore break the symmetry Z! 2Z by
adding a term proportional to 2Z in the energy and
we introduce a prefactor c:

E ¼ �PbR
Z2

2
1� 1

2
Z
Z0

� �2
 !

þ cZ0Z

" #
: ð2:13Þ

In figure 5, we plot the elastic energy E as a function of
Z. The effect of the constant c . 0 renders the closed
door configuration to be more stable from an energetic
point of view. In particular, when c . 2=3

ffiffiffi
3
p

, this
potential exhibits a single minimum, with Z . 0,
which corresponds to the closed door state.
2.4. Mass flux induced by the door

It remains to couple the volume equation (2.6) to the
door dynamics (2.9). We model the flow rate Q in
the channel induced by the opened door, in the presence
J. R. Soc. Interface (2012)
of a pressure difference:

Q ¼ pR2s
Z
Z0

� �
U : ð2:14Þ

Here, pR2s(Z/Z0) is the surface of the channel. The
non-dimensional surface s(Z/Z0) is approximated with

sðxÞ ¼ �fxHð�xÞ; ð2:15Þ

where H(x) is the unit step function. The constant f
is a geometric factor.

The fluid velocity U can be assessed using Bernouilli
relation [11], because the Reynolds number of the
incoming flow is quite high (around 1000 [3]). We
therefore write

U ¼ signðDPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
r
jDPj

s
: ð2:16Þ

As consequence, we deduce the flux Q

Q ¼ signðDPÞpR2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
r
jDPj

s
s

Z
Z0

� �
: ð2:17Þ
2.5. Model closure

In order to close the model, we need to couple the
volume, the door position and the pressure difference.
Adding the contribution of the open door (2.17) to
the flux balance (2.3), we obtain

@V
@t
¼ �q þ deSmDP

þ signðDPÞpR2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
r
jDPj

s
s

Z
Z0

� �
: ð2:18Þ

Injecting the link (2.4) between DP and V into the
earlier-mentioned relation, we deduce our dynamical
model for the trap:

DP¼�d �qþdeSmDPþsignðDPÞpR2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
r
jDPj

s
s

Z
Z0

� �" #

ð2:19Þ
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and

m €Z ¼PbR Z � Z
Z0

� �2

Z þ cZ0

 !
� pR2DP

� arR2ð _ZÞ2signð _ZÞ � bhR _Z : ð2:20Þ

We now set our system in a non-dimensional form with
the scalings Z ¼ Z0z, DP ¼ Pbp, and t ¼ Qs. Because the
characteristic length scale for Z0 is proportional to R, we
set Z0 ¼ R. Using (2.20), the balance between the
acceleration term with the elastic response gives
the characteristic timescale Q of the opening door:

Q ¼
ffiffiffiffiffiffiffiffiffi
m

PbR

r
� 100ms; ð2:21Þ

where we used E ¼ 2.7 MPa. Q is the shortest time of the
system; so the non-dimensional time s is very long. As
consequence, our non-dimensional system can be written
as

€z þ a _z2 signð _zÞ þ b _z ¼ z � z3 þ c � lp ð2:22Þ

and

_p ¼ 1
tp
ð p0 � pÞ � signð pÞg

ffiffiffiffiffiffi
jpj

p
sðzÞ; ð2:23Þ

with

a ¼ a
rZ0R2

m
� 0:34; ð2:24Þ

b ¼ b
hRQ

m
� 3:7� 10�4; ð2:25Þ

g ¼ QdpR2

ffiffiffiffiffiffiffiffi
2

rPb

s
� 0:16; ð2:26Þ

l ¼ pR
Z0
¼ p; ð2:27Þ

p0 ¼
q

deSmPb
� 0:56 ð2:28Þ

and tp ¼
1

QddeSm
� 3:2� 107: ð2:29Þ

The dynamical viscosity is h ¼ 1023 Pa s.
3. ANALYSIS OF THE MODEL

The system (2.22) and (2.23) presents two very different
timescales. The door motion is generally very fast com-
pared with the pressure recovery time: it is reminiscent
of excitable system, for which a qualitative analysis is
performed using nullclines. Owing to the slow temporal
variation of p, the equation (2.22) is a nonlinear,
damped oscillator for the variable z. When _z ¼ 0, the
door accelerates positively if pp , f(z), with f(z) ¼
z 2 z3 þ c, and negatively otherwise.

If z . 0, the equation (2.23) is

_p ¼ 1
tp
ð p0 � pÞ; ð3:1Þ

and the pressure increases as p0 . p, and decreases on
the other case.
J. R. Soc. Interface (2012)
If z , 0, the door is opened and the fluid flow
(through the opening) controls the pressure variation;
the equation (2.23) becomes

_p ¼ �signð pÞg
ffiffiffiffiffiffi
jpj

p
sðzÞ: ð3:2Þ

In consequence, if z , 0 and p . 0, the pressure
difference p decreases whereas if z , 0 and p , 0, p
increases. These behaviours can be summarized in
figure 6, where we plot the functions p(z) at which
_p ¼ 0 and _z ¼ 0, defining the two nullclines.

The temporal evolution of p is very small compared
with z, except in the close neighbourhood of
p ¼ ðz � z3 þ cÞ=p.

3.1. Stationary states

In this section, we investigate the stationary states
ðzs; psÞ of the model, and we need to solve the following
system of equations:

1
tp
ð p0 � psÞ � signð psÞg

ffiffiffiffiffiffiffi
jpsj

p
sðzsÞ ¼ 0 ð3:3Þ

and

zs � z3
s þ c
p

¼ ps: ð3:4Þ

They can be guessed by studying the intersections of
the two curves plotted in figure 6. Because the temporal
evolution of p is very small compared with those of z, we
can assess the linear stability of the fixed points by
using the equation (2.22) with p ¼ ps; then the evol-
ution of the perturbation ~z around zs obeys to

€~z þ b _~z ¼ f 0ðzsÞ~z: ð3:5Þ

As a consequence, the stationary points zs will be
stable if f 0(zs), 0, because b is always positive.

Depending on the signs of zs and ps, we meet
two cases:

— zs . 0, the fixed points are ps ¼ p0 (from (3.1)) and
the roots zs of pp0 ¼ zs 2 zs

3 þ c. This last equation
has two real solutions if c , pp0 , c þ 2=3

ffiffiffi
3
p

.
A close look at figure 6 permits us to conclude
that only the highest root is stable. If p0 , c/p,
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then the system has only one stable stationary point.
Perturbations of the door position around these
stable states will create damped oscillations, while
p will decrease very slowly to p0.

— zs , 0: in such a case, the flow through the door
dominates the dynamics for the pressure. Therefore,
ps ¼ 0 (from equation (3.2)). It is necessary to solve
zs 2 zs

3 þ c ¼ 0, which admits two real negative sol-
utions only if c , 2=3

ffiffiffi
3
p

. Again, figure 6 predicts
that only the most negative root will be stable.

3.2. Phase diagram

The previous study of stationary states and their linear
stability yields the construction of the phase diagram of
the trap. Depending on the number of stable states, we
distinguish four regions (figure 7):

— Region A and A0: the only stable state is the closed
door. Notice that when the pumping generates a
pressure difference close to spontaneous buckling,
i.e. when pp0 � c þ 2=3

ffiffiffi
3
p

, the system will exhibit
a strong sensibility to a variation of the pressure or
to the position of the door. It is in this regime that
the system is understood as excitable. We made a
simulation of the dynamics in this case, as shown in
figure 8: a small increment of pressure will lead to a
quick opening of the door, producing damped oscil-
lations while it comes back to the closed state, and
that the bifids glands pump the fluid out. The
pressure difference equilibrates to p0, and the trap
will be ready to capture another prey.

— Region B and B0: in this range of parameters, the trap
has two stable steady states: depending on initial con-
ditions, the door remains opened or closed. An
example of these dynamics is shown in figure 9.

— Region C: the only stable state is the door opened.
An example of these dynamics is shown in figure 10.

— Region D: because the trap does not offer stable
stationary points, it undergoes relaxation oscil-
lations between ppmin ¼ f ð�1=

ffiffiffi
3
p
Þ ¼ c � 2=3

ffiffiffi
3
p
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and ppmax ¼ f ð1=
ffiffiffi
3
p
Þ ¼ c þ 2=3

ffiffiffi
3
p

. An example
of these dynamics is shown in figure 11.

4. DISCUSSION

4.1. Comparison with experiments

Experimentally, the trap presents the three states:
excitable, metronomic and dead, described in §3. If
the plant is dead, the trap is not functioning anymore,
and the trap remains opened as shown in the region C of
figure 7. In normal conditions, the trap is in state A of
figure 7, with pp0 � c þ 2=3

ffiffiffi
3
p

: a small amount of
extra pressure can force the door to open, yielding the
suction of some liquid around it. For the simulations
presented in figure 12, the variation in pressure differ-
ence rises to approximately 16 kPa,with the parameter
values proposed in §2.5. This perfectly agrees with the
experimental value of 10–20 kPa [4]. The duration for
the trap to come back to its stable state is evaluated
by t � 54 min, which fairly matches the experimental
values of 25–50 min [5]. Finally, we numerically find
(figure 10) that the time for the door buckling is
around 3.6 ms, namely in the same order of magnitude
as those reported in Vincent et al. [5].

Obviously, our simple model does not pretend to be
accurate enough to exactly match the experiments; how-
ever, our non-dimensional parameters can be fit to
experimental measures. The model shows that the trap-
ping function is obtained only in one regime, when the
mechanical parameters of the trap are in a specific range.

4.2. Effect of noise on the system

This highly sensitive trigger renders the mechanism for
capturing preys very efficient; nevertheless, we shall
investigate the effect of noise. In fact, for high enough
amplitudes, some noise induces stochastic trapping
events because of the excitable behaviour.

The relaxation oscillations observed in the D region of
the phase diagram have been recently described as spon-
taneous firings [5]. To investigate the effect of the noise,
we consider the membrane as N interconnected ‘particles’
submitted to an external noise. Accordingly, the positions
of the particles follow the Langevin equations:

81 � j � N ; @trj ¼
DL

kbT
f j þ hbj ; ð4:1Þ

where DL is the diffusion coefficient, kb is the Boltzmann
constant, T is the temperature, fj is the external force
on the jth particle. The Gaussian random drifts are
defined by

khbjðtÞl ¼ 0

and khbjðtÞhbjðt0Þl ¼ 2DLdðt � t0Þ:

)
ð4:2Þ

This description allows us to access the stochastic fluc-
tuations of the volume V (see appendix A for details):

_V ¼ 1
t
ðV0 � V Þ þ LmðtÞ; ð4:3Þ

where 1/t ¼ de dSm and V0 ¼ Vmax 2 qt is the trap
volume at equilibrium. The stochastic forcing for the
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closes back; after some oscillations, (5) the pressure difference slowly rises again because of active pumping of fluid, recovering
the equilibrium position (0). These results are computed for region A with the following parameters c ¼ 1.38 and p0 ¼ 0.5581
and initial conditions: z ¼ 1, _z ¼ 0, p ¼ 0 and v ¼ 1. (Online version in colour.)
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volume is defined by

kLmðtÞl ¼ 0

and kLmðtÞLmðt0Þl ¼ 2fDLdðt � t0Þ;

)
ð4:4Þ

where fDL is a macroscopic volume diffusion coefficient
computed in appendix A.

We need to compute the minimum volume Vc that
the trap can sustain, corresponding to the highest
pressure difference DPc that the system can maintain:

DPc ¼
Pb

p
c þ 2

3
ffiffiffi
3
p

� �
: ð4:5Þ
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The critical volume is straightforwardly deduced from
the relation (2.4):

Vc ¼ Vmax�
DPc

d
: ð4:6Þ

If V ,Vc, the doors opens and the trap volume
instantaneously reaches Vmax.

We translate (4.3)with the following change of variable:

x ¼ V � Vc

Vmax � Vc
; ð4:7Þ

x0 ¼
V0 � Vc

Vmax � Vc
ð4:8Þ
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and xmax ¼
Vmax � Vc

Vmax � Vc
¼ 1: ð4:9Þ

Then, (4.3) becomes:
_x ¼ 1
t
ðx0 � xÞ þ LðtÞ; ð4:10Þ
J. R. Soc. Interface (2012)
with

LðtÞ ¼ Lm

Vmax � Vc
: ð4:11Þ

Depending on the sign of x0, the trap can exhibit some
oscillations. As x0 . 0, i.e. Vc , V0, and for xmax . 0,
the variable x can never become negative, and the trap
stays into a capturing state. On the contrary, if x0 becomes
negative, i.e. Vc . V0, x will oscillate between the values 0
and xmax with the period T defined in equation (2.7). This
period diverges as x0 becomes positive because no oscil-
lations are possible. So we approximate the trap
dynamics via an Ornstein–Uhlenbeck process [13]. Actu-
ally, a stochastic period arises from the noise effect in the
domain x0 . 0.

The general solution of equation (4.10) is

xðtÞ ¼ x0 þ e�t=t xmax � x0 þ
ð

0
LðsÞ es=t ds

� �
; ð4:12Þ

where the initial condition is x(0) ¼ xmax, i.e. V(0) ¼
Vmax. The Fokker–Planck equation [14] describes the
time evolution of the probability density function of x;
it can be written as follows:

@tcðx; tÞ ¼
1
t
@xððx � x0ÞcÞ þ D@2

xc; ð4:13Þ

where

D ¼ fDL

ðVmax � VcÞ2
: ð4:14Þ

The dimension of D is s21. Here we take the diffusion coef-
ficient for a bilipid: DL ¼ 10211 m2 s21 [15]. The initial
condition at t ¼ 0 is c(x, 0) ¼ d(x 2 xmax), and the bound-
ary conditions are c(0,t) ¼ c(1, t) ¼ 0. We focus on the
system behaviour for x ¼ 0. In fact, if x ¼ 0
(V ¼ Vc), the value of the volume is instantaneously
reset to Vmax. The probability flux j(t) at x ¼ 0 is

jðtÞ ¼ D @xcðx; tÞjx¼0 : ð4:15Þ

By integrating this flux over the whole temporal
domain, we deduce the probability e that the system
escapes at x ¼ 0:

e ¼
ð1

0
jðtÞdt: ð4:16Þ

We note ĉðx; sÞ the Laplace transform of c(x, t). By
performing the Laplace transform of (4.13) and by
imposing the initial boundary condition, we obtain

� dðx � xmaxÞ þ sĉðx; sÞ

¼ 1
t
@xððx � x0Þĉðx; sÞÞ þ D@2

xĉðx; sÞ; ð4:17Þ

The solution ĉ of the earlier-mentioned equation
allows us to compute the Laplace transform ĵðsÞ of
the probability flux:

ĵðsÞ ¼ D@xĉjx¼0: ð4:18Þ

Because ĵðsÞ ¼
Ð1

0 jðtÞ e�st dt, we deduce the following
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Taylor expansion:

ĵðsÞ ¼
ð1

0
jðtÞdt � s

ð1

0
tjðtÞdt

¼ eð1� sktlÞ þ oðs2Þ: ð4:19Þ

As a consequence, a Taylor expansion for small s of the
latter quantity permits us to identify the average first
escape time

ktl ¼ @s ĵðsÞ
ĵðsÞ

����
s¼ 0

; ð4:20Þ

which can be evaluated once ĉ is known.
The computation of the probability flux is described

in appendix B.

4.3. Computation of average escape time

We can evaluate the average first exit time ktl using (4.20):

ktl ¼ �t @zHz
xmax � x0ffiffiffiffiffiffiffiffiffi

2Dt
p

� �
� @zHz

�x0ffiffiffiffiffiffiffiffiffi
2Dt
p
� �� �����

z¼0
;

ð4:21Þ

where Hz(y) is the Hermite polynomial of degree z. As
shown in figure 13, for low noise, the stochastic period of
J. R. Soc. Interface (2012)
the oscillations given by (4.21) tends to the deterministic
period TV (2.7). In terms of the variable x:

TV ¼ t log � xmax � x0

x0

� �
: ð4:22Þ

As x0 becomes negative, the system exhibits oscillations.
In the simulation of the metronomic system (region D)
displayed in figure 11, x0 ¼ 20.2023 and we find TV �
95 min, which is in good agreement with [5] (from 45
min to several hours). In figure 13, we see that the fluc-
tuations reduce the oscillation period.

In the excitable regime, x0 is small. In figure 14, we
can see that the noise extends the periodic behaviour
for x0 . 0. Unsurprisingly, an increasing noise intensity
shortens the period.
5. CONCLUSION

The model is found to capture all the features of the
mechanical system of Utricularia traps.

On the basis of simple mechanical ingredients, non-
linear elasticity and fluid coupling, the present
analysis could be useful for other mechanical systems
exhibiting oscillations, in the plant or animal kingdoms.

The precise quantification of all noise sources (phys-
iological variations, fatigue, mechanism of pumping,
variability in door elasticity or closure, etc.), is yet to
be analysed, and opens perspective for future research.
APPENDIX A. STOCHASTIC VOLUME
EQUATION

A.1. Statistical description of the membrane

Let us assume that the membrane may be described by
a collection of N interconnected ‘particles’. The pos-
itions of those ‘particles’ follow the Langevin
equations that we write in the barycentric coordinates
(for the sake of simplicity) as

81 � j � N ; @trj ¼
DL

kbT
f j þ hbj ; ðA 1Þ

where fj is the external force on the jth particle and
where the Gaussian random drifts are defined by

khbjðtÞl ¼ 0

and khbjðtÞhbjðt0Þl ¼ 2DLdðt � t0Þ:

)
ðA 2Þ

The gyradius Rg of the membrane is defined by

R2
g ¼

1
N

X
j

r j
2 : ðA 3Þ

This is a measure of the statistical expansion of the
membrane. That gyradius allows us to define the
volume of gyration of the membrane as

Vg ¼
4p
3
ðR2

gÞ
3=2 ¼ 4p

3N 3=2

X
j

rj
2

 !3=2

; ðA 4Þ

which is the average statistical volume enclosed by the
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membrane. Accordingly,

@tVg ¼
4p

N 3=2

X
j

rj
2

 !1=2 X
j

rj :@trj

 !
; ðA 5Þ

then

@tVg ¼
4p
N

Rg

X
j

rj :hbj þ
X

j

DL

kbT
f j :rj

 !
: ðA 6Þ

A.2. Fluctuations near the resting volume

Normally, we expect the Gaussian noise to be negligible
against the external forces. So we are interested only in
the case where the sum of the external forces is about
zero on each ‘particle’, that is when the second term
in (A 6) tends to vanish. If we assume that we have
small fluctuations, then we can approximate that
all the rj are near their initial values. Consequently,
rj.hbj ≃ rj h

0
b , where h0b is the projection of a Gaussian

random drift on a constant direction, so that

kh0bjðtÞl ¼ 0

and kh0bjðtÞh0bjl ¼ 2DLdðt � t0Þ:

)
ðA 7Þ

By the statistical summation of Gaussian random
variables, we obtain

1
N

X
j

rj h
0
bjðtÞ ¼ Rg h

0
b ðA 8Þ

where h0b possesses the same properties than one of
the h0bj. Finally, the evolution of the volume can be
approximated by

@tVg ≃ 4p R2
g h
0
bþRg

X
j

DL

kbT
f j :r j

 !
: ðA 9Þ

The first (stochastic) term can be expressed as an over-
all Gaussian noise. Then the linearization of the second
(deterministic) term near the resting volume Vg,0 shall
mandatorily produce a first-order relaxation. This yields

@tVg ¼
1
t
ðVg;0 � VgÞ þ LgðtÞ; ðA 10Þ

where Lg(t) is a Gaussian volume drift with

kLgðtÞl ¼ 0

and kLgðtÞLgðt0Þl ¼ 2S2
gDLdðt � t0Þ;

)
ðA 11Þ

where Sg ¼ 4pRg
2 is by definition the gyration surface.

A.3. Application to Utricularia

The equation for the trap may be deduced by

@tVm �
1
t
ðVm;0 � VmÞ þ

Vm

Vg
LgðtÞ|fflfflfflfflffl{zfflfflfflfflffl}

LmðtÞ

ðA 12Þ

with
kLmðtÞl ¼ 0

and kLmðtÞLmðt0Þl ¼ 2
V 2

m

V 2
g

S2
gDLdðt � t0Þ;

9>=
>; ðA 13Þ
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and

kLmðtÞLmðt0Þl ¼ 2fDLdðt � t0Þ; ðA 14Þ

where

f ¼ 9V 2
m

R2
g

 !
: ðA 15Þ

Taking into account the cylindrical geometry

R2
g ¼

G 2
g

Sm
; ðA 16Þ

with

G 2
g ¼ 2p 2

ðL=2

0
r þ e

2

� �2
r dr þ L

ðe=2

0

L
2
þ z

� �2

dz

" #
,

ðA 17Þ

we can compute

f ¼ 9V 2
mSm

G2
p

¼ 27e2p2L4ðLþ 2eÞ
2ð3Lþ 2eÞðL2 þ 6eLþ 2e2Þ : ðA 18Þ

This crude modelling allows us to connect a
microscopic particular diffusion coefficient DL to a
macroscopic volume diffusion coefficient 2fDL.
APPENDIX B. COMPUTATION OF THE
PROBABILITY FLUX

We first solve (4.17). The presence of the dirac function
localized at x ¼ xmax suggests to consider two intervals.
On the first interval [0, xmax], we compute the solution
ĉaðx; sÞ, whereas we note ĉbðx; sÞ the solution on
the interval [xmax, 1[, such that we have to solve the
following equation:

sĉa;bðx; sÞ ¼
1
t
@xððx � x0Þ ĉa;bðx; sÞÞ

þ D@2
x ĉa;bðx; sÞ: ðB 1Þ

We find the asymptotic solution:

ĉ1
a;bðx; sÞ ¼ e�ðx�x0Þ2=2Dt: ðB 2Þ

The sought solutions of (B 1) are written:

ĉi ¼ i1ðsÞf1ðx; sÞ þ i2ðsÞf2ðx; sÞ; ðB 3Þ

f1ðx; sÞ ¼ e�ðx�x0Þ2=2DtH�st
x � x0

2Dt

� �
ðB 4Þ

and f2ðx; sÞ ¼ e�ðx�x0Þ2=2Dt
1F1

st
2

;
1
2

;�ðx � x0Þ2

2Dt

 !
:

ðB 5Þ

The index i stands for a,b. Hn(z) is the Hermite poly-
nomial of degree n and 1F1 (a0;b0;z) is the Kummer
confluent hypergeometric function. Note the similarity
of the function f1 with the wave function of the quan-
tum harmonic oscillator. The function f2(x,s) behaves
as 1/x, as x tends to infinity, and this slow convergence
to zero imposes that b2 ¼ 0, because we aim in deriving
a finite density probability. As consequence we have
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three unknowns (a1,2 and b1) for the three boundary
conditions:

ĉað0; sÞ ¼ 0; ðB 6Þ

ĉaðxmax; sÞ ¼ ĉbðxmax; sÞ ðB 7Þ

and ĉ0bðxmax; sÞ � ĉ0aðxmax; sÞ ¼ �
1
D
: ðB 8Þ

The last condition is the consequence of the presence of
the dirac function located at x ¼ xmax. The inversion
of system (B 6)–(B 8) gives

a1 ¼
f1ðxmax; sÞf2ðs; 0Þ

Df1ðs; 0Þwðxmax; sÞ
; ðB 9Þ

a2 ¼ �
f1ðxmax; sÞ

Dwðxmax; sÞ
ðB 10Þ

and b1 ¼
f1ðxmax; sÞf2ðs; 0Þ � f1ðs; 0Þf2ðxmax; sÞ

Df1ðs; 0Þwðxmax; sÞ
;

ðB 11Þ

where w(x,s) ¼ f2(x,s)@x f1(x,s) 2 f1(x,s)@x f2(x,s) is the
Wronskian of the equation (B 1). It obeys the equation

D@xw þ
1
t
ðx � x0Þw ¼ 0; ðB 12Þ

which has as a solution w(x,s) ¼ Ae2(x2x0)2/2Dt. Conse-
quently, we deduce that the probability flux defined in
(4.18) takes the following form:

ĵ ¼ f1ðxmax; sÞwð0; sÞ
f1ð0; sÞwðxmax; sÞ

: ðB 13Þ

Furthermore, we can compute the probability e that
the system escapes at x ¼ 0 is 1 because

e ¼ f1ðxmax; 0Þwð0; 0Þ
f1ð0; 0Þwðxmax; 0Þ

: ðB 14Þ

and H0(z) ¼ 1. This means that a noisy trap shall
always fire.
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