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We present a fully coupled electromechanical model of the heart. The model integrates cardiac electrophysiology and cardiac
mechanics through excitation-induced contraction and deformation-induced current. Numerical schemes based on finite element
were implemented in a supercomputer. Numerical examples were presented using a thin cardiac tissue and a dog ventricle with
realistic geometry. Performance of the parallel simulation scheme was studied. The model provides a useful tool to understand
cardiovascular dynamics.

1. Introduction

Cardiovascular disease is the leading cause of death in
America. Computer simulation and visualization of compli-
cated dynamics of the heart have great potentials to provide
quantitative guidance for diagnosis and treatment of heart
problems. There have been intensive research efforts on
developing accurate computer models to advance the under-
standing on the mechanisms of cardiovascular dynamics [1].

Inspired by the pioneering work of Hodgkin and Huxley
[2], many mathematical models have been developed [3].
Meanwhile, a variety of mathematical models have been
proposed for electromechanical simulations. Nash and Pan-
filov [4] presented a computational framework to cou-
ple a three-variable FitzHugh-Nagumo-type [5] excitation-
tension model to governing equations of nonlinear stress
equilibrium employing the electromechanical and mechano-
electric feedback. Niederer et al. [6] quantitatively character-
ized the binding of Ca2+ to TnC, the kinetics of tropomyosin,
the availability of binding sites, and the kinetics of cross-
bridge binding after perturbations in sarcomere length.
Gurev et al. [7] illustrated methods to construct finite
element electromechanical models of heart and to develop
anatomically accurate ventricular mesh based on magnetic
resonance and diffusion tensor magnetic resonance imaging
of the heart. The work of [7] focused on the construction of
the ventricular meshes and did not consider the influence of
the mechanical contraction on the cardiac electrophysiology.

Göktepe and Kuhl [8] proposed an implicit and entirely
finite element-based approach to the two-way coupled
excitation-contraction problem. The electrophysiology was
described by a FitzHugh-Nagumo-type (FHN) model in
[8]. Doyle et al. [9] applied the parallel computing to the
simulation of heart mechanics. They assessed the model’s
performance using an unstructured mesh, and they achieved
the maximum speed-up factor as 15.9 when using 32 threads.
Lafortune et al. [10] developed a parallel electromechanical
model of the heart. Their model could run efficiently in
hundreds of processors using a ventricular mesh of realistic
geometry. Lafortune et al. described the electrophysiology
by the simple three-variable FitzHugh-Nagumo-type (FHN)
model [5] or the three-variable Fenton-Karma (FK) model
[11] and employed a “one-way coupling” in which the
displacements do not affect the electrophysiology. Moreover,
the influence of the heart’s mechanical behavior on its elec-
trical behavior, which is termed as mechanoelectric feedback,
has drawn researchers’ attention [12–15]. Mechanoelectric
feedback may be caused by stretch-activated channels or the
influence of stretch on electrical signal propagation.

This work aims to develop a two-way coupled electrome-
chanical model for parallel simulation of complex cardio-
vascular dynamics. Towards that aim, we have developed
a fully coupled electromechanical model of the heart,
which integrates the cardiac electrophysiology, the car-
diac mechanics and the two-way coupling arising from
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Figure 1: Schematic representation of the coupling between
electrical, chemical, and mechanical functions of the heart.

the excitation-induced contraction and the deformation-
induced generation of current. The cardiac electrophysiology
is described by the Beeler-Reuter (BR) model [16]. The cou-
pled electrical and mechanical problem is solved implicitly
using finite element method. The computational algorithm
is parallelized using the message passing interface (MPI). The
model is tested by simulating a thin cardiac tissue and a dog
ventricle with realistic geometry.

This paper is organized as follows. In Section 2, we intro-
duce the physiological models. The numerical computation
approach to the coupled problems is introduced in Section 3.
Section 4 shows the numerical results. We discuss the results
and conclude the paper in Section 5.

2. Physiological Models

Hearts beats are the result of a sequence of electrochem-
ical excitation waves that are initiated from the sinoatrial
node. The electrical impulses induce intracellular calcium
cycling, which in turn causes heart muscle to contract. This
process, known as excitation-contraction coupling (ECC), is
essential to understanding of the heart. On the other hand,
mechanical changes that response to neural and hormonal
influences also impact on the electrical properties. This
complementary concept is called mechanoelectric feedback.
See Figure 1 for the relation between electrical activation,
chemical homeostasis, and mechanical contractions.

2.1. Cardiac Electrophysiology. Dozens of models have been
proposed over years to simulate cardiac electrophysiology
[3]. Most of those models are drawn from the pioneering
work of Hodgkin and Huxley [2]. In this work, the Beeler-
Reuter (BR) model [16] is adopted for numerical illustra-
tions. The BR model describes the transmembrane voltage
in a single cell as follows

dv

∂t
= − Iion

Cm
, (1)

where, v represents transmembrane voltage, Cm represents
membrane capacity, and the total current is described as:

Iion = INa + IK1 + Ix1 + ICa + Isac − Istim. (2)

Here, INa represents the voltage-gated Na current, IK1 repre-
sents the time-independent outward current, Ix1 represents

the time-activated outward current, ICa represents a slow
inward current, and Istim represents the external stimulation.
Note that the original BR model does not include Isac, the
stretch-activated channel, whose details will be discussed
later. The stimulus current Istim is selected to be a square
wave pulse of −80 μA/μF for 1 ms. We refer readers to [16]
for details of the BR model.

In cardiac tissue, (1) is extended into a reaction-diffusion
form to include spatial diffusion of currents:

∂v

∂t
+
Iion

Cm
−∇x · (D · ∇xv) = 0, (3)

where x represents the spatial coordinate of each material
point in the heart; D is the diffusion tensor, which controls
the transduction orientation and speed of the electrical wave
of excitation in the cardiac tissue; Cm is the membrane
capacitance and is set as 1 μF/cm.

2.2. Cardiac Mechanics. We denote the initial configuration
(diastole) of the heart by Ω0 and the deformed configuration
(systole) by Ω. The position vector of a material point in
the initial configuration is given by X = Xiei, where ei are
the unit base vectors of a rectangular Cartesian coordinate
system. Denote the position of the material point X at
time t by x = xiei. Then, the spatial coordinate of a
material point X can be represented by x = Φ(X, t). The
functionΦ can be regarded as a map between the initial
configuration and the configuration at time t. The two
measures, x and X, are related by the deformation gradient,
as shown in (4). Consider the following:

F = ∂x
∂X

. (4)

There are two approaches in describing the deformation of
a continuum: the Lagrangian description uses the material
coordinates X as independent variables and the Eulerian
description uses the spatial coordinates x as independent
variables [17]. The Eulerian description is often adopted
for fluid dynamics. In this work, the Lagrangian description
approach is utilized. There are two formulations for the
Lagrangian approach: total Lagrangian formulation and
updated Lagrangian formulation. In the total Lagrangian
formulation, equations are discretized with respect to the
original configuration. In contrast, the updated Lagrangian
formulations are based on the current configuration and are
commonly used for nonlinear, large deformations. Thus, we
use the updated Lagrangian formulation in this work.

For each time step Δt, the displacement of a material
point, denoted by u(X, t), is defined by the difference
between its current position and its previous position (5).
The displacement u(X, t) is governed by the equilibrium
of the linear momentum, and the equation is described as
(6). In (6), σ is the Kirchhoff stress tensor; b accounts for
the body force or externally applied stresses. The Kirchhoff
stress σ is composed of a passive component σpass and an
active component σact. The active force σact is generated
from the electrical excitation and will be explained later
in detail. The passive component σpass is determined by
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the equation of the elementary mechanics (7). In (7), χ =
0.5 MPa and ζ = 0.2 MPa are the Lame constants which
govern the isotropic stress response; ξ = 0.1 MPa represents
the passive stiffness of myofibers. The left Cauchy-Green
tensor is denoted as p and is defined as (8). The parameter
values were referred to the work of Nash and Panfilov (2004)
[4] and Göktepe and Kuhl (2010) [8]. Consider

u(X, t) = Φ(X, t)−Φ(X, t − Δt), (5)

∇x · σ + b = 0, (6)

σpass =
(
χ

2
lnA− ζ

)
+ ζp + 2δξ(B − 1)κ, (7)

p = FFT . (8)

Let us denote the local orientation of a myofiber at initial
configuration by a unit vector a0 and that at deformed
configuration by vector a. In (7), κ represents the deformed
structural tensor and is defined as (9). In (9), κ0 is the struc-
tural tensor at initial configuration. The structural tensors
κ0 at initial configuration and κ at deformed configuration
represent dominating directions in a specified neighborhood
of a node [18, 19]. Consider the following:

κ = a⊗ a = Fκ0FT . (9)

In (7), the symbol δ denotes the coefficient that determines
whether or not the stiffness of the myofibers is in effect. It
indicates that when there is stretch at a material point, δ will
be 1, otherwise it is 0. Mathematically, it is defined as (10).
In (10), |a| represents the stretch at a material point of the
heart. At initial configuration, |a0| = 1, while at deformed
configuration, there may be stretch at some material points
that causes |a| > 1. Moreover, the scalars A and B in (7) are
defined as (11). Consider

δ =
{

1, if |a| > 1

0, otherwise,
(10)

A = det
(

FTF
)

B = |a|2.
(11)

2.3. Electromechanical Coupling. Summarizing Sections 2.1
and 2.2, the coupled problems are governed by the following
equations:

∂v

∂t
−∇x · (D · ∇xv) +

Iion

Cm
= 0,

∇x · σ + b = 0,
(12)

∂v

∂n
= ∇x · n = 0,

σ · n = 0,
x = x.

(13)

Equations (12) show the full coupling of the cardiac
electrophysiology and the cardiac mechanics. The membrane
potential and the spatial coordinates of each node are
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Figure 2: Illustration of the switch function with the following
parameters: ε0 = 0.1/mV, ε∞ = 1/mV, l = 1/mV, v = 0 mV.

solved simultaneously from (12). The first equation of (13)
represents the no-flux boundary condition imposed on the
surface domain of the heart denoted by ∂Ω. The symbol n
is the outward surface normal on ∂Ω. The second equation
of (13) defines the natural boundary condition imposed on
∂Ω. The third equation of (13) shows the essential boundary
condition imposed at points which are fixed to ensure that
the mechanical problem is well defined. The domain where
the essential boundary condition is imposed on is denoted by
∂Λ.

2.3.1. Excitation-Induced Contraction. In Section 2.2, we
introduced the active Kirchhoff stress σact · σact is generated
by the excitation-induced contraction. From the perspective
of geometry, the direction of the active Kirchhoff stress
should be determined by the structural tensor κ, and its
magnitude is controlled by the transmembrane potential v.
Let the magnitude of the active stress be f (v), we have σact =
f (v)κ.

Quite a few models have been proposed to simulate the
voltage-dependent active fiber tension f (v) [4, 18]. In this
work, we adopt the simplified equation proposed by [4]:

ḟ = ε(v)
[
k f (v − vr)− f

]

ε(v) = ε0 + (ε∞ − ε0) exp
[− exp(−l(v − v))

]
.

(14)

In (14), the symbol k f = 0.005 MPa/mV is the maximum
active fiber tension, and vr is the resting potential which
is about −94.7 mV for cardiac cells in the BR ionic model.
The switch function is denoted by ε(v) and it determines
how fast the active fiber tension will change with respect
to the transmembrane potential v. Parameters’ values are
ε0 = 0.1/mV, ε∞ = 1/mV, l = 1/mV, v = 0 mV. When v
changes from−94.7 mV to 20 mV, the function is as Figure 2.

Note that the calcium fluctuation is not studied in
this work and the active fiber tension is controlled by the
membrane potential directly for simplification, as shown in
(14).
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2.3.2. Diffusion Tensor. In (3), the interconnection between
cells is regulated by the diffusion tensor D. It controls
the transduction speed of the electrical wave of excitation
in the cardiac tissue. Due to the anisotropic properties
of the heart tissue, it is observed in experiments that the
conduction is obviously faster in the myofiber directions
than in other directions. To consider the additional speed
along the fiber orientations, the diffusion tensor is split into
two parts: D = disoI + daniκ. The symbol I denotes an
identity matrix. The coefficient diso = 0.001 cm2/ms controls
the speed of the isotropic transduction to all directions and
the coefficient dani = 0.0001 cm2/ms denotes the additional
speed along the fiber orientations. Since the structural tensor
κ is dependent on the spatial coordinate, the diffusion tensor
at each material point will change with the reshaping of the
heart.

2.3.3. Deformation-Induced Generation of Current. In (3),
the total ionic transmembrane current Iion consists of a
component Isac. The stretch activated channels are the ion
channels which open their pores in response to mechanical
deformation of the cell membrane [19]. According to what
mechanisms the current is induced, there are different kinds
of formulations for the stretch activated channels. In this
work, we employ the formulation proposed by [20]:

Isac = δGs(|a| − 1)(v − vs). (15)

In (15), Gs = 10 mS/μF is the maximum conductance;
vs = −20 mV is the resting potential of the stretch-activated
channels; δ is the coefficient that determines whether or not
the stiffness of the myofibers is in effect, as defined in (10);
|a| is the stretch at a material point of the heart.

3. Numerical Computation Approach

The governing equations (12) are solved using the operator
splitting method [21]. First, we solve the following nonlin-
ear ordinary differential equation using the forward Euler
method [22]:

dv

dt
+
Iion

Cm
= 0. (16)

Then, the solution from (16) is used to solve the following
partial differential equation in (17) using the implicit Euler
method. These two equations are solved iteratively for each
time step. Consider the following:

∂v

∂t
−∇x · (D · ∇xv) = 0

∇x · σ + b = 0.
(17)

Weak forms of (17) are constructed following the classical
Galerkin procedure. The weak form is obtained by taking
the product of (17) with the test functions δx and δv and
integrating them over the domain. The time independent
test functions are required to be C0 and satisfy the essential
boundary conditions on ∂Ω. Multiplying the test function

δx and δv with the two equations in (18) and carrying out
integration by part yield

Gx =
∫
Ω
∇x(δx) : σdV

−
∫
∂Ω

δx · σ · nda−
∫
Ω
δx · bdV = 0,

Gv =
∫
Ω

[
δv

∂v

∂t
+∇x(δv) · (D · ∇xv)

]
dV

−
∫
∂Ω

δvD · ∇xv · nda = 0.

(18)

Applying the natural boundary conditions to (18) leads to

Gx =
∫
Ω
∇x(δx) : σdV −

∫
Ω
δx · bdV = 0,

Gv =
∫
Ω

[
δv

∂v

∂t
+∇x(δv) · (D · ∇xv)

]
dV = 0.

(19)

At each time step, (19) are linearized as follows:

Gx(xn+1, vn+1)=Gx(xn, vn)+ΔGx(xn, vn; xn+1−xn, vn+1 − vn),

Gv(xn+1, vn+1)=Gv(xn, vn)+ΔGv(xn, vn; xn+1−xn, vn+1 − vn).
(20)

We can then solve for Δx = xn+1 − xn and Δv = vn+1 − vn
from the linearized equations.

The conventional isoparametric Galerkin procedure is
followed to discretize the continuous weak form equations.
The domain of the heart Ω is decomposed into subdomains
Ωh

e , and each subdomain is an element. Then the field
variables x and v, and the two associated test functions are
interpolated in each subdomain as

xh
e (X, t) =

nen∑
j=1

N j(X)xe
j(t),

vhe (X, t) =
nen∑
j=1

N j(X)vej(t)

(21)

In (21), nen is the number of nodes per element and N j(X)
is the C0 interpolants, often called shape functions in finite
element literatures. The implicit Euler method is utilized
when discretizing time derivative terms in (18). Finally, we
achieved a linear system equation in form of:

{A}4N∗4N

⎛
⎜⎜⎜⎝
Δxn
Δyn
Δzn
Δvn

⎞
⎟⎟⎟⎠
n=1∼N

= {b}4N . (22)

The linear system equation has a degree of 4 ∗N , where
N is the number of the nodes in the mesh. For each node,
(Δx,Δy,Δz,Δv) are solved. They are then used to update the
membrane potential and the spatial coordinate of each node.

The model was implemented in C++ and was parallelized
using the message passing interface (MPI) [23]. An open
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Figure 3: Action potential of a node at (−0.2 cm, −0.2 cm,
0.0005 cm). Mesh size was decreased from 0.04 cm (blue) to
0.004 cm (black).

source software package called METIS [24] was used to
partition the heart mesh so that computational loads are
balanced among CPUs. The algorithms in METIS were
based on multilevel recursive-bisection, multilevel k-way,
and multiconstraint partitioning schemes.

Two parallel solvers were used to solve the final linear
system. The two solvers are the hierarchical iterative parallel
solver (HIPS) [25] and the solver from the Trilinos package
[26]. Both of them implemented the generalized minimal
residual method [27]. When using the Trilinos, the linear
system was preconditioned by the Jacobi preconditioner.
Simulations were run on the supercomputer, Kraken [28].
The open source software VisIt [29] was used for visualiza-
tion.

4. Numerical Results

4.1. A Thin Cardiac Tissue. We first conducted simulations in
a thin square cardiac tissue of the size 0.4 ∗ 0.4 ∗ 0.001 cm3.
In simulations, the top-left and the bottom-right corners
were fixed, and the fiber orientation was along vertical
direction. We used the Forward Euler method to solve the
ODE in (16) at a time step of 0.005 ms. The PDEs in (17) are
solved using the implicit Euler method with a time step of
0.1 ms.

Action potential of a node at (−0.2 cm, −0.2 cm,
0.0005 cm) as shown in Figure 3 was obtained using different
mesh sizes. The numerical results show that consistent action
potential responses are obtained using different mesh sizes.
Because the cardiac tissue is very thin, it is treated like a 2d
tissue. The mesh size is with respect to the x and y directions
which are each 0.4 cm in length.

We then performed an electromechanical simulation in
the tissue (0.4 cm ∗ 0.4 cm ∗ 0.001 cm) with mesh size
= 0.004 cm. The stimulation was imposed at the center of
the tissue. Figure 4 shows the electrical wave propagation
without considering the contraction. The electrical wave
propagated symmetrically from the center to the whole tis-
sue. This test validates the part of “reaction-diffusion” in our
model by reproducing the basic phenomenon of electrical
wave propagation in a square tissue. Note that the coefficient
dani was set to 0 in this simulation so that the tissue was
isotropic.

Figure 5 shows the electrical propagation as well as the
excitation-induced contraction in a tissue. In this test, the
fibers of the tissue were aligned vertically. Thus, the tissue
deformed in vertical direction, as clearly shown at time
t = 7 ms in Figure 5. Moreover, in contrast to the previous
test, we considered the additional speed along the fiber
orientations, as indicated by D = disoI+daniκ. The coefficient
dani was set to 0.0001 cm2/ms. It is easily observed from
Figure 5 that the propagation was obviously faster in vertical
direction.

4.2. Dog Ventricle with Realistic Geometry. We also simulated
the contraction of a dog ventricle with realistic geometry.
Two meshes were examined. The first mesh consisted of 880
Hexahedron elements. The second mesh which had 190080
hexahedron elements was refined from the first one using
the software CUBIT which was developed at Sandia National
Laboratories [30]. See Figure 6 for the original mesh and the
refined one. The ventricle mesh was obtained from [31].

The constitutive and coupling models, the anisotropic
electrical conductivity, and other parameters were the same
as used earlier. The stimulus was imposed on the superior
section of the ventricle as shown in Figure 7. Some nodes on
the upper surface were restrained so that the problem would
be well defined. We assumed that the normal of the fiber
at any point is pointing to the geometric center. Under this
assumption, the fibers form layers of muscle in the heart. We
note that this assumption may not be close to realistic fiber
layouts in the heart. However, the assumed structure allows
us to test the efficiency and robustness of the computational
algorithms on a heart, on which fiber orientation changes
from point to point.

Figure 8 shows an electromechanical simulation of a dog
ventricle with realistic geometry. Electrical stimulation was
imposed on the upper surface of the septum. The contraction
state kept for about 100 ms and then slowly recovered to the
resting state.

We also simulated a ventricle with a scar near the
outer surface. We have adopted a simplified description of
scar. Specifically, we assumed the scar has no conduction
capability and can maintain passive mechanical contractions
like other cells. The scar had a size as shown in Figure 9. The
scar has a radius of about 1cm in the surface area and its
thickness was similar to the ventricle wall.

Figure 9 shows the shapes of the contracting ventri-
cle and the spatial distribution of membrane potentials
at six moments. Comparing Figure 9 with Figure 8, obvious
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Figure 5: Electrical wave propagation and excitation-induced contraction in a piece of heart tissue. Although these tests are simple and
straightforward, they demonstrate the model’s capability of performing fully-coupled electromechanical simulations.

(a) (b)

Figure 6: Dog ventricle mesh: original (left) and refined (right).

difference can be observed. When the scar was present
the membrane potentials was evidently smaller, and this
could cause smaller active fiber tension and thus weakened
pumping ability. Although no serious physiological con-
clusion could be given in this study since our simulations
ware preliminary and lacked experimental validation, the
simulations demonstrated the capability of our model to
study the real heart.

4.3. Performance Analysis. Parallel efficiency is crucial for our
model. The requirements of using meshes with hundreds of
thousands of elements to achieve high accuracy and reso-
lution make the computational efficiency a great challenge.
The parallel efficiency is measured by the analysis of the
scalability. A mesh with 1.56 million Hexahedron elements
was used. In this analysis, we used 120, 240, and 480 cores.
The time spent when using 120 CPUs was taken as the
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Figure 7: Initial stimulus: the stimulus was imposed on the superior section of the ventricle.
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Figure 8: Electromechanical simulation of a dog ventricle with realistic geometry.

reference value. Figure 10 shows the strong scalability up to
480 cores on the Kraken supercomputer. In this case, the
scalability for 240 cores was about 90% of the ideal and the
scalability for 480 cores was about 70% of the ideal. The
decrease of the scalability was due to the increase of the
proportion of amount of communications per iteration and
the increase of the proportion of the number of ghost nodes.
The scaling ability was limited by the performance of the
PDE solver from the Trilinos package [26]. In future studies,
the performance will benefit from choosing a better parallel
solving algorithm. Also the performance may be improved if

we take use of the CUDA [32] which is a parallel computing
platform and programming model invented by NVIDIA.

5. Discussions and Conclusion

It is a common approach in the literature to solve the
electromechanics problem in an iterative manner. In each
step, the electrical problem is solved first and then the
results from the electrical solution are submitted into the
mechanical problem, whose solution is then used to solve
the electrical problem in the next step. Since the electrical
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Figure 9: Electromechanical simulation of a dog ventricle with a scar near the outer surface.

Ideal

Simulation

2.8/T

1.66/T

1/T

120

240

360

480

Cores

Sp
ee

d 
u

p

120 240 360 480

Figure 10: Scalability up to 480 CPUs on the Kraken system.

problem and the mechanical problem are solved separately,
it is also a common practice to adopt a fine mesh for the
electrical field and a much coarser mesh for the mechanical
field.

The contribution of this work is to develop a fully cou-
pled scheme to accurately solve the electromechanics of the
heart. We have developed a cardiac electromechanics model,
which integrates cardiac electrophysiology, mechanical

contraction, as well as their interactions. Realistic physio-
logical models have been adopted to describe the electrical
and mechanical functions in the heart. The model has been
numerically solved using an implicit, finite element-based
approach. Numerical simulations have been conducted using
parallel simulation in tissues of different geometries. The
cardiac mechanics is described by the updated Lagrangian
approach, which views the problem from the current config-
uration and takes derivatives and integrals with respect to the
spatial coordinates. In perspective of mesh description, the
updated Lagrangian description is characterized by making
the material points remain coincident with mesh points.
Therefore, the Lagrangian description simplifies the imposi-
tion of boundary conditions since the element boundaries of
the mesh remain coincident with material boundaries. The
developed model and computer codes have been validated
at each step using simple test examples to ensure accuracy
in numerical computations. Multiple simulations have been
conducted using various meshes and parameters to ensure
numerical robustness of the developed model.

Since the computations involve millions of nodes, the
current framework has limitations for real-time applications.
In future studies, we will further improve the performance of
the model using more efficient PDE solvers or implementing
the model in CUDA [32]. This paper has adopted a simplified
fiber configuration, where the normal of the fiber was
assumed to point toward the geometric center of the heart.
More realistic heart shape and fiber configurations should be
utilized in future work for physiologically faithful parameter
studies. Moreover, since Lagrangian meshes deform with
material, the mesh may become distorted if the deformation
of the heart is too large.
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Future work may also consider more detailed models
for active stresses such as the hybrid model [18]. In the
hybrid model, the active force is dependent on the [Ca2+]i,
rather than the transmembrane potential, and this is more
biophysically reasonable. Moreover, the hybrid model also
takes into consideration binding of intracellular Ca2+ to
troponin C, configuration change of tropomyosin, and
interaction of actin and myosin, which is a more accurate
description on excitation contraction interaction. Numerical
simulations have been carried out for purpose of validating
the model implementation in this paper, but more numerical
experiments will be executed using the platform to investi-
gate the interaction of electrical and mechanical functions in
the heart and their influences to cardiac arrhythmias.
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