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Abstract
Intravascular stents were first introduced in the 1980s as an adjunct to primary angioplasty for
management of early complications, including arterial dissection, or treatment of an inadequate
technical outcome due to early elastic recoil of the atherosclerotic lesion. Despite the beneficial
effects of stenting, persistent high rates of restenosis motivated the design of drug eluting stents
for delivery of agents to limit the proliferative and other inflammatory responses within the
vascular wall that contribute to the development of a restenotic lesion. These strategies have
yielded a significant reduction in the incidence of restenosis, but challenges remain, including
incomplete repair of the endothelium at the site of vascular wall injury that may be associated with
a late risk of thrombosis. A failure of vessel wall healing has been attributed to primarily to the use
of polymeric stent coatings, but the effects of the eluted drug and other material properties or
design features of the stent cannot be excluded. Improvements in stent microfabrication, as well as
the introduction of alternative materials may help to address those limitations that inhibit stent
performance. This review describes the application of novel microfabrication processes and the
evolution of new nanotechnologies that hold significant promise in eliminating existing
shortcomings of current stent platforms.

1.0 Introduction to the Current Stent Market
Cardiovascular disease, most frequently due to atherosclerosis continues to be the leading
cause of death in the western world. Although the application of intravascular stents have
revolutionized the treatment of coronary and peripheral arterial disease acknowledged
limitations have lead to rapid technological innovation over the past decade. Multiple
parallel strategies remain under investigation in an attempt to optimize stent design for
deployment in distinct vascular beds with differing biomechanical environments, vessel
sizes, as well as unique lesion and patient characteristics.

1.1 Drawbacks and Limitations of Current Stent Platforms
Recurrent stenosis and late stage thrombosis remain significant limitations after stenting of
peripheral or coronary atherosclerotic lesions (1, 2). Restenosis arises from the proliferation
of smooth muscle cells in the vessel wall in response to acute vessel wall injury induced by
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angioplasty. The recent advent of drug eluting stents (DES) with the local release of an anti-
proliferative agent has lead to a significant reduction in the risk of restenosis. While solving
one problem, the use of DES has been associated with a small but increased risk of late
thrombosis due to a failure of vessel wall healing (3-5). All patients who have received a
DES have an ongoing requirement for dual antiplatelet therapy consisting of aspirin and a
thienopyridine.

Prior studies have proven the value of a functional and intact endothelium in the prevention
and attenuation of restenosis and thrombosis. The quest for a stent that has a high rate of
endothelialization has lead to the investigation of unique surface topographic features and
the attachment of various peptides to enhance the binding and proliferation of endothelial
cells and circulating endothelial progenitor cells.

1.2 Drug Delivery
Drug eluting stents typically consist of a bare metal stent (BMS), the drug and a polymer
drug delivery system (6, 7). This review will focus on the use of new fabrication
technologies currently under investigation to overcome polymer based drug delivery
systems presumed responsible for the shortcomings of DES. Investigators have been able to
circumvent the need for polymer delivery systems by incorporating drug releasing reservoirs
into stents, fabricating porous surfaces, and applying novel coating strategies to existing
stent platforms.

1.3 Stent Design and Current Material Selection
Efforts persist in minimizing the dimensions of stent struts to facilitate delivery, allow for
use in smaller vessels, and to minimize the contact area between the stent and the blood
vessel wall. Stent fabrication begins with a stent design, which has traditionally consisted of
a cell pattern that has circumferential rings connected by longitudinal struts. While
differences exist, the vast majority of stent designs follow this basic principle. Changes that
have been implemented include, the incorporation of drug reservoirs within the struts and a
slide and lock design to facilitate the use polymeric materials, which do not deform
plastically.

Material selection for stent applications has been the subject of numerous reviews (8-11). It
requires the balancing of several factors to ensure the adequacy of the material's hoop
strength, biocompatibility, thromboresistivity and radiopacity. The first stents and the
majority of current stents are produced from 316L stainless steel because of its mechanical
attributes and corrosion resistance. Another common material is the shape memory metal,
nitinol, which is used for the fabrication of self-expanding stents deployed mainly in the
peripheral arteries. The limitations of these materials reside in their minimal radiopacity and
release of nickel. In an effort to increase radiopacity, researchers coated 316L stents with
gold, though the results were unsatisfactory (12-14). Greater success was achieved however,
in the fluoroscopic visualization of nitinol stents by the addition of radiopaque markers
riveted onto stent extremes (10). To overcome the problems associated with release of nickel
from 316L and nitinol stents(15, 16), researchers have applied surface treatments(17-19)
effectively lowering the nickel content of the surface and increasing corrosion resistance. A
brief look at the modifications these materials have undergone illustrates the optimization
that is required for a stent to be of clinical utility. These materials continue to serve as the
standard against which new materials will be compared.

More recently stent platforms have expanded to include cobalt chromium alloys(20), which
have increased strength that allows for thinner struts(21). Also a number of bioabsorbable
materials have been investigated under the postulation that improved clinical outcomes may
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be achievable through their use in stents that provide short-term mechanical scaffolding
during initial vessel remodeling followed by absorption with complete vessel wall healing.
Bioabsorbable stents also offer an opportunity to incorporate drugs throughout the stent,
thereby, increasing the amount of drug that can be delivered.

2.0 Stent Fabrication
Fabrication of both bioabsorbable and inert polymeric and metallic stents have been pursued
through a variety of schemes including both top-down fabrication approaches, such as laser
machining, molding, electroforming, and bottom up strategies, such as 3-D printing and
solvent casting. The multitude of fabrication modalities have resulted from a divergent set of
materials used to develop stent platforms and advanced design considerations. Table 1
provides a brief overview of the fabrication modalities that have been used to produce stents
or stent like devices in both academic and industrial settings. Exploration of both academic
and industrial fabrication strategies has given insight into fabrication technologies that will
need to be adopted as stent design continues to advance from both a material and design
standpoint. The advancement of materials utilized for stent platforms and the complexity of
current stent designs require an expanding range of diverse fabrication processes. This is
already beginning in academia and industry thus providing a foundation for producing the
next round of stents with sophisticated geometries and tight tolerances from cutting edge
materials.

2.1 Laser machining
Laser machining of stents from thin walled tubing is the most common form of stent
fabrication. Stents can be machined through a direct write method where the laser is focused
directly on the substrate or a masked projection method in which the laser passes through a
mask before hitting the substrate. Laser micromachining creates stents by removing material
to create open cells via sublimation, melting, or oxygen reaction. Sublimation is not
commonly used because the cutting speed is slow. However, this technique does minimize
the adherence of solid impurities or dross and the extent of the heat affected zone in which
adjacent microstructure and mechanical properties are altered by heat. Melting and oxygen
reaction remain industry standards because of their high processing speeds, but often lead to
the deposition of the removed material on the surface, oxidation at the cuts, and burr
formation. Dross and spatter that stick to the backside of the cut can be removed with
additional finishing steps, such as microblasting with aluminum oxide powder, pickling, or
soft etching. Schemes to manipulate laser type, pulse length, power level, and different
mediums that contain the laser have been sought to address these drawbacks (Fig. 1). One
example of a novel strategy is the Synova Laser Microjet™ that passes the laser through a
continuous stream of water to facilitate accurate cutting with minimal thermal and structural
distortion.

The neodymium:yttrium-aluminum-garnet (Nd:YAG) solid-state laser is the most frequently
used laser for stent fabrication because of its short fundamental wavelength of 1064 nm.
Nd:YAG lasers have been shown to make slits on the order of 50 - 100 μm with short pulses
and high repetitions (22). The main drawback of the Nd:YAG laser is the size of the heat
affected zone and dross adherence. Metallic materials exhibit exceptional absorption of
infrared (IR) light, which allows for efficient and rapid machining with IR lasers. However,
bioabsorbable polymers are optically transparent, therefore different lasers are required.
Femtosecond and excimer lasers are capable of machining optically transparent materials,
such as bioabsorbable polymers with high fidelity (Fig. 2) (23). Femtosecond lasers are
usually based on the titanium:sapphire solid state laser and can machine objects on the
nanometer scale with a cut width of 30 μm on nitinol (24, 25). The femtosecond laser has
also been used to fabricate biodegradable magnesium alloy stents (26). Their major
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shortcoming is cost. Excimer lasers do not cause ablation by heat but through disruption of
molecular bonds through absorption of laser light in the ultraviolet range. While adverse
heat effects do not exist, lateral resolution is about 10 μm with beam quality not as good as
other laser systems (27). Polymeric stents have also been machined using CO2 lasers (28,
29). However, CO2 lasers may induce chemical changes in the treated material (30).

Laser parameters that can be varied are the pulse length and energy level. Pulses longer than
10 ns are associated with heat diffusion and conduction, which can impact the properties of
material in the vicinity of the pulse beam (Fig 3.) (31). Shorter pulses, in the femtosecond
range, and higher pulse repetition reduce the heat affected zone, which is especially critical
for polymeric materials (32).

2.2 Photoetching, Electroforming, and Microelectrodischarge Machining for Fabrication of
Metallic Stents

Alternative stent manufacturing techniques include photoetching, electroforming, and
micro-electrodischarge machining (μEDM), which are capable of producing burr/dross free
cuts with minimal roughness. The μEDM process has been used to fabricate stents from
planar 50 μm thick stainless steel foil (33) and demonstrate the capacity to incorporate
sensor systems to monitor intravascular pressure and flow (34). Photochemical etching uses
a photoresist and etchants to chemically remove unmasked material from metallic sheets or
tubes in order to produce complex designs with high resolution(35). The stainless steel NIR
(Boston Scientific, Inc), the stainless steel LP (Interventional Technologies, Inc) (36) and
the nitinol aSpire (Vascular Architects, Inc.) stents were produced via this process.
Photochemical etching has also been used in the fabrication of an origami stent fabricated
from nitinol foil (37) and in conjunction with 3D lithography to produce patterns on nitinol
films formed via magnetron sputtering (38, 39).

Electroforming, as a stent manufacturing tool, has been reported by Electroformed Stents
Inc and Moravej et al. (40). In brief, a stent is produced by a process of electrodeposition
onto a metallic mandrel, usually aluminum, which has been placed in a plating bath. The
electroforming process has also been used to produce molds with micro- and nanoscale
features.

Higher costs and slower fabrication times are acknowledged disadvantages of these
processes and with the exception of electroforming, these techniques are best suited for
fabrication of planar devices. Nonetheless, these approaches may lead to the development of
batch compatible processes with high throughput production and reduced costs.

2.3 Fabrication Techniques for Production of Polymeric Stents
Laser machining has been used to produce polymeric stents, such as the REVA™ stent (41),
however, concerns related to thermal or chemically induced alterations in polymer
properties have motivated the evaluation of injection and compression molding processes.
These techniques are particularly suitable for polymeric materials because of their
thermoplastic behavior with recent efforts directed at optimizing micro- and nanomolding
processes (42-46). Solvent cast films have been fabricated into stents by cutting the films
into strips and wrapping them around a mandrel into a coil like structure (47). As a related
process, fused deposition molding (FDM), which consists of repeated deposition of thin
layers of polymer, has been evaluated for the production of 3D microstructures that display
micron level resolution with short processing times (48). Likewise, melt spinning has also
been used to form bioabsorbable polymer fibers on the range of 150 μm to 200 μm which
can then be woven or knitted into stent-like structures (49, 50). The technique of controlled
expansion of saturated polymers allows for drug loading during the fabrication process (51)
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and can form bioabsorbable stents that posses the proper mechanical integrity (52). To date,
photolithography has been used to produce biodegradable scaffolds for tissue engineering
applications, but has not been utilized in the fabrication of stents.

2.4 Drug Reservoirs
A number of stents, including the Janus™ and Conor™ (Table 2) stents have now been
designed with drug containing reservoirs of various form and size. As previously noted, drug
eluting stents based upon the application of a thin polymer film coating have lead to a
significant reduction in the incidence of restenosis. Nonetheless, DES have been associated
with delayed vascular wall healing and alternative designs sought for local drug delivery.
One such approach has been the incorporation of localized reservoirs within the body of the
stent (Fig. 4). In principle, reservoirs increase the total drug carrying capacity of the stent,
reduce the mass of required polymer carrier, facilitate local delivery of multiple drugs, and
provide greater flexibility in tailoring the site and kinetics of drug release (53). Reservoirs
are sculpted into the struts of the Janus Carbostent™ and at hinge points in the Conor™
stent (Fig. 5) (53). Clinical outcomes have been mixed for both stent systems; reflecting the
need for further studies to optimize polymer-drug formulations (54).

3.0 Surface Modifications
The bridge between bulk fabrication and applied coatings resides in the ability to change the
surface properties of current stents to achieve different biological responses. There is no
single material currently available that possesses both the requisite mechanical properties
and elicits an optimal biological response. This has lead efforts to develop non-
thrombogenic surface modifications that facilitates vascular wall healing in a manner that
leads to the generation of an intact normal functional endothelium. Surface modifications
have focused on three major areas - improvement of blood contacting characteristics,
enhancement of endothelial cell migration, attachment and proliferation, and development of
porous surface films for drug release.

3.1 Chemical and Physical Strategies for Stent Surface Modification
Surface modification strategies are inclusive of the physical or chemical modification of the
surface of the pre-existing bulk material and deposition of a new material onto a base
platform. Radiofrequency plasma treatment can alter the surface properties of metals and
polymers by chemically modifying the molecular structure of the first few atomic layers,
grafting different functional groups, or by creating reactive surfaces that can be used for
additional surface modifications such as the covalent attachment of biopharmaceuticals.
Plasma or chemical based etching and sanding, as well as polishing and microblasting, have
been used to modify surface topography and enhance surface roughness. Plasma processing
is also capable of forming nanopillar arrays on the surface of a stent (55) providing a surface
that could be used for cell proliferation or drug delivery. A combinational approach could
also be used in which a stent surface would be micropatterned and subsequently plasma
coated allowing for control over the physical and chemical properties (56) of the stent
surface.

The deposition of a thin film layer onto the non-uniform geometry that is characteristic of
most stents can be accomplished by chemical (CVD) or physical vapor deposition (PVD)
and by plasma polymerization. CVD and PVD afford strongly adherent pinhole free films, in
addition to the optimal adhesion and integrity upon stent expansion observed with thinner
films (~36 nm) (57). Plasma deposition has the potential to create stable films that can
enhance corrosion resistance and functionalize stent surfaces with a high density of grafting
sites(58) such as amino groups that facilitate covalent attachment of biopharmaceuticals (59,
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60) and pharmaceuticals (61). PVD techniques, such as matrix assisted pulsed laser
evaporation have also been used for the deposition of both organic and biological materials
(62). Recently, PTFE and 316L stainless steel have been co-deposited by radiofrequency
magnetron sputtering to produce a gradient surface coating that progresses from a metal base
to PTFE at the surface (63). Finally, the use of CVD to apply thin films of diamond-like
carbon has shown the potential to allow tailorable drug release from underlying polymers
based on CVD film surface area(64).

3.2 Enhancing Surface Blood Contacting Properties
In vitro tests of thrombogenic potential are somewhat limited in predicting in vivo
performance. Nonetheless, recent investigations suggest that plasma and chemical based
etching can improve the hemocompatibility of stents (65). Fluorinated diamond-like carbon
films of 40-50 nm in thickness, prepared using plasma enhanced CVD, showed a significant
reduction in platelet adhesion (66, 67), as did a PLLA stent that was subjected to plasma
polymerization of diethylene glycol (49). Strategies based upon the attachment of anti-
thrombogenic molecules have been reviewed in detail elsewhere(68).

3.3 Enhancing Endothelial Cell Adhesion and Growth: Inductive and Conductive Coatings
Surface modifications that alter surface chemistry or topography can influence protein and
cell adhesion leading to enhanced endothelial cell growth and proliferation (Fig. 6) (69, 70).
Recent examples include sputtering TiO2 onto 316L stainless steel (71) and binding
tropoelastin to plasma treated metal surfaces, which enhanced cell attachment and
proliferation (72). Likewise, microblasting and reactive ion etching lead to topologically
rough surfaces with improved cell attachment (73) and nanoscale surface features produced
by polishing influenced endothelial cell proliferation and protein expression. Patterned Ti
with grooves ranging from 750 nm to 200 μm showed enhanced endothelial coverage on
nanometer scale patterns compared to micron scale patterns or random nanostructured
surfaces (74). Nanometer patterns can also be produced in a manner that leads to endothelial
cell alignment, which mimics native endothelium (75). Of note, surfaces with a defined
nanopatterned grid demonstrated a greater degree of endothelial cell adhesion, as compared
to responses observed on random nanostructured surfaces (76). Nanostructured surfaces,
when compared to microstrutured surfaces, appear to afford greater adhesion of endothelial
cells than smooth cells (77), lead to higher cell densities (78), and enhanced adhesion and
spreading (79). Interestingly, features between 100 nm and 1 μm have yielded greater cell
adhesion densities than those less than 100 nm (80). The molecular mechanisms of these
effects have not been well defined, but may be related, in part, to changes in protein
adsorption profiles.

Layer-by-layer (54) polymer assembly has been employed to deposit a thin film on stents.
LbL assembly on NiTi surfaces reduced in vitro platelet adhesion and facilitated the
incorporation of a nitric oxide donor (81). DNA loaded into an LbL film has been
successfully transferred from a stent into the vascular wall (82). Self-assembled
monolayers (SAMs) form highly ordered monolayers a few nanometers thick and facilitate
the presentation of a variety of unique chemical groups, including those that chelate
radioisotopes (83). SAMs can persist on a stainless steel stent for 14-21 days before
oxidation and desorption of the thin film from the stent (84). As a variant of film deposition
strategies based upon molecular self-assembly, Stupp and colleagues have described the
deposition of self-assembled peptide nanofibers to enhance cell adhesion and proliferation
(85). Ink-jet techniques have also shown some promise as a method coat stents with drug-
polymer formulations with the flexibility of deposition at spatially discrete sites (86).
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3.4 Microporous and Nanoporous Stents for Drug Delivery
Microporous and nanoporous stent surfaces are intriguing because of their capacity to
increase drug loading and influence drug release kinetics without the need for a polymer
coating (Fig. 7, Table 2). Stents sand blasted to produce a rough finish are at least as safe as
non-treated stents, but their potential to have a meaningful clinical impact remains to be
demonstrated (87). Porous surfaces have been created either by direct treatment of the stent
or after deposition of a nonpolymeric coating.

Microporous stents—Recent examples of stents that contain a microporous coating
include the Corel-C™ stent that is fabricated from CoCr with a carbon nanoparticle coating
(Relysis Medical, India) (88). Microporous surfaces have also been incorporated into
polymer based bioabsorbable stents (89). As noted, sandblasting has been used to create
pores between 1 to 100 μm on the surface of stainless steel stents, an example of which is
the Yukon™ stent platform (Translumina, Hechingen, Germany) (90). Adsorption of
rapamycin along with other drugs has proven feasible and showed a dose-dependent efficacy
in prevention of restenosis (91). However, the rapamycin eluting Yukon™ stent was found
to be clinically inferior to the Cypher™ stent, as well as a version of the Yukon™ stent
coated in a drug containing bioabsorbable polymer (92).

Nanoporous surfaces—At least two examples exist of nanoporous stent surfaces. The
Jomed™ coating consists of a thin aluminum base layer, which is then subjected to an acidic
solution that converts the aluminum into a thin ceramic nanoporous aluminum oxide (93). A
recent report suggests that particle debris may be released from the stent surface (94). MIV
Therapeutics, Inc. has developed a stent with a hydroxyapatite coating that is 0.30 to 1 μm
in thickness with a porosity of 40-60% in volume (95). This stent has shown promising
responses in both animal studies and in an initial clinical study after adsorption of sirolimus
(96).

4.0 Biopharmaceuticals
Peptides (97), DNA (98), and heparin (99), as well as anti-platelet agents, such as abciximab
(59), growth factors and integrin binding sequences have been incorporated onto stents to
reduce thrombosis or increase endothelial migration. Plasmids coding for vascular
endothelial growth factor (VEGF) (100) and VEGF itself (101) have been coated onto stents
to increase the rate of endothelialization. Cyclic Arg-Gly-Asp (cRGD), as well as anti-CD34
and anti-kinase insert domain antibodies have been applied to increase the recruitment and
retention of endothelial progenitor cells (97). However, a recent report have raised efficacy
and safety concerns of EPC capture stents (102).

5.0 Microspheres and Nanoparticles
Microspheres and nanoparticles have been used to nano-texture stents, in molding processes
to make stents, and for drug delivery from stents. Proteins have been incorporated within 1-2
μm diameter dextran particles for use in polymer based delivery devices (103). Drug loaded
microspheres and nanoparticles have been administered systemically and delivered locally
via microporous catheters (104). Drug loaded nanoparticles have also been deposited onto
stents and exhibited a delivery profile that was superior to that of dip coated stents (105).
Microspheres have been dispersed within polymeric stents (106) and embedded within
polymer containing channels etched in struts for abluminal drug delivery (107). Both
elastase inhibitors (108) and nitric oxide donors (109) have been delivered from
nanoparticles in this fashion.
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Stents have been used as homing sites for drug containing magnetic microspheres and
nanoparticles (Fig. 8). Magnetic targeting would allow an agent to be delivered on demand
to an in vivo site with different dosing regimes (110). Magnetic nanoparticles have been
used to deliver genes to the lumen of a vessel (111) and the ability to capture particles from
2 μm to 370 nm in diameter has been shown under simulated in vivo flow conditions (112).
Cells can also endocytose magnetic microspheres and nanoparticles for targeting to stent
surfaces (113, 114).

6.0 Conclusions
Stent design continues to mature in a manner that has lead to the adoption of novel strategies
derived from the fields of material science, microfabrication, and nanotechnology. The next
generation of stent designs is leveraging advancements in material science to create stent
platforms from diverse materials ranging from new alloys to bioabsorbable polymers. New
alloys have allowed for more sophisticated stent designs, while bioabsorbable stents offer
the potential of treating a vessel for a transient period of time before absorbing into the
vessel resulting in a healthy vessel with no permanent foreign body. Platforms are leaning
towards a future in which they have minimal radial profiles and tissue contact while
maintaining adequate mechanical strength, and deliverability. Stent platforms are utilizing
alterations in structure to improve drug delivery and targeting. Drug delivery reservoirs have
been incorporated into stents in an attempt to improve spatially targeted drug delivery while
minimizing the presence of the polymer carrier. Current research has focused upon
improved stent coatings that will allow stents to serve as vehicles for local drug delivery and
act as inductive scaffold for endothelial repair. The synergy of micro- and nanoparticle
technology and stent design will continue to be employed to enhance the flexibility of local
drug release and demonstrate the potential to target treatment to the site of the deployed
stent. Stent surfaces have been modified to yield improvements in blood contacting
properties, drug delivery to reduce restenosis, and accelerate endothelialization through
targeting local healing events in the vascular wall and the capture of circulating progenitor
cells. Stents have evolved into multifaceted devices that have benefited from advances in a
variety of fields and will continue to incorporate new advances from these fields to
overcome current limitations and create the next generation of stents.
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Figure 1.
A number of laser specific variables, including intensity, wavelength, and pulse length, as
well as material ablation formats are selected with respect to specific material properties for
optimal stent fabrication.
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Figure 2.
Example of two laser machined bioabsorbable stents. The top stent is courtestsy Laser
Zentrum Hannover(© Laser Zentrum Hannover e.V. (LZH)) and the bottom stent is courtesy
of Resonetics(©Resonetics)
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Figure 3.
The difference between femtosecond laser pulses and nanosecond pulses on thin steel films.
The SEM image on the left shows a hole drilled in a 100μm thick steel foil with 200 fs, 120
μJ, F = 0.5J/cm2 laser pulses at 780nm. The SEM image on the right shows the molten
material left behind when holes were drilled in a 100μm thick steel foil with 3.3 ns, 1 mJ, F
= 4.2J/cm2 laser pulses at 780nm.(©Springer-Verlag 1996 ) (115)
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Figure 4.
Micro- and nano- fabrication has facilitated the design stents that harbor reservoirs for local
drug delivery. (A) A single strut of a bare metal stent expanded in the vessel pressed against
the endothelium with the smooth muscle cells beyond the endothelium. (B) Drug containing
polymer coated strut and represents the first generation of drug eluting stents. Newer
strategies include the incorporation of (C) microtopographic features that provide increased
surface area for drug loading, (D) lumen-oriented reservoirs, and (E) drug reservoirs that
extend throughout the strut structure.
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Figure 5.
The Cordis NEVO™ stents has reservoirs machined into the stent struts(Courtesy of Cordis
Corporation)
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Figure 6.
Surface Modifications strategies to enhance endothelialization include: (A) surface
roughening to increase topography, (B) discreet patterning, (C) chemical modification of the
surface, and (D) covalent attachment of biopharmaceuticals.
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Figure 7.
Scanning Electron Microscope images at different magnifications of the expanded
Translumina YUKON®DES Coronary Stent System with PEARL surface coated with
leflunomide. The microporous stent surface allows for the incorporation of drugs with
slower release kinetics without the need for a polymer coating. The roughness of the stent
surface is 1.96±0.21 μm(Reprinted with permission of the Elsevier Ireland Ltd. © 2008)
(116)
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Figure 8.
Illustrates the magnetic targeting of bovine aortic endothelial cells(BAECs) under flow
conditions to stainless-steel stents in vitro and in vivo. Magnetically responsive BAECS are
shown captured on SS stents based on (A) red fluorescence of the MNPs and (B) Calcein
staining of live cells. To determine in vivo capture BAECs were loaded with fluorescent
MNPs and injected into the ventricular cavity. (C) Rats were exposed to a magnetic field of
1,000 G for 5 minutes then sacrificed and the stents were removed and imaged. (D) Control
rats were not exposed to magnetic field. (© 2008 The National Academy of Sciences of the
USA) (113)

Martinez and Chaikof Page 22

Wiley Interdiscip Rev Nanomed Nanobiotechnol. Author manuscript; available in PMC 2012 October 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Martinez and Chaikof Page 23

Table 1

Stent Fabrication Strategies

Fabrication Technique
Material Choiee Research Arena

Metals Polymers Industry Academia

Nd:YAG Laser ✓ x ✓ ✓

Feintosecoiid Laser ✓ ✓ ✓ x

Compression Molding ✓ ✓ x ✓

Photochemical Etching ✓ ✓ ✓ ✓

Electroforming ✓ x ✓ ✓

Sputter Coating ✓ x x ✓

Micro Electro Discharge ✓ x x ✓

Lithography ✓ ✓ x ✓

Fused Deposition Modeling x ✓ x ✓

Solvent Casting x ✓ x ✓
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