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Abstract
Many complex diseases are influenced by genetic variations in multiple genes, each with only a
small marginal effect on disease susceptibility. Pathway analysis, which identifies biological
pathways associated with disease outcome, has become increasingly popular for genome-wide
association studies (GWAS). In addition to combining weak signals from a number of SNPs in the
same pathway, results from pathway analysis also shed light on the biological processes
underlying disease. We propose a new pathway-based analysis method for GWAS, the supervised
principal component analysis (SPCA) model. In the proposed SPCA model, a selected subset of
SNPs most associated with disease outcome is used to estimate the latent variable for a pathway.
The estimated latent variable for each pathway is an optimal linear combination of a selected
subset of SNPs; therefore, the proposed SPCA model provides the ability to borrow strength
across the SNPs in a pathway. In addition to identifying pathways associated with disease
outcome, SPCA also carries out additional within-category selection to identify the most important
SNPs within each gene set. The proposed model operates in a well-established statistical
framework and can handle design information such as covariate adjustment and matching
information in GWAS. We compare the proposed method with currently available methods using
data with realistic linkage disequilibrium structures and we illustrate the SPCA method using the
Wellcome Trust Case-Control Consortium Crohn Disease (CD) dataset.
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1. INTRODUCTION
With the rapid development of genotyping technology, genome-wide association studies
(GWAS) have become a popular approach for the identification of genes and genetic
variants involved in complex diseases. A series of published results have demonstrated
successful identification of SNPs involved in complex traits (McCarthy et al., 2008;
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Manolio et al., 2009; Wellcome Trust Case Control Consortium, 2007). While the standard
approach for GWAS has been single SNP analysis, recently, pathway-based analysis
methods have also been proposed (Chasman, 2008; Schwarz et al., 2008; Wang et al., 2007).
These methods allow the integration of gene annotation databases such as Gene Ontology
(Ashburner et al., 2000) to formally test for subtle but coordinated effects of the genetic
variants in each pathway. Pathway analysis has been used widely in the analysis of gene
expression data and has been shown to be an effective tool for delineating the underlying
biological processes involved in transcriptome changes (Subramanian et al., 2005; Goeman
et al., 2007; Wang et al., 2008; Chen et al., 2008).

Integrating prior biological knowledge into association studies and identifying pathways
with disease association also can be valuable for GWAS for several reasons: (1) because the
underlying biological mechanism for complex diseases is likely to be dependent on
perturbation of different biological pathways, pathway analysis may approximate the true
disease process more closely and shed biological insight; (2) while SNPs that are truly
associated with disease but have only mild effects will likely be missed by single SNP
analysis, pathway-based analysis provides a way to combine weak signals from the
individual variants in each pathway to improve power; and (3) as the number of genomic
markers on high-density SNP chips increases, brute-force searching for groups of SNPs that
jointly affect disease outcome is becoming less feasible. Gene annotation databases,
however, provide an automatic way of grouping SNPs on functionally related genes.

Several recent papers have explored the feasibility of pathway analysis for GWAS. In an
interesting paper, Chasman (2008) evaluated the utility of gene set analysis methods based
on Fisher’s exact test, which tests for overrepresentation of SNPs associated with disease
within a pathway. Along the same lines, Wang et al. (2008) adapted the gene set enrichment
analysis (GSEA) method of Subramanian et al. (2005) to GWAS, to test the distribution of
association between outcome and genes within a pathway versus that between outcome and
other genes using a modified Kolmogorov-Smirnov test. Goeman et al. (2007) classified
pathway analysis into two categories: competitive and self-contained tests. A competitive
test compares test statistics for genes in the pathway to a background defined by the
complement of that pathway. Both Fisher’s exact test and GSEA are competitive tests. A
self-contained test, in contrast, compares the gene set to a fixed standard that does not
depend on the measurement of genes outside the pathway.

In this paper, we propose a new, self-contained test for testing association between a group
of SNPs in a pathway with qualitative and quantitative traits using a modified principal
component analysis (PCA) approach. PCA, a popular method for reducing high
dimensionality to capture variations in gene expression or SNP markers, has been applied to
gene expression pathway analysis, multi-locus association studies, and population structure
correction (Tomfohr et al., 2005; Gauderman et al., 2007; Wang and Abbott, 2008; Zhu et
al., 2002). In the analysis of GWA studies, PCA is an effective approach for testing
association of the joint effects of genetic variations in genes/SNPs with phenotypic
variations while accounting for correlations between the SNPs due to linkage disequilibrium
(LD). However, one limitation of PCA is that the latent variable identified by the PCs may
or may not be related to clinical phenotypes (Bair et al., 2004; Bair et al., 2006).

To address this difficulty, Bair and colleagues (2004, 2006) proposed the supervised PCA
(SPCA) method, which estimates PCs from a selected subset of genes most associated with
outcome, instead of performing PCA on all genes. Because initial screening of the variables
uses outcome (e.g., disease status) information, this method is referred to as supervised. In
the context of prediction analysis, SPCA has been shown to have excellent performance at
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predicting survival and continuous outcomes using gene expression data (Bair et al., 2004;
Bair et al., 2006).

In this paper, we adapt the SPCA model to pathway-based SNP association analysis to test
the association between a group of SNPs and variation in disease outcome. In Section 2, we
first give an overview of the proposed method. Then, using genotype data with realistic
patterns of linkage disequilibrium and allele frequencies, we conduct a simulation study that
compares our method with an unsupervised PCA method, Fisher’s exact test, GSEA and the
sum statistic (Hoh et al. 2001). In Section 3, we describe the details of the simulation study
results and illustrate the SPCA model using a real Crohn’s disease case-control GWAS
dataset. Finally, we provide some concluding comments in Section 4.

2. METHODS
2.1 An Overview of the Proposed Supervise Principal Component Analysis (SPCA) Method

The idea behind the SPCA model is that within a biological pathway, genetic variations in a
subset of SNPs, each contributing a modest amount to disease predisposition, work together
to disrupt normal biological processes. For simplicity, we use the terms “gene category”,
“pathway”, and “gene set” interchangeably, although they may not be strictly equivalent.
Given a gene category defined a priori (e.g., categories from the Gene Ontology or KEGG
database), we first map SNPs on an array to groups of genes within each category. Then we
select a subset of SNPs most associated with disease outcome and estimate the latent
variable through PCA of this subset. Finally, to identify gene categories associated with
disease outcome, we test for association between the estimated latent variable and disease
outcome using a linear model. SPCA uses outcome information in the initial SNP screening;
to account for this step, we propose an approximation to the sampling distribution of the test
statistic in the linear model, which uses a Gumbel extreme value mixture distribution. In
addition, to account for the effect of pathway size, we propose a simulation-based
standardization procedure.

In the proposed model, the estimated latent variable is an optimal linear combination of a
selected subset of SNPs; therefore, the proposed SPCA model provides the ability to borrow
strength across both disease-predisposing and disease-protective SNPs in a pathway. In
addition to identifying SNP pathways associated with disease outcome, SPCA also carries
out within-category selection to identify the most important SNPs within each gene set (see
details in Section 3). Finally, the proposed model operates in a well-established statistical
framework and can handle design information such as covariate adjustment and matching
information in a GWAS.

2.2 Supervised PCA Model
The SPCA model is discussed in detail in Bair and Tibshirani (2004), Bair et al. (2006), and
Chen et al. (2008). Here we discuss the application of a SPCA model to pathway-based
analysis of association studies. We discuss the application of a SPCA model to pathway-
based analysis of association studies. The SPCA model estimates and tests disease
association with principal component scores that account for correlations in the SNPs due to
Linkage Disequilibrium (LD). The assumption behind the supervised PCA model is that
within a gene set defined a priori, genetic variations in a subset of the SNPs are associated
with a latent variable, which then varies with the outcome. Our objective is then to select the
subset of relevant SNPs, estimate the latent variable, and assess its statistical association
with outcome. To this end, we used the following supervised PCA model:
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(1)

where pj = Pr (Patient j has disease phenotype ∣ PC1), and PC1 is the first principal
component score estimated from the selected subset of relevant SNPs in a predefined gene
set G and represents the latent variable for the underlying biological process associated with
this group of genes. Magnitude of loadings for the first principal component score can be
viewed as an estimate of the amount of contribution from different genetic variants.
Statistical significance of β̂1 indicates a significant association between SNPs in gene set G
and outcome. In theory, in addition to PC1, it is also possible to include additional PC scores
in Model 1; however, we have found that models with PC1 as the only predictor have
worked well in practice (see results on simulation and real data analysis in Section 3)
because of the LD among SNPs in the same pathway.

For each pathway, we follow these steps:

1. For each SNP, compute an association measure by fitting a logistic regression
model with disease status as the outcome variable and genotype (0, 1, 2) as the
predictor. For the ith SNP, let the association measure pi be the single SNP p-value
(i.e. p-value corresponding to regression coefficient for genotype in the logistic
model).

2. Given all SNPs in the geneset G, pre-determine a set of m threshold values for the
association measures: we let {r1, r2,…, rm} be a linearly ordered subset of real
numbers such that r1 < r2… < rm. In this paper, for the simulation study and real
dataset analysis, we used m = 20 thresholds by placing the thresholds at each
increment of 5 percentiles of the association measures (single SNP p-values in (1)).

3. For a given threshold value rk, let Λk {SNPi ⊆ G: pi < rk, i = 1,.., nSNPs} be the
subset of SNPs with association measures below the threshold. Compute the first
principal component score PC1 using only SNPs in Λk and fit Model 1.

4. Let Tk = β̂1k / s.e. (β̂1k) be the t-statistic corresponding to PC1 (computed using
SNPs corresponding to threshold Λk) in Model 1. Therefore, for the m threshold

values, we have m t-statistics{T1, T2,…, Tm}. Let , in the
next section, we derive the asymptotic distribution of this statistic.

2.3 Asymptotic Distribution of Mn

Without the gene selection process, when all genes in a gene set defined a priori are included
in analysis, the test statistic T = β̂1 / s.e.(β̂1) in Model 1 follows a t-distribution. However,
after the SNP selection step in Section 2.2, the test statistic can no longer be approximated
well using a t-distribution.

Given a set of normal random variables{T1,…,Tn}, let . In this
section, first we describe the Gumbel extreme value distributions for modeling the
maximum and minimum of a set of n normal random variables, then we show the
distribution of Mn follows a two-component mixture distribution based on the Gumbel
extreme value distributions. In Section 2.4, we discuss practical applications of the theory to
the analysis of gene sets.
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Given a set of normal random variables{T1,…,Tn}, under regularity conditions (Leadbetter

et al., 1982), the maximum  can be shown to follow the Gumbel maximum
distribution:

(2)

wheret1 = an (un − bn), an = (2 log n)1/2 and bn = (2 log n)1/2 −0.5(2 log n)−1/2 (log log n +
log 4 π). Here, the normalizing constants an and bn serve as scale and location parameters of
the distribution. In gene set analysis, given a set of t-statistics from fitting Model 1 at
different thresholds, an and bn help normalize the effect of gene set size n. In Section 2.4, we
show this important property of the extreme value distribution helps to increase the
computational efficiency dramatically, by allowing us to pool Mn values for genesets with
different gene set sizes in a given study. Next, the corresponding density function for the
maximum is

(3)

Similarly, let , the distribution function for the minimums
can be derived as

(4)

The density function for the minimum is then

(5)

where t2 = an (un + bn).

Now, for a given gene set, let , and p = Pr(Mn > 0), then the
distribution function for Mn can be approximated as a two component mixture distribution:

(6)

The conditioning argument in the third line above follows because if Mn is positive, then Mn
must be the maximum of all t-statistics {Tk; k =1,…,n}, so Mn = M1n and can be
approximated with a Gumbel maximum distribution. Similarly, if Mn is negative, then Mn
must be the minimum of all {Tk; k = 1,…, n}, so Mn = M2n and can be approximated with a
Gumbel minimum distribution. The corresponding density function for the mixture
distribution is then

(7)
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2.4 Application of the Theory to Significance Testing in Gene Set Analysis
When applying the theory in Section 2.3 to gene set analysis, we note that several
assumptions are violated: for each gene set, to keep the amount of computation manageable,
only a finite number (m = 20) of t-statistics can be computed. Let n = pathway size or the
number of SNPs, m = number of thresholds of association measures in step (2) of Section
2.2. Note that when the thresholds are placed at small intervals (e.g. at every increment of 5

percentiles of the t-statistics),  where Δ = interval length, or the number of SNPs
within the interval. In addition, from fitting Model 1 using SNPs corresponding to each
threshold, we have a set of t-scores instead of normal scores, and the t-scores are correlated
by construction. Therefore, the approximation in equation (6) and (7) may not be precise.

Given a large number of gene sets, to estimate p-values for each gene set accurately, our
strategies are to use the theory in Section 2.3 to account for different gene set sizes, and then
model the null distribution of Mm by generating random outcomes for each gene set, pooling
Mm values for all gene sets, and estimating (additional) parameters of the mixture
distribution. More specifically, we follow these steps:

i. Generate random outcomes for each gene set. For each gene set, fixing the
genotype dataset, we generate disease status for each sample from a Bernouli
distribution with parameter q where q is the proportion of case samples.

ii. For each gene set, fit Model 1 for SNPs corresponding to each of the m = 20
thresholds, and compute Mm.

iii. Pooling Mm values from all gene sets, we then have the null distribution for Mm.
Because the disease outcomes were generated randomly, without looking at the
SNP values, the resulting Mm values represent a random sample from the null
distribution of Mm.

iv. However, the p-values estimated directly using the null distribution in (iii) will
often be coarse, when the number of gene sets tested in the study is only
moderately large (a few hundreds to a thousand). To further improve accuracy in
estimation of gene sets p-values, we add additional location and scale parameters to

equation (7), by letting  and  for the parts
correspond to maximum and minimum in equation (7) respectively.

So the density function (7) then becomes

(8)

Given a set of Mm values for the null gene sets (from (iii)) and the mixture density
function (8), the parameters p, δ1, δ2, γ1, γ2 can then be estimated easily. We used
the R function optim for the analysis in this study. To estimate p-values for each
gene set, we then substitute these estimated parameters into the distribution
function with the additional parameters:

2.5 Design of a Simulation Experiment
We compared the performance of the supervised PCA model for pathway analysis of SNP
data with several popular pathway analysis methods: Fisher’s exact test, GSEA (Holden et
al. 2008), sum statistic (Hoh et al. 2001) and an unsupervised PCA model. First, from the
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Gene Ontology (GO) database, we randomly selected 50 gene categories. For each gene
category, we obtained the list of SNPs within 5KB up- or downstream from genes in the
gene set using the Ensembl database. Among the 50 selected gene sets, the number of SNPs
per gene set varied from 11 to 295. We limited these SNPs to those from the Perlegen GV4
SNP chip, resulting in a total of 4035 SNPs across the selected 50 gene sets.

To generate samples of genotype data with realistic allele frequencies and linkage
disequilibrium patterns, we used the web-based simulation tool HAP-SAMPLE (Wright et
al., 2007). HAP-SAMPLE simulates genotype datasets by resampling chromosome-length
haplotypes from existing phased datasets, such as the HapMap dataset, thus preserving
realistic data structure in association studies. In this simulation, the SNP IDs of the 4035
SNPs from the selected 50 gene sets across different chromosome were entered into HAP-
SAMPLE, and the Caucasian cohort (CEU) (parent data from phase II) was used as the
source data. The haplotypes for each chromosome were generated from HapMap samples,
and haplotypes between chromosomes were assumed to be independent. A total of 20,000
genotype samples were generated. This represents the genotype dataset for an artificial but
realistic finite population of patients from which we can sample.

To construct causal gene sets, fixing the genotype data, for each gene set, we next simulated
case-control status for the patients according to the multiplicative disease model. More
specifically, for the first five gene sets (sorted by GO ID) with SNP set sizes 138, 145, 216,
254, and 262, respectively, we generated disease outcome for each patient based on the
multiplicative disease model. Let gi = 0, 1, 2 represent the number of copies of the risk allele
for SNP i (i=1,…, D), where D is the number of SNPs in the gene set associated with
disease, and let f = Pr (affected ∣ g1,…, gD) be the penetrance for genotype {g1,…, gD}.

Then, assuming the multiplicative genetic model , we
independently generated βi(i = 1,…, D) from a N(μ, σ2) where μ = log(1.1) and σ2 =
0.15,0.2,0.25,0.3. We assumed the number of SNPs associated with disease to be D = 5, 8,
and 10 within each pathway, resulting in 12 = 3 (D) × 4 (σ2) simulation scenarios (Table 1).
For each causal pathway, the causal SNPs were selected randomly without using any SNP-
to-Gene mapping information, so that the causal SNPs were located on different genes. Each
scenario was replicated 50 times, resulting in, by design, a total of 250 (= 5 × 50) causal
disease gene sets among a total of 2500 (= 50 × 50) gene sets. Under this setup, βi can be
positive or negative; therefore, each gene set includes SNPs with a minor allele that either
increases or decreases risk of disease relative to the major allele. To estimate β0, we
assumed disease prevalence K to be 5%. Given prevalence K and βi(i = 1,…, D), β0 can

then be estimated by maximizing the equation ; see
details in Li et al. (2008). Finally, for each gene set, given values for β0, {β1,…,βD}, and
genotype data {g1,…, gD}, we computed f using the multiplicative genetic model above and
sampled genotype data for 500 cases and 500 controls from the pool of 20,000 patients.

To construct null gene sets, for the remaining 45 gene sets, we generated outcome status for
each sample from Bernouli (K = 0.05) without looking at genotype data. Therefore, these are
the null genesets. For each simulation scenario, genotype data for the first 500 cases and 500
controls were next selected from the pool of 20,000 patient samples.

To implement the analysis of SPCA, unsupervised PCA, and Fisher’s exact test, we used the
R packages (http://www.r-project.org/) superpc (with modification for binary outcomes), lm,
and fisher.test, respectively. For Fisher’s test, which compares the proportion of causal
SNPs from a gene set to the proportion of causal SNPs in other genes, a univariate test must
first be conducted for each SNP, and a significance threshold pre-specified. We used logistic

Chen et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2012 October 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.r-project.org/


regression with case-control status as outcome, and SNP status as predictor for the
univariate SNP analysis. Two significance cutoff levels were used: at Bonferroni adjusted p-
values of 0.05 or FDR adjusted p-values of 0.05.

We used the javaGSEA implementation (http://www.broadinstitute.org/gsea/) for GSEA
analysis. Briefly, the SNPs were pre-ranked by Chi-square test statistic from the Cochran-
Armitage Trend test and this ranked list was then used for the GSEA “Pre-ranked”
algorithm. This is the algorithm implemented in GSEA-SNP software (Hoden et al. 2008).
For the sum statistic, we used the program downloaded from the author’s website (http://
linkage.rockefeller.edu/ott/sumstat.html).

3. RESULTS
3.1 Results of Simulation Experiment

To estimate type I error rate and power of the methods, we pooled gene sets from the 50
replications, among which 250 (= 5 gene sets × 50 replications) were causal gene sets and
2250 (= 45 gene sets × 50 replications) were null gene sets by design of the experiment.

For all scenarios, all methods had preserved type I error rate at the 0.05 significance level. In
particular, Supplementary Figure 1 shows the distributions of p-values from the SPCA
model for each scenario. Figure 1 and Table 1 compare the power of the methods for testing
the null hypothesis H0: a gene set is not associated with disease. Across all scenarios, the
SPCA model consistently performed best with the highest power among all methods. On the
other hand, the unsupervised PCA model, which uses all SNPs in the gene set to estimate the
underlying latent variable, had the lowest power among all methods. This suggests that, with
the SNP selection step, supervised PCA removes some of the irrelevant SNPs before
extracting the desired latent variable, thereby improving performance in discriminating
causal gene sets from null gene sets. Another self-contained test (Section 1) that also uses
only SNPs in the pathway, the sum statistic, also performed well with good power for all
scenarios. Supplementary Table 1 further compares the average p-values (over 50
replications) of the sum statistic and SPCA model for each causal gene set with different
gene set sizes. Across rows of this table, as expected, when the number of causal SNPs in
the gene set is large (N_SNP=10), both methods performed well with small average p-values
for each causal gene set. However, when the number of causal SNPs in the gene set is small
(N_SNP=5), SPCA model had smaller average p-values. Across the columns of this table,
while p-values from SPCA model were similar for causal gene sets with different sizes, the
average p-values for sum statistics increased for larger gene sets, suggesting the results of
sum statistic are affected by gene set sizes. In this simulation study, because we have
selected the causal SNPs randomly, most of pairwise LDs between casual SNPs were less
than 0.01. Note that when the causal SNPs display stronger LD pattern, the power of
proposed method will be even higher.

Compared to the self-contained tests (SPCA and sum statistic), the competitive tests
(Fisher’s exact test and GSEA) which compare test statistics for SNPs in the gene set to
other SNPs not in the gene set, had less power for detecting causal gene sets. This suggests
that when SNPs in multiple pathways are associated with disease, competitive tests which
compare association signals in a particular gene set vs. association signals from all other
gene sets, may result in loss of power.

3.2 Application to the Crohn Disease (CD) GWA data
To further validate the proposed methodology, we next applied the methodology to a real
GWAS dataset: the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease
(CD) case-control data.
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Crohn’s disease, a typical complex disease affected by multiple genetics factors and
environmental exposures (Podolsky, 2002), is a form of inflammatory bowel disease (IBD)
most commonly affecting the small intestine and/or colon, in which an overactive immune
response leads to chronic inflammation. Although the genetic architecture of CD is still
incomplete, recent candidate gene and GWAS (Xavier and Podolsky, 2007; Mathew, 2008)
suggest three major biological processes related to CD: innate immunity, adaptive immunity
(regulation of IL23), and autophagy. These processes are closely associated. Autophagy can
mediate innate immune responses by targeting intracellular bacteria and parasites, and
connects with adaptive immunity through presenting antigen via MHC class II (Schmid and
Munz, 2007). Innate immune responses are necessary to activate adaptive immunity, leading
to inflammation (Xavier and Podolsky, 2007).

We chose the WTCCC CD data to test our proposed methodology because of the relatively
clear understanding of the above-summarized biological mechanisms involved in the
development of Crohn’s disease, including more than 30 susceptibility loci for CD found
and replicated in different GWAS (Barrett et al., 2008). WTCCC GWA samples were
genotyped using Affymetrix GeneChip 500K arrays. After data quality control, 1748 cases
and 2953 controls remained, with 469,557 SNPs for each sample (WTCCC, 2007).

To conduct gene set analysis, we used gene sets from the canonical pathway (CP) and
biological process (BP) collections of the Molecular Signatures Database (MSigDB), a
public database created by the Broad Institute (http://www.broadinstitute.org/gsea/msigdb/).
The CP gene sets are canonical representations of biological processes compiled by domain
experts, from online databases such as BioCarta (http://www.biocarta.com/), KEGG (http://
www.genome.jp/kegg/), and others. The BP collection consists of gene sets derived from the
controlled vocabulary of the Gene Ontology project, in particular the ontologies in the
“biological process” category. Because of the hierarchical structure of Gene Ontology, to
reduce redundancy, MSigDB preprocesses gene sets to remove highly similar GO
categories. To reduce the amount of multiple testing and avoid testing overly broad gene
sets, we further removed gene sets with more than 250 genes. The remaining 762 GO
categories and 638 canonical pathways were used for subsequent data analysis.

To assign SNPs to pathways, we used ENSEMBL database (version 51) annotation. First,
SNPs mapped within 5KB of a gene were assigned to the corresponding gene. A total of
207,907 SNPs were mapped to 17,203 genes. Next, the genotype data in the CD case-control
dataset were linked to the gene sets using identifiers for the genes. We conducted gene set
analysis using the proposed methodology as outlined in Section 2. Based on the SPCA
model, nominal p-values were estimated for all gene sets. To control for false discovery rate
(FDR), we also estimated adjusted p-values based on the method of Benjamini and
Hochberg (1995), using the multtest package in the R statistical software.

At FDR levels of 0.05 and 0.1, we identified 50 and 72 significant gene sets, respectively, in
the CD dataset. The top 40 gene sets are listed in Table 2; a large proportion of these
statistically significant gene sets are involved with biological processes related to the
immune system, a reasonable result given the proposed biological mechanisms for CD
summarized above.

Two groups of gene sets identified as statistically significant are closely related to innate
immunity; one group includes gene categories related to detection and response to stimuli
(bacteria), such as GO:0009595, GO:0051606, GO:0009581, GO:0009617. The genes
identified from these categories include NOD2 (CARD15), RP1, IFNGR1, CCL4, IL10,
IL12B, and others. The second group of innate immunity gene sets is involved with cytokine
secretion and production, activation, or regulation of the nuclear factor-κB (NF-κB)
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transcription factor. The important genes in these sets are NOD2, TNFB2, MAP3K7,
ABCA1, CARD11, PRKCQ and others. Among these genes, NOD2, the first discovered CD
susceptibility gene, plays a central role in immune response pathways. By recognizing
bacterial molecules that possess a muramyl dipeptide (MDP) with a leucine rich repeat
(LRR) domain, NOD2 activates NF-κB and mitogen-activated protein (MAP) kinase
signaling pathways through a receptor-interacting serine-threonine (RIPK2)-dependent
signaling pathway (Kobayashi et al., 2002). This triggers the production and secretion of a
series of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin
12 (IL12), and interleukin 23 (IL23), to enhance innate immunity.

Other major pathways identified as statistically significant are involved with adaptive
immunity, in particular, the regulation of IL23. These pathways are the cytokine-cytokine
receptor interaction pathway (KEGG 04060, including genes IL23R, IR12RB2, IL18RAP,
IL6R, IL28A, ARFRAP1, CCL18, IFNGR1, TNFSF15, TNFRSF1B) and the JAK-STAT
signaling pathway (KEGG 04630, including genes IL23R, STAT3, IL28A, IFNGR1, GRB2,
SPRED1, SPRED2). IL23 has been shown to be the “master regulator” of Crohn’s disease,
through activating a subset of T-cells (TH-17) to produce cytokine IL17 to promote
inflammation. The STAT3/STAT4-dependent pathway is also required for IL23 to activate
TH-17 through phosphorylation (Neurath, 2007).

Finally, statistically significant gene sets related to autophagy include GO:0006914, GO:
0009991, GO:0031668, and others. The most important genes in these gene sets are
autophagy-related 16-like 1 (ATG16L1) and the IRGM gene. These two genes are
responsible for intracellular responses required for autophagy and are associated with
Crohn’s disease risk (Hampe et al., 2007; Rioux et al., 2007; Parkes et al., 2007). Although
our top pathways are not identical to the top hits in GESA analysis by Wang et al. (2009),
the significant genes identified by SPCA, especially those in pathways related to regulation
of IL23 were also included in the most significant pathways in GSEA analysis. This
indicates important association signals for CD were picked up by both methods. In
summary, results of the proposed SPCA model agreed well with recent findings in multiple
GWA studies and animal experiments, further validating the proposed methodology.

4. DISCUSSION
Many complex diseases are influenced by joint effects of genetic variations in multiple
genes and environmental factors (Manolio et al., 2009). In this paper, we have outlined a
general strategy for conducting pathway analysis for GWAS data using the supervised PCA
model. In addition to combining weak signals from a number of SNPs in a pathway, results
from pathway analysis also can shed light on the biological processes underlying disease.
Typically, only a subset of SNPs within a gene set defined a priori are associated with
disease outcome. Hence, without a SNP screening step, using all SNPs to summarize
information from a pathway can result in reduced test power for pathway analysis, because
of the inclusion of SNPs unrelated to disease. In contrast, the proposed SPCA model, which
is a semi-supervised testing procedure that combines feature selection and dimension
reduction techniques, removes some of the irrelevant SNPs before extracting the principal
components. Using GWAS data with realistic linkage disequilibrium structures, we have
shown this approach compares favorably with currently available pathway testing methods.

The proposed method can be further improved in several ways: (1) Assigning SNPs to genes
in the pathway. In this study, we have used physical annotations to assign SNPs within 5KB
of each gene in a pathway to that gene, to capture the proximal functional elements of most
genes; more distant SNPs and SNPs in LD with the included SNPs were ignored. We
believe there is a balance to be struck here: adding SNPs mapped farther away from genes
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will likely cover more completely the regulatory regions, but will also include more
irrelevant SNPs and increase the computational burden dramatically because of the large
number of genes in most pathways. A previous study (Holmans et al., 2009) found no
apparent improvement in results when different window sizes were used for a pathway-
based analysis method; however, more studies on this issue are clearly warranted, with
functional studies that assess the impact of SNPs on gene expression likely to be particularly
helpful. (2) Accounting for the hierarchical structure of GO. The Gene Ontology terms used
in this study are highly structured and ordered in a directed acyclic graph: the set of genes
annotated to a certain term (node) is a subset of those annotated to its parent nodes. To
reduce redundancy, we used collections of gene sets based on GO from the MSigDB
database, which had been preprocessed to exclude extremely similar GO terms. Even after
pre-processing, however, the results of gene set analysis may still include closely related
processes; therefore, careful interpretation of functionally related gene sets is needed. In this
study, we have taken the approach of grouping gene sets and interpreting functionally
related groups of gene sets to further reduce redundancy.

Although these and other issues make pathway-based analysis of GWAS especially
challenging, we believe pathway-based approaches that model joint effects of genetic
variations in multiple functionally related genes is a major step forward in improving the
power of GWAS and understanding molecular mechanisms of disease. In addition, the
power and potential of these methods will increase as the coverage and quality of gene
annotation databases improve.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of power for six gene set analysis methods at 0.05 significance level, for
500-500 case-control samples with disease prevalence 0.05. The number of disease causal
SNPs were chosen to be 5, 8, 10 and the variances of the normal distributions for
coefficients beta of causal SNPs were 0.15, 0.2, 0.25 and 0.3. SPCA is the proposed
Supervised PCA model; Fisher Bonferroni 0.05 and Fisher FDR 0.05 are Fisher’s exact test
using Bonferroni 0.05 and FDR 0.05, respectively, as the threshold for declaring single SNP
significance; PCA is the standard PCA regression; GSEA is the Gene Set Enrichment
Analysis and SUMSTAT is sum statistic described in Hoh et al. (2001).
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Table 2

The most significant pathways identified by SPCA analysis in the WTCCC CD GWA dataset.

Gene set No. of genes No. of SNPs P value Function

GO:0009595 9 74 9.71E-06 detection of biotic stimulus

GO:0009991 88 774 1.04E-05 response to extracellular stimulus

KEGG: 04060 215 1992 1.04E-05 cytokine cytokine receptor interaction

GO:0031668 34 216 1.21E-05 cellular response to extracellular stimulus

GO:0006914 27 188 1.49E-05 autophagy

GO:0016236 10 59 2.01E-05 macroautophagy

GO:0051606 46 804 2.03E-05 detection of stimulus

GO:0050715 8 114 2.18E-05 positive regulation of cytokine secretion

GO:0050701 8 112 2.20E-05 interleukin-1 secretion

GO:0000045 7 42 2.66E-05 autophagic vacuole formation

GO:0043122 84 563 2.70E-05 regulation of I-KappB kinase/NF-KappaB cascade

GO:0043123 78 509 2.74E-05 positive regulation of I-KappB kinase/NF-KappaB cascade

GO:0009966 198 2365 3.09E-05 regulation of signal transduction

GO:0009967 114 1400 3.35E-05 positive regulation of signal transduction

KEGG: 04630 132 1187 3.50E-05 Jak-STAT signaling pathway

GO:0051239 139 1992 3.73E-05 regulation of multicellular organismal process

GO:0051259 36 699 4.28E-05 protein oligomerization

GO:0050707 14 130 4.47E-05 regulation of cytokine secretion

GO:0001819 14 126 4.51E-05 positive regulation of cytokine production

GO:0050714 9 123 4.54E-05 positive regulation of protein secretion

GO:0051240 60 522 5.02E-05 positive regulation of multicellular organismal process

GO:0045087 115 1108 5.07E-05 innate immune response

GO:0006461 151 2332 5.19E-05 protein complex assembly

GO:0009581 22 180 5.28E-05 detection of external stimulus

GO:0051704 141 1172 6.36E-05 multi-organism process

GO:0051707 68 443 6.70E-05 response to other organism

GO:0006952 218 1989 6.94E-05 defense response

GO:0009607 97 660 7.25E-05 response to biotic stimulus

GO:0051099 25 289 7.45E-05 positive regulation of binding

GO:0043388 23 271 7.49E-05 positive regulation of DNA binding

GO:0051091 21 266 7.51E-05 positive regulation of transcription factor activity

GO:0050708 19 219 7.54E-05 regulation of protein secretion

GO:0009617 23 174 7.83E-05 response of bacterium

GO:0051047 17 166 7.89E-05 positive regulation of secretion

GO:0001817 23 232 7.93E-05 regulation of cytokine production

GO:0050663 16 187 8.12E-05 cytokine secretion

GO:0051092 15 233 9.30E-05 activation of NF-KappaB transcription factor

GO:0032940 97 1657 9.47E-05 secretion by cell

GO:0001816 63 570 9.54E-05 cytokine production
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Gene set No. of genes No. of SNPs P value Function

GO:0042742 18 143 1.00E-03 defense response to bacterium
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