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Abstract

The significant biological role of RNA has further highlighted the need for improving the
accuracy, efficiency and the reach of methods for investigating RNA structure and function.
Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural
biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra
of RNA makes automated resonance assignment, a key step in NMR investigation of
biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino
Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino
resonances with synchronized verification and correction of predicted secondary structure. RNA-
PAIRS represents an advance in modeling the assignment paradigm because it seeds the
probabilistic network for assignment with experimental NMR data, and predicted RNA secondary
structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic
network that reverberates between predictions and experimental evidence in order to reconcile and
rectify resonance assignments and secondary structure information. The procedure is halted when
assignments and base-parings are deemed to be most consistent with observed crosspeaks. The
current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen
heteronuclear multiple quantum correlation (*H-1°N 2D HMQC) and proton—proton nuclear
Overhauser enhancement spectroscopy (*H-1H 2D NOESY) experiments. We have evaluated the
performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied
RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a
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range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%,
while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate
assignments and base pairings consistent with imino resonances for a majority of the NMR
resonances, even when the initial predictions are only modestly accurate. RNA-PAIRS is available
as a public web-server at http://pine.nmrfam.wisc.edu/RNA/.
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Introduction

RNA plays many important roles in gene expression, and RNA molecules show great
promise as drug targets, therapeutic agents, and catalysts or recognition units for use in a
variety of biochemical and biomedical applications. The quest for comprehensive
information about structure—function relationships via high throughput structure elucidation
has thus far focused on protein structures (Fox et al. 2008). Despite the biological abundance
and functional importance of RNA, its structure determination has lagged behind that of
proteins. For example, at the time of this writing, the Protein Data Bank contained>69,000
3-dimensional coordinate sets for proteins but fewer than 2,100 for RNA molecules. This
may be due in part to the fact that nucleic acids can be challenging targets for crystallization.
Moreover, the hydrogen bond mediated base pairing that is central to RNA structure may
become ambiguous at lower X-ray resolutions. The complementary method of nuclear
magnetic resonance (NMR) spectroscopy does not require crystallization (Davis et al. 2005;
Miyazaki et al. 2010; Nozinovic et al. 2010; Wang et al. 2010). NMR provides direct
observation of atomic connectivity information, including hydrogen-bonded protons.
However, efficient and automated approaches to address key RNA structure determination
steps remain to be developed. In the resonance assignment step, a key first step in NMR of
RNA biomolecules, the dispersion pattern in the NMR spectra of RNA makes automation
remarkably challenging. In contrast to proteins (Bahrami et al. 2009), there are currently no
methods for automated resonance assignment of RNA.

The structural characteristics of RNA are dominated by the highly stable and regular A-form
helix (Wang et al. 2010). RNA secondary structures can be predicted with approximately
73% accuracy by dynamic programming algorithms for the free-energy minimization of
empirically derived, sequence-dependent nearest-neighbor thermodynamic parameters
(Turner rules) (Dimitrov and Zuker 2004; Mathews et al. 2004; Mathews and Turner 2006;
Xia et al. 1998). The accuracy of predictions can be pragmatically reduced by the tendency
for RNA sequences to include unpaired bulge-, internal-, or hairpin-loop regions for which
no fine-tuned thermodynamic parameters are yet available—although some attempts at
estimation have been made (Ding and Lawrence 2003; Dirks et al. 2004; Hart et al. 2008;
Rivas and Eddy 1999). For the pseudoknot motif (Giedroc and Cornish 2009; Theimer et al.
2005), which involves base pairs between distant loops in a sequence with intervening
helical stems, the computational formulation leads to an NP-complete problem. Comparative
sequence analysis has the potential for identifying probable secondary structures from
sequence conservation and compensatory mutations that maintain base pairing (Gutell et al.
2002). However, the number of sequences required for comparison is proportional to
sequence length, and the influence of variable tertiary and quaternary interactions on
sequence conservation across species is largely unknown or ignored. Nevertheless, RNA
secondary structure plays an important role in dictating the resultant tertiary fold, and its
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accurate determination serves as an important first step in using NMR to determine the
three-dimensional structures of RNA molecules.

A key initial step in the analysis of RNA NMR data entails the labeling of atoms with
resonance frequencies obtained from the NMR experiment—the so-called resonance
assignment step. Whereas computational methods for the prediction of RNA secondary
structure from primary structure have advanced considerably, similar methods for
automating the interpretation of NMR data to obtain resonance assignments, confirm
secondary structure predictions, and derive tertiary structure restraints in a robust manner
have yet to be developed (Fig. 1a). Current methods for the assignment of NMR resonances
of RNA rely almost exclusively on the manual, time-intensive interpretation of through-
space (<6 A) nuclear Overhauser enhancement spectroscopy (NOESY) experiments, which
result in ambiguous connectivity information. The more straightforward triple resonance
experiments employed in the assignment of protein backbone resonances (Eghbalnia et al.
2005a; Glntert 2009; Stratmann et al. 2010) cannot be relied upon for RNA due to its very
different chemistry—for example, intrinsically small scalar couplings across the
phosphodiester bond. Additionally, RNA molecules do not offer the NMR chemical shift
dispersion found in proteins.

We present here a method for the automated assignment of RNA imino resonances with
synchronized verification and correction of predicted secondary structure. The approach,
named RNA-PAIRS (RNA Probabilistic Assignment of Imino Resonance Shifts), uses
predictive information about RNA secondary structure to compensate for potentially
incorrect base pairings that can bias the interpretation of data. The resulting secondary
structure constraints serve as anchor points for the automated probabilistic assignment of
RNA NMR spectra. Through the analysis of experimental data, we demonstrate that a priori
predictions of secondary structure are sufficient for accurate resonance assignments and
secondary structure modeling with simple RNA structures. RNA-PAIRS, which is freely
available from a web server, offers a robust first step toward automating the current time-
intensive and potentially error-prone manual approaches to imino proton assignments and
secondary structure determination. Our discussion addresses challenges that remain to be
addressed in future refinements and extensions to our algorithm.

Overall approach

The assignment of imino proton signals and the experimental determination of secondary
structure are fundamental to RNA structural studies by NMR (Fig. 1a—box 1). Our strategy,
which is guided by experience in the field of RNA NMR spectroscopy, achieves robustness
by combining specific knowledge regarding structure—function relationships of RNA
chemical shifts and their connectivities with knowledge about structural motifs. For
example, when reliable a priori information about secondary structure is available, RNA
resonance assignments can be guided by through-space sequential “walks” that connect

2D 1H-1H NOESY crosspeaks. The imino protons (H1 of guanosine, H3 of uridine) are
centrally located in the canonical (Watson—Crick) base pairs of RNA (GC and AU), as well
as in the common GU or UU wobble pairs. Hydrogen bonding prevents the imino protons
from rapidly exchanging with solvent, and results in a shift to higher frequency of 10-15
ppm. Observation of a NOESY cros-speak between two imino resonances involved in
Watson—Crick base pairs indicates a stacking between the two base pairs (Fig. 1b). A
crosspeak “walk” among series of adjacent base pairs provides evidence for the secondary
structure. Fortuitously, imino proton signals are well separated (at higher frequency) from
those of other atom types in RNA. In addition, the H1 and H3 proton signals from GC and
AU base pairs fall in partially separated regions (Fig. 1b), and the imino resonances from
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GU or UU wabble base pairs are distinguishable by the presence of an unusually intense
NOE crosspeak arising from the close juxtaposition (<2 A) of imino protons from these
residues. Residue types can be corroborated by the characteristic resonance dispersion of
imino nitrogens, as observed in 2D H-15N heteronuclear multiple quantum coherence
(HMQC) experiments. Finally, the 2D HNN-COSY experiment directly correlates the NMR
signals from nitrogen atoms involved in base pair hydrogen bonding.

The RNA-PAIRS algorithm starts with an initial secondary structure model. This model can
be determined by RNA-PAIRS software, which generates it by an adaptation of free energy
minimization algorithms (Xia et al. 1998), or the user can bypass this step and supply a
secondary structure model as an input. Next, RNA-PAIRS derives probabilistic assignments
of imino proton NMR signals based on the latest available secondary structure prediction
and the NMR spectra peak lists. The probabilistic resonance assignments derived from this
step are then used to update the probabilities for the current secondary structure. The
algorithm proceeds to a subsequent round of deriving probabilistic assignments from the
newly estimated secondary structure. The iteration continues until convergence is achieved
to a final consistent set of probabilistic imino assignments and RNA secondary structure

(Fig. 2).

Initial secondary structure prediction estimate from sequence

RNA secondary structure prediction is a mature field and several tools are available (Zuker
2003; Hofacker 2003; Gruber et al. 2008; Andronescu et al. 2003; Knudsen and Hein 2003;
Sato et al. 2009; Ying et al. 2004; Clote 2005). In RNA-PAIRS, because the ultimate
prediction of secondary structure is strongly influenced by experimental data, our aim in
establishing an initial secondary structure prediction is to obtain a broad range of possible
secondary structures as “starting points”. The starting secondary structure pool for the
algorithm has to satisfy the competing goals of: (a) lowering the likelihood of missing a
potential pairing, and (b) not producing an unwieldy and unreliable pool of secondary
structures. To achieve these goals, we build on existing approaches by incorporating two
observations that motivate our construction. It has been recently demonstrated that the
structural effect of certain localized mutations in RNA can be well represented by a power-
law distribution that is sharply centered at a specific secondary structure state (Stich et al.
2010). Earlier work has shown that, among RNAs with the same length and compositional
frequency, the native sequence is the more stable form (Le et al. 1990). More colloquially,
RNA sequences change during evolution, but RNA structures, including RNA secondary
structures, are generally conserved strongly (power-law distribution) in order to preserve
function. We use these observations to test the stability of the predicted secondary structure
by artificially introducing specific mutations in the sequence and re-predicting the secondary
structure of the mutated sequence. The impact of mutations on the predicted secondary
structure is used to assign probabilities (scores) to indicate the stability of base pairs
potential diversity of base pairings.

In the minimum free energy landscape, base paired nucleotides provide a strong stabilizing
force in RNA secondary structure formation. We would envisage that sequence mutations in
regions sufficiently far from predicted base paired nucleotides are therefore less likely to
lead to secondary structure changes. However, if the (computational) energy landscape near
the predicted minimum is rugged, or mutations in loops cause large (destabilizing) energetic
changes, then changes to predicted secondary structure are likely to occur. By restricting our
computational mutations to the internal sections of larger loops (>2 nt away from base
paired nucleotides), the energetic impact of the latter condition is likely to be diminished
because larger loops (>5 nt) have near constant energy contributions of the order 6 kcal/
mole (Zuker; Hofacker); which for most typical loops does not increase significantly with
the length of the loop beyond 6 nt. Therefore, in a pool of randomly mutated sequences, a
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significant portion should yield relatively small energetic changes—small energy
perturbations. Recalculating the secondary structure in the “energy-perturbed” state can
provide insight into the (computational) energy landscape regarding stability of the
prediction results. Our implementation in RNA-PAIRS generates a large pool of random
mutations and uses the ensemble average as an initial estimate of probabilities for the first
stage of our algorithm. We use the nearest-neighbor thermodynamic model to predict the
minimum free-energy secondary structure of the given RNA sequence to “seed” the
population. Next, a population is generated by mutating internal segments of large loops (at
least two nucleotides away from location of predicted secondary structures) while retaining
compositional frequency. The resulting pool of secondary structures is weighted by the
Jaccard distance, and the resulting weighted connectivity matrix is reported as the
probability of pairing. Our experience in practice suggests that this approach generates a
sufficiently diverse pool of possible pairings.

Formally, given a nucleotide sequence s, we posit that the probability of entries in the
connectivity matrix A (a weighted adjacency matrix) is represented by:

P(A|S) o exp (ZWiAi(SaA)) 0]

where w;is the weight obtained from the Jaccard distance for the /th loop mutation
arrangement, A;is the secondary structure connectivity matrix predicted for the th mutation
rearrangement (described above) by using the thermodynamic model, and the exponential
function is applied to the individual entries of the matrix. For generation of random
derangements we use an algorithm that relies on the Mersenne Twister and Ziff’s GFSR4
algorithms, and for deterministic secondary structure prediction we use the RNAfold
algorithm (Matlab 2010).

Probabilistic assignment of imino-protons

We describe our approach in the context of the most typical setting where the assignment of
RNA NMR resonances relies on 2D HMQC (or HSQC) and 2D NOESY spectra. A required
initial stage in RNA-PAIRS is the automatic alignment of peak lists across spectra in two
distinct steps. In addition to mostly systematic shifts, we have observed that, compared to
proteins, RNA 1H chemical shifts are more prone to non-systematic shifts across NMR
experiments. RNA-PAIRS detects and adjusts a systematic shift across spectra (arising, for
example, from referencing problems) by applying a local gradient search algorithm to find
an approximate offset that yields the highest correlation between distinctly detectable peaks
across spectra. The cost function for optimal selection is the sum of the Euclidean distances
of the peaks with the constraint that a match is not allowed if the distance of the cluster and
the peak is higher than the maximum shift allowed (this value has been heuristically set to
0.1 ppm). Non-systematic shifts present an essential challenge considering that they may be
caused by experimental conditions, sample variations, or overlapped peaks in crowded
spectral regions.

The alignment and interpretation of peaks in RNA spectra and the presence of non-
systematic shifts requires a novel approach. Unlike 3D protein NMR spectra, where the N-H
chemical shift plane provides a convenient 2D basis for aligning shifts across experiments, a
basis for aligning RNA chemical shifts across 2D spectra is not easily available. RNA-
PAIRS addresses this challenge through the notion of correspondence—by allowing sets of
peaks to be related to each other. The idea is implemented by applying an adaptive k-means
clustering algorithm (Macqueen 1967) to all 1H resonances observed in NOESY spectra.
The clustering algorithm is followed next by the Hungarian bipartite matching algorithm
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(Kuhn 1955) in order to find the optimal pairing between NOESY peak clusters and 1°N-
HMQC peaks. The clustering approach is further integrated into the iterative process and is
dynamically updated as assignment probabilities evolve. Therefore, the number and
membership of clusters is a function of the number of °N-HMQC peaks, the number of
nucleotides in the RNA assembly, the number of base pairs determined in the last iteration
of the secondary structure algorithm, and the number of NOESY peaks in each cluster. In
order to maintain consistency, each cluster must contain a minimum number of peaks, and if
chemical shifts from NOESY clusters remain unmatched in the corresponding HMQC data,
a pseudo ®N-HMQC peaks with unknown nitrogen shift will be generated. If an HMQC
peak cannot be matched to peaks in a NOESY spectrum, the algorithm assumes the absence
of a hydrogen bond for the given peak.

To derive assignments, RNA-PAIRS applies a pseudo-energetic model that is derived in
analogy to Gibbs measures (Georgii 1988) in biophysics and statistical mechanics. In our
pseudo-energetic model, probabilistic variables are the assignment candidates (imino-proton
chemical shifts derived from 15SN-HMQC and NOESY spectra)—in analogy to particles in a
statistical mechanical model. The imino protons in the RNA sequence define the possible
assignment of variables—in analogy to particle states. The probability of each configuration
of assignments s is given by the Boltzmann distribution:

1
—_ _ﬁE: — _ﬁEs
ps—Ze Z= ES e

where g resembles the thermodynamic variable (determined empirically), and Zis the

partition function. Eg, the energy (cost) of microstate (assignment configuration) s, is the

sum of individual and interaction potentials:
Es{i]Ul-u(vi))+izju,-,-u(vi),A(v,-)) @

where A(v;) represents the state (assignment choices) of probabilistic variable v;, U;
represents the individual potentials, and Uj; pair-wise interaction potentials.

Individual potentials are derived from statistical analysis of chemical shifts. RNA chemical
shifts deposited in BMRB (Ulrich et al. 2008) have been utilized for the generation of
empirical probability distribution functions for each nucleotide in multiple base pairing
states. The assignment candidates are scored in accordance with the latest base pairing state
derived from the secondary structure. The same set of empirical distributions generated from
BMRB data also are used for the purpose of updating the predicted secondary structure for
the target RNA after the latest assignment probabilities in each iteration.

The versatility of interaction potentials makes them suitable for taking into account evidence
from NOESY crosspeaks, as well as evidence for conformational and assignment
constraints. For example, because multiple assignment candidates are unlikely to
simultaneously be associated to the same nucleotide, the interaction potential for such an
occurrence is set to a large value. In general, the intricate task of modeling the pseudo-
energy potential terms is guided carefully by the subtleties of RNA nucleotide interactions.
In our design, NOESY constraints are the most essential term in the assignment process.
Typically, the three dimensional structure of RNA dictates whether a NOESY crosspeak
should be observed or not. In the absence of tertiary structure, the probability of observing a
NOESY crosspeak can be estimated by considering the sequence and the secondary
structure of the RNA. A non-diagonal peak in the imino region of an NOE spectrum
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represents either adjacent nucleotides, base paired nucleotides, or adjacent based-paired
nucleotides. The last category corresponds to an NOE between nucleotides A and B, where
A is based-paired with a nucleotide adjacent to B. In considering a peak observed at (w1,
w?2), any configuration sthat assigns wl and w2 to adjacent, based-paired, or adjacent
based-paired nucleotides will be allocated a lower energy (higher probability) compared to
other configurations. The precise weights are adjusted according to a combination of the
latest secondary structure probability values and probability estimates for observing NOE
peaks in various base pairing configurations.

Assignment of NOE peaks in RNA often faces the challenge of spectral overlap. The
presence of regular structures, such as an A-form helix, increases the likelihood of overlap
by more intense neighboring crosspeaks that may hinder detection of a crosspeak between
two resonances. Therefore, we carefully account for the interaction of terms involving
constraints on the regular structure and NOESY crosspeaks. Intense NOESY diagonal peaks
can also readily obscure crosspeaks between resonances with similar chemical shifts,
obfuscating an otherwise detectable spatial proximity from analysis. This condition is
addressed by using a neighborhood clustering approach to relate common crosspeaks
between resonances (see (Palla et al. 2005) for a discussion of r-neighborhood clustering).
One valuable feature of this analysis is its ability to identify potentially missing crosspeaks
from comparison of other shared and unshared crosspeaks between two proton resonances.
In addition, this analysis enables us to heuristically relate the Euclidean distance between
base pairs with the empirical probability of observing NOESY crosspeak for various base
pair configurations. The result is a more accurate NOE potential term in (2).

An important characteristic of our probabilistic model is the flexibility gained by allowing
an ensemble of solutions. Rather than seeking a single deterministic solution, which would
necessitate the identification of the one configuration that minimizes the total energy, we
determine marginal probabilities for every probabilistic variable. We use current marginal
probabilities to condition the next iteration until stationary probabilities are achieved. The
model relies on the implementation of “belief propagation” algorithms that have been
studied in graphical models (Smyth 1997; Yedidia et al. 2005). Those algorithms can rapidly
derive the exact marginals when the underlying graph G(V;E) is a tree and has no loops. Vis
the set of vertices (assignment candidates) and £ is the set of edges where there is an edge
between every pair of assignment candidates with a pair-wise potential. For loopy graphs, as
in our model, the convergence of marginals is not guaranteed (Tatikonda 2002), and the
convergence depends on the complexity of the graph and the consistency of the potentials,
which is normally governed by the quality of data.

Update probabilities for secondary structure based on Imino-proton assignments

Free energy minimizations based on thermodynamic ideas, and more generally probabilistic
approaches, have proven to be effective in predicting secondary structures of RNA from
primary sequence (Doshi et al. 2004; Juan and Wilson 1999; Mathews 2004; Mathews et al.
2004; Mathews et al. 1999). This step provides a key extension to our probabilistic paradigm
by adding competing and counterbalancing “pseudo energy” terms to represent the evidence
obtained from NMR data. An additional term, as well as reevaluation of interaction rules
defined earlier (2), restates the energy (cost) of microstate (base pairing configuration) sas
follows:

Ey=) Uitypiy+ ) Ui e+ ) Uik ye)). von)
1 i,j

ik
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The probabilistic variable p, represents nucleotide 7 and »(p,) represents its base pair choice.
The allowed base pairs in the initial phase of RNA-PAIRS consist of the most common base
pairs A-U, G-C, G-U, A-G, and U-U (Nagaswamy et al. 2002). Evidence provided by
experimental data in other stages of RNA-PAIRS allows for the expansion of the “allowed
list to less common base pairs, for example G-G base pairs”. Base pair candidates consist of
these nucleotide pairings, plus the X-N, where N designates an additional choice for any
nucleotide X as being “not base paired”. The energy terms in RNA-PAIRS can be
conceptually classified into five categories:

a. Thermodynamic and free energy potentials: these potentials have been estimated
from thermodynamic parameters and nearest-neighbor model analysis for RNA
structure determination (Xia et al. 1998). The estimates have been implemented in
the form of pairwise potential terms.

b. NMR chemical shift evidence: imino proton and nitrogen chemical shifts exhibit
different patterns depending on the base pairing status of the nucleotide. As
mentioned earlier we have generated empirical probability distribution functions
for each nucleotide in multiple base pairing states. Given the latest status of
chemical shift assignment and by applying the Bayes rule, RNA-PAIRS derives the
probability of each base pairing state and converts it to first-order potential terms in
(3) by utilizing the Boltzmann distribution.

c. NOE evidence: non-diagonal NOE peaks are evidence of adjacent, base paired, or
adjacent base paired nucleotides. This form of NMR evidence has been added to
our energy model as pairwise pseudo-energy potentials. Given the latest
probabilistic assignment of NOE peaks, the base paired and neighboring base
paired candidates are separated, and their potential terms are added accordingly.
These potentials were derived from our study of the frequency of observation of
NOE peaks for various base pairing configurations.

d. Secondary structure constraints: these terms in the energy function are designed to
make certain configurations significantly less likely. Examples of these
configurations include a stem loop that has less than three base pairs, or “twisted”
base pairing, where (4, j) is one base pair index, (&; 1) is another base pair index, and
we have the additional conditions: /> &, |1 < j, |i—= K <4, || = j| < 4. A further
constraint is to exclude any configuration in which a nucleotide /chooses
nucleotide jas its base pair nucleotide while jchooses a nucleotide other than /.
The implementation of constraints takes the form of pairwise as well as triplet-wise
potentials with “infinite” energy for any “excluded” configuration.

e. Initial secondary structure prediction: any initial secondary structure prediction
provided by the user (optional) is converted to pseudo-energy first order potentials
according to the Boltzmann distribution model.

Key computational extensions to promote robust convergence

The computational inference network for RNA-PAIRS utilizes key extensions that are
unique to our model. Examination of (2) and (3) reveals that the reverberation steps use
asymmetric weights. The novel asymmetric approach enables stronger influence of
experimental data, while allowing for strong accumulated derived evidence to be dominant
when necessary. Unique to our computational approach is the addition of a combinatorial
marginal evaluation step. Ordinarily, in order to derive the marginals, RNA-PAIRS uses a
multistep iterative approach that utilizes dynamic graph topology, energy rescaling at each
iteration step, and a variation of the basic belief propagation algorithm (Huang and
Darwiche 1996). After each iteration step involving secondary structure determination and
the assignment process, some probabilistic variables and their marginals may reach an
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effective “fixed state”—one in which the predicted probabilities change only within a small
threshold. This “fixed state” is intuitively interpreted to mean that these variables have
reached a state of reduced complexity and that the system is one step closer to the “ground
state”—representing a fully consistent outcome. In the case of RNA assignments, the
absence of sharp pseudo-energy differences that can separate assignment configurations
causes the belief propagation algorithm to show non-convergent behavior in certain
instances. This behavior can be detected by running the iteration a few cycles past the
algorithmic stationary state and checking for a drift or switch in probability values. At the
same time, running the iteration longer pinpoints the areas of probability drift or instability.
The use of dynamic topology in the course of the first iteration round is not sufficient to
address this impediment because the appearance of non-convergence is likely to become
prominent after topology has stabilized. To address this challenge, we consider additional
modifications to the topology based on a posteriori results. Since we are able to detect
unstable assignment regions, we select sufficiently large portions of non-convergence
regions (while remaining within computationally tractable bounds), and perform
combinatorial computation. In contrast to belief propagation, which is an approximation and
is not guaranteed to converge, our combinatorial approach is exact. Subsequently, after
performing exact computation, we eliminate conditional dependencies with “near zero”
probability values from the full graph by removing the corresponding edges—thereby
modifying the topology of the graph based on exact local computations. Our results show
that the topological modifications provide excellent improvements in accuracy and
convergence, and are therefore key to the successful assignment results.

Validation of RNA-PAIRS

Several sources of RNA NMR data were utilized (Table 1) in the development and
validation of the RNA-PAIRS algorithm. We had access to experimental NMR data sets
from three previously published RNA structures (Table 1A). We also obtained data sets
from several current projects at the National Magnetic Resonance Facility at Madison (Table
1B), allowing for the unique opportunity to interact with researchers intimately familiar with
these RNAs. An additional 20 data sets were derived by using PDB and BMRB data sources
(Table 1C). One subset of the additional data combined information in the PDB files
(structure data) with BMRB data (assigned chemical shifts) to reconstruct peak lists (Table
1C—noted “R”) (21). In our peaklist reconstructions, NOESY crosspeaks were predicted for
inter-proton distance measurements of <5.5 A, and HMQC crosspeaks predicted for imino
protons involved in base pairing. A second subset was obtained by simulating peak lists
from PDB coordinates in the absence of assigned chemical shifts (Table 1C—noted “S”).
For this subset, proton and nitrogen chemical shift predictions were made based on
statistical distributions available from the BMRB (21) and heuristic effects from base
pairing and neighboring residue identity (Cromsigt et al. 2001; Firtig et al. 2003). The latter
subset enabled us to test several larger RNAs, or more complex structural motifs that would
have otherwise been unavailable. For all reconstructed peaklists, spurious peaks were added,
random chemical shift variability was introduced, and random peaks were removed in order
to approximate errors observed in real data. Assignments and secondary structure
predictions were evaluated against known results, whenever available, or crosschecked
against human expert assignments. All final results were corroborated with spectra, when
available.

The final test data set comprised 26 peaklist pairs (NOESY and HMQC) for RNASs ranging
in size from 14 to 111 residues. The motifs represented included A-form helices,
pseudoknots, hairpin-, bulge- and internal-loops, metal binding sites, and many different
examples of base pairing and stacking. Also represented were large, multi-domain structures
such as 1S9S (D’Souza et al. 2004) and BMRB 1D 17961. Test data sets were submitted to
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the web server (http://pine.nmrfam.wisc.edu/RNA/). Imino resonance assignment
probability and secondary structure results were returned via e-mail. Assignment
probabilities were crosschecked against original manual assignments and, whenever
possible, corroborated with real spectra.

The performance of RNA-PAIRS for the imino proton assignment and secondary structure
determination for the case of six experimental RNA data sets and thirteen data sets
reconstructed from experimentally determined chemical shifts are summarized in Table 2.
Additionally, visual presentation of the results for experimental data sets has been presented
in the Supplementary Information (Figure S1). The seven simulated data sets from predicted
chemical shifts are presented separately in Table 3. An advantage of the probabilistic
assignment in RNA-PAIRS is the additional reporting of possible alternative assignments in
addition to reporting the assignment results based on the choice with maximum probability.
We also report the assignment accuracy when only the top three reported candidate
assignments are considered. For moderately sized RNA molecules (i.e., <40 nucleotides),
the percentage of correct assignments is typically high—as is the number of correct base
pairing predictions. Aside from the size of the RNA or number of imino protons considered,
resonance overlap in the peak lists contributed to degeneracy among potential assignment
probabilities, thereby hindering unique assignments. RNA-PAIRS’s ability to select multiple
assignments and score them in the output report is advantageous because a correct unique
assignment in the absence of additional data is likely to be unattainable in this case.

The results obtained for real data sets were in good agreement with those from simulated
data sets (compare Tables 2A, B with Tables 2C, 3), with a few notable exceptions. Close
inspection of NOESY spectra from 2JTP and BMRB ID 17921 revealed two imino
resonances in each that could reasonably be assigned to alternate connectivities. Our
simulated data sets did not incorporate a scenario that generated ambiguous resonances, but
the observation suggests that RNA-PAIRS properly addressed an equivocal assignment.
This supposition is supported by the increased accuracy of similar RNA data sets from
simulation. The unusual imino chemical shifts in the 2QH2, 2L.5Z and 2L.3E data sets (Table
2C), despite being outside the chemical shift distributions considered by our algorithm, were
ultimately assigned with 100% accuracy because of our focus on connectivity networks
rather than chemical shifts. The lack of outlier chemical shifts for the subset of simulated
data sets shown in Table 3, for which chemical shifts were predicted from the same
distributions used by our algorithm, promoted higher accuracies for comparable RNAs.
However, Table 3 makes apparent the limits of the current form of our algorithm in relation
to the number of residues in the RNA, a trend seen across all data sets.

The incorporation of the results from our peak list clustering analysis provided additional
evidence for the determination of assignment pseudo-energies, resulting in fewer
ambiguities and larger assignment probabilities for most data sets. For one data set in
particular, 2KFO0 (Table 2A), the assignment probabilities of two imino protons with similar
chemical shifts, on physically adjacent residues, were dramatically improved. Further
analysis revealed that the prediction (with high likelihood) of a missing crosspeak
(overlapped by intense diagonal peaks) between the two imino protons was a key source for
the improvement. For another real data set, BMRB ID 17961 (Table 2B), one of our most
challenging given its size and complexity, inclusion of peak list clustering improved
accuracies for “Best Choice” from 13 to 35%, and “Top Three Choices” from 13 to 61%.
Moreover, the time required to complete the assignment algorithm with clustering was
reduced by more than 75%; indicating less ambiguity was introduced into the probabilistic
engine.
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The percentage of correctly predicted base pairs in the secondary structure does not show
discernable correlations with either the size of the molecule or number of observed imino
protons. Secondary structure prediction accuracies were largely unaffected by false input
secondary structures. In the case of RNAs 2KF0 and 1XHP, for which the assignment
percentage exceeded the correct base pair percentage, AC wobble pairs played a key role.
The absence of imino proton involvement in these base pairs left RNA-PAIRS with little
useful experimental evidence for corroborating or adjusting base pairing predictions—a
consistent and expected behavior. The presence of uncommon base pairs in the hairpin loops
of RNAs 2KOC and 1PJY may explain why the chemical shifts did not provide strong
corroboration for “base pairing”. Overall, the observations indicate that RNA-PAIRS can
successfully validate and correct secondary structure in a manner that is consistent with
input NMR peaklists.

The most favorable results were obtained for RNAs with a single hairpin secondary structure
(Table 1). The largest hairpin, 1P50, showed modest assignment accuracy, despite
containing multiple internal bulges and loops. Two structures that involved multiple hairpins
folding within the same RNA strand, 1S9S and BMR17961, were less accurately assigned.
The larger size of these RNA molecules and the potential of additional resonance overlap is
partly responsible for lowered accuracies, but our analysis indicates that the competing folds
generated from the initial prediction of secondary structure also play an important role.

We evaluated the assignment of pseudoknot structures by including three data sets, 1Y G4,
1YMO, and 2L1V. The abundance of canonical base pairings and stacking in the 2L1V
pseudoknot structure provided for good accuracy in assignment—albeit with lower
secondary structure confidence. The results obtained for 1YG4 and 1YMO showed low
assignment accuracy, with correct assignments coming mostly from helical regions
involving Watson—Crick pairings. Detailed knowledge about pairing in pseudoknots
improves the results, suggesting that the current form of the secondary structure prediction
algorithm in RNA-PAIRS must be improved further to account for non-helical tertiary
interactions and for more than one pairing interaction for each residue.

The completion time for the RNA-PAIRS automated assignment algorithm ranges from
seconds to minutes (Tables 2, 3). These timings were obtained when running the algorithm
on a Dell Optiplex 755 desktop computer with an Intel Core2 Duo processor running at 2.33
GHz, and 4 GB of RAM memory. Faster completion times were achieved when data sets
were submitted to our multi-processor web-server, although variable rates of Internet traffic
and e-mail server updates accounted the majority of total time between submission and
return of results. Nonetheless, these times represent a reduction in the hours or days
currently required for RNA imino proton resonance assignment.

RNA-PAIRS is available for public use through a fully automated web-server at http://
pine.nmrfam.wisc.edu/RNA/. The server accepts *H, 1°N-HMQC (or HSQC) and NOESY
peak lists and the sequence of the RNA, and provides the complete probabilistic assignment
of imino protons and the secondary structure of the RNA in a process that normally takes
less than a minute. The server is fully automated, and no manual intervention or parameter
setting is required.

Discussion

Protein structure determination by NMR has benefited from a variety of automated software
tools (Shen et al. 2009; Shen and Bax 2010; Berjanskii et al. 2009; Bahrami et al. 2009;
Eghbalnia et al. 2005h), but robust NMR chemical shift assignment tools have yet to be
developed for RNA. We have implemented a method, as yet unknown in the literature, for
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the automated assignment of RNA imino protons and validation of secondary structure from
NMR data sets. RNA-PAIRS has been successfully deployed as a web-based computational
platform available for public use. Ideally, it is valuable to validate results on as large of a
data set as possible since additional data sets will help refine our pseudo-energy model and
NOESY cluster analysis. Future submissions to the already active web-server and
subsequent user feedback will provide an excellent source to guide the refinement of our
algorithms, the improvement of prediction accuracies, and our planned extensions.

We broadened our understanding of the precise role of experimental observations and
chemical shift dispersion in RNA data sets, by performing controlled tests through the use of
simulated NOESY and HMQC peaklists from RNA structures deposited in the PDB. Given
the dearth of RNA NMR data in repositories such as the BMRB, this approach proved useful
in allowing us to consider larger RNAs and more structural motifs. Several relatively small,
simple hairpins were also simulated for better comparison with experimental data sets. In
our simulations we noted that NOE connectivity plays a dominant role for RNA resonance
assignments—unlike in proteins where the precise chemical shifts of nuclei play a more
important role in backbone assignments. Comparison of the similar results for the real and
simulated data sets from experimentally determined chemical shifts (Table 2A, B vs. C,
respectively) validated our premise regarding the importance of NOE connectivity data. The
lower performance observed in cases of poorly predicted secondary structure further
confirmed the usefulness of our strategy of initiating assignments with a priori predictions of
secondary structure. Simulation of data sets also has allowed us to identify several unique
motifs with unusual chemical shifts that can be profiled and incorporated into future
versions of our method.

Our novel attempt at NOESY peaklist clustering analysis has, as described, led to
considerable improvements in our automated assignment algorithm. Given that this analysis
is based upon heuristic rules derived from knowledge of RNA structure and our validation
data sets, it is expected that our algorithm will be refined and further improved with more
data sets submitted to our web server from the RNA structure community. Beyond this, our
clustering analysis has yielded more subtle insights into data structure networks that have
the potential to refine methods for protein automated assignment and biomolecular structure
calculation/validation, and are currently being investigated.

With RNA-PAIRS we plan to solicit and build an expanded library of real data sets in order
to help develop specific enhancements and to guide future developments in the field.
Specifically, we foresee including the ability to recognize (possibly predict) an expanded
array of non-Watson—Crick base pairs (including G-G) and their geometries, tertiary base
pairing, such as in pseudoknots, Kissing loops and dimers, and to include the ability to parse
data from multiple RNA chains. The incorporation of a secondary structure partition
function should enhance our method with the ability to consider and identify alternative
conformations supported by competing NOESY connectivities. With additional NMR
experimental data, for example, from submissions to our web services, we expect to
establish a better knowledgebase for hydrogen bonding patterns of non-W-C pairs.
Moreover, the HNN-COSY experiment can be incorporated in order to provides the nitrogen
chemical shifts of the imino hydrogen-bond accepting residues. This can be used to identify
the paired residues according to known nitrogen chemical shift distributions. Residual
dipolar coupling (RDC) values for imino proton-nitrogen pairs have been shown to follow a
periodic trend in A-form helices (Walsh and Wang, J Mag Reson 2005, 152-162), and could
be incorporated into our algorithm as additional sequential, pairing and structural evidence.
While additional data sets provide richer information, it is useful to allow the 1H-15N
HMQC peak list, and other heteronuclear experiments, to be optional inputs in order to
retain flexibility—for example, to avoid the cost of synthesis for isotopically labeled RNA.
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RNA-PAIRS is a first step in our broader effort to automate the full assignment and
structure determination of RNA molecules by NMR. As complements of new algorithms
and methods are implemented, we expect to see additional reductions in the disparity
between automated assignment methods for proteins and RNA. The imino atom assignments
and corroborated secondary structure obtained from RNA-PAIRS analysis are a primary
requisite for further interpretation of NMR data for helical and non-helical regions alike.
Our planned enhancements to RNA-PAIRS, along with additional steps incorporating non-
exchangeable NMR data sets, are expected to improve and expedite the process of RNA
assignment and structure determination.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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a Standard steps for solving RNA structures using NMR. The process can be conceptually

divided into three main steps: Z imino proton assignments and secondary structure

validation, 2 full resonance assignment and restraint list construction, 3structure calculation.

The vast majority of work in these steps requires manual intervention—although some

automation support is available for structure calculation and refinement. Circular arrows
indicate some of the possible steps for iterative refinement while the dofted arrow suggests
the potential need for construct modifications. Imino regions of 2D NOESY and HMQC
NMR spectra are often highly informative for step Z. b Two types of NMR spectra
containing information relevant for assigning NMR signals for imino protons and nitrogens
in an RNA molecule (BMRB ID 17921)

J Biomol NMR. Author manuscript; available in PMC 2012 October 24.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Bahrami et al.

{ UserInput Peak list |

DTS
NOESY

Clustering

1H-1H 2D
NOESY

\ Analysis

RNA-PAIRS Network

Psuedo-Energetic

Network for

i t
{1H-15N 2D

Peak Alignment

and Clustering

HMQC

RNA
Sequence [+
L ]

Optional User Input

Base Pairings
Provided by the

Resonance
Distributions
Derived from
BMRB

Initial Secondary
Structure

Prediction

Assignment

Structure

Latest
Resonance
Assignment!
of Iminos

Psuedo-Energetic
Network for

User

Fig. 2.

Design of RNA-PAIRS network is presented in block form. Blocks with heavier dark

Secondary Structure

outlines represent the more complex portions of the algorithm—both in terms of
computational complexity as well as algorithm design. The box for “user input” identifies
the current peak list input for the software, which will be extended to include other
experimental data. The direction of the arrows identifies the “flow of logic” in the software.
The rightmost box (that intersects “curved” arrows) is the portion of the software where

probabilities are updated using the “back and forth” (reverberating) iteration
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