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Abstract
A detailed understanding of factors influencing the binding specificity of a ligand to a set of
desirable targets and undesirable decoys is a key step in the design of potent and selective
therapeutics. We have developed a general method for optimizing binding specificity in ligand–
receptor complexes based on the theory of electrostatic charge optimization. This methodology
can be used to tune the binding of a ligand to a panel of potential targets and decoys, along the
continuum from narrow binding to only one partner to broad binding to the entire panel. Using
HIV-1 protease as a model system, we probe specificity in three distinct ways. First, we probe
interactions that could make the promiscuous protease inhibitor pepstatin more selective toward
HIV-1 protease. Next, we study clinically approved HIV-1 protease inhibitors and probe ways to
broaden the binding profiles toward both wild-type HIV-1 protease and drug-resistant mutants.
Finally, we study a conformational ensemble of wild-type HIV-1 protease to “design in” broad
specificity to known drugs before resistance mutations arise. The results from this conformational
ensemble were similar to those from the drug-resistant ensemble, suggesting the use of a
conformational wild-type ensemble as a tool to develop escape-mutant resistant inhibitors.
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Introduction
With the wealth of information arising from genome science and systems biology, it is
becoming increasingly clear that the environment in which biological targets exist is
complex and filled with a diversity of molecules, each with the potential to make multiple
competing interactions with other molecules in the system [1, 2, 3]. An understanding of
how chemical and physical principles guide molecules to interact narrowly (selectively) with
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a single target, or broadly (promiscuously) with a set of binding partners is fundamental to
our basic knowledge of biochemistry. Moreover, for the practical purpose of developing
pharmacological agents to function in complex biological environments, the advancement of
methodology that can properly account for and “design in” desired narrow and broad
binding specificity is crucial.

The preferential binding of a ligand to a single target molecule relative to a set of
undesirable decoys we term narrow specificity. A common motivation to pursue narrow
specificity in drug development is to avoid side-effect inducing interactions with undesired
partners. For example, targeting proteins in the kinase family has been a long sought-after
goal in drug design because these enzymes play key roles in the regulation of biochemical
pathways [4]. However, behavior resulting from kinase inhibition can be unpredictable and
can cause multiple undesirable side effects due to cross-reactivity with other kinases having
similar binding sites, given that they all bind ATP for their biological activity [5].

In addition to the ability to design highly selective molecules, there are a number of
biological applications in which the development of broad-specificity ligands is the goal. For
example, in combating the evolution of drug-resistant mutations, it may be desirable to
create a molecule that binds tightly to the wild-type target and to escape mutants, thereby
creating a “wall of defense” around the target [6]. Drug resistant targets are becoming more
prevalent with increased therapeutic administration and can now be found in many strains of
bacteria [7], viruses [8, 9, 10], and cancer cells [11, 12], which makes the design of broad
specificity inhibitors an attractive area of research. Another example of the need to design
for broad specificity is when targeting a redundant biological network. In many cases the
inhibition of a single target is not sufficient to achieve a desired outcome due to multiple
pathways that a given reaction may follow [13, 14]. Finally, broad specificity could be used
to bind an ensemble of states of a receptor, such as when the target exists in various
phosphorylation states or different local pH environments [6, 15, 16]. While broad
specificity could be achieved with multiple therapeutic agents, it might be advantageous to
use a single inhibitor for a variety of physiological and practical reasons.

A number of computational approaches have been used to address specificity. For narrow
specificity, negative design is often used, which involves explicit consideration of undesired
decoy partners. For example, Sarkar et al. developed variants of granulocyte colony
stimulation factor (GCSF) with a narrowed pH dependent binding to a receptor, which led to
altered trafficking behavior [17]. To address broad specificity, efforts have been made to
perform multiple sequential computations on a set of targets (i.e., serial docking) to detect
ligands that bind well across the target ensemble [18, 19]. One could also address narrow
specificity with a similar protocol, looking only for molecules that bind tightly to the desired
targets and not to the decoys. Beyond small molecule studies, similar specificity
considerations have been addressed in protein design, which have resulted in some success
[20, 21].

In this work we adopt the specificity framework developed by Kangas and Tidor [22] that is
an extension of the electrostatic charge optimization methodology described previously [23,
24, 25]. Electrostatic charge optimization has been applied successfully in the analysis and
design of a number of systems, including protein–ligand [26, 27], protein–protein [28], and
antibody–antigen [29] binding complexes. The specificity objective function used for
optimization of a ligand to a given panel of binding targets and decoys is defined by:

(1)
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Where Sp is the specificity of a ligand (l) for a panel of desirable targets (T) consisting of
classes (C) with one or more targets (t) in each class. Individual decoy structures (d) are
contained within the set of all decoys (D). ΔGo(x;l)is the binding free energy for the
complex between ligand (l) and receptor (x), with x being either a target (t) or decoy (d).

ΔG can be formulated as an expression with the ligand partial atomic charges as variables so
that the value of Sp can be optimized with respect to the ligand charges (see Methods for
more detail). Equation 1 is particularly useful because it represents a single equation that can
be used to optimize either broad or narrow specificity given an arbitrary set of desired
targets and undesired decoys. To achieve narrow specificity, the function maximizes the free
energy gap between the target class with the least favorable binding free energy and the
decoy with the most favorable binding free energy. For broad specificity in the case of no
decoys, we minimize the binding free energy to the “worst-of-best target” (the energy of the
worst target class, where the energy of a class is defined by the tightest binding member of
the class). When multiple targets and decoys are included simultaneously in the
optimization, the objective function is a balance between the desired broad specificity to the
targets of interest versus the desired narrow specificity against the decoys.

In this work, we have chosen the protease of HIV-1 as a model system to study both narrow
and broad binding specificity. Protease activity is required for the maturation of budding
virions into infectious HIV particles, and inhibition can lead to a less potent virus [30].
Structure-based design efforts have been successful in developing inhibitors of HIV protease
[31], yet the currently approved inhibitors each have drawbacks, including negative side
effects that can be attributed in part to the fact that most aspartyl proteases have similar
active sites due to their common requirement to bind peptide substrates [32]. In fact, early
leads for HIV protease inhibitors were generated from existing aspartyl protease inhibitors,
such as pepstatin [33, 34, 35], suggesting that the promiscuous nature of early HIV-1
protease inhibitors may have been a result of the process by which they were discovered. On
the other hand, the highly variable replication process of the HIV virus has rendered current
clinical inhibitors susceptible to viral resistance [10, 36, 37], which would call for more
promiscuous inhibitors that could inhibit both the wild type and mutant forms of the enzyme
[38].

A number of computational strategies have been employed toward the inhibition of both
wild-type and escape mutant HIV-1 proteases, including molecular dynamics [39, 40, 41],
docking [42], and analysis of free energy contributions from active site residues [43]. In this
work we use the specificity optimization methodology to identify interactions that can
contribute to altered specificity. In addition to probing ligand atoms and their interactions,
we also assess the extent to which specificity-optimized charges can be mimicked with
chemical substitutions to evaluate whether electrostatic optimization may be a good
“handle” by which binding specificity can be affected. This final step is particularly
important because any chemical substitution will alter non-electrostatic contributions to
binding such as van der Waals and internal energies in addition to the electrostatics. The
results show that electrostatic specificity optimization may be a useful tool to guide the
design of inhibitors with improved specificity profiles.

Results and Discussion
The focus of this paper is to examine the function that electrostatic interactions can play in
modulating binding specificity. Three distinct specificity scenarios are analyzed. First,
narrow specificity is explored with the promiscuous aspartyl protease inhibitor pepstatin in
complex with HIV-1 protease, pepsin, and cathepsin D. Second, a panel of unselected
(“wild-type”) and drug-resistant HIV-1 proteases is examined using clinically approved
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protease inhibitors in an attempt to identify ways of broadening the specificity of these
molecules by optimizing interactions with both wild-type and mutant HIV-1 proteases.
Finally, a panel consisting of wild-type HIV-1 protease structures in multiple conformations
is studied using the HIV-1 protease inhibitor TMC-114 (darunavir) in order to evaluate the
effects of structural fluctuations of the binding site on ligand binding specificity.

Narrowing Specificity of Pepstatin Interacting with Three Aspartyl
Proteases

Here we analyze the broad-spectrum aspartyl protease inhibitor pepstatin binding to HIV-1
protease and two other aspartyl proteases, human pepsin and human cathepsin D. The goal is
to understand better how pepstatin achieves broad specificity to the proteases and to use it as
a probe to study mechanisms for narrowing binding specificity. Aspartyl proteases share
several common structural features, which have been described in detail in other works [32,
44]. Pepsin and cathepsin D have high sequence similarity and correspondence between
active site residues [44]. HIV-1 protease, however, is a homo-dimer that is significantly
smaller in size (198 residues per homo-dimer compared to 327 in pepsin and 342 in
cathepsin D) and has much more coverage of the active site by the flaps. Pepstatin inhibits
pepsin [45] and cathepsin D [46] in the picomolar range, while it is a weaker HIV-1 protease
inhibitor [47]. However, acetyl pepstatin, which truncates the three N-terminal carbons of
pepstatin, inhibits HIV-1 protease with a Ki of approximately 20 pM [48]. Figures 1, 2, and
3 show pictorial comparisons of the three aspartyl proteases in complex with pepstatin.

Optimization
Using Equation 1 with HIV-1 protease as the single target and two decoys (human pepsin
and human cathepsin D), the partial atomic charges of pepstatin were optimized to maximize
the narrow specificity toward HIV-1 protease. The resulting specificity-optimized partial
atomic charge distribution for pepstatin is shown in Figure 4. Most atoms in the optimized
charge distribution change by a relatively small amount (shown as green atoms), especially
along the pepstatin backbone. The N4 amide shows a significantly reduced dipole
magnitude. A number of the pepstatin methyl groups accumulate a negative charge. Some
hydrogen atoms accumulate a negative charge, such as those attached to C22. Finally, the
O7 hydroxyl shows a substantial decrease in the magnitude of both the oxygen and
hydrogen charges. Atom perturbations to mimic chemical functional groups were introduced
and the energies associated with these are shown in Table 1.

Analysis of optimized charges
The first group in Table 1 includes cases in which narrow specificity is gained through
stabilization of the target complex and destabilization of the decoy complexes. A negative
charge at the C4 carbon on the N-terminus of pepstatin lead to the largest potential gain in
electrostatic specificity (7.1 kcal/mol). In both pepsin and cathepsin D, the C4 group is in a
non-polar pocket where a charged group would pay a significant desolvation penalty upon
binding without having favorable interactions to compensate. In HIV-1 protease, C4 is near
positively charged residues (Arg8 and Lys45) that could interact favorably with the
proposed negative ligand charge. Interestingly, the carboxylate group on the pepstatin C-
terminus interacts with Lys45 on the opposite side of the 2-fold symmetric HIV-1 protease
active site, showing that a salt bridge interaction such as the one proposed here is plausible.

Other specificity-improving modifications can be supported by structural analysis. For
example, a reversed dipole associated with H22A enhances specificity by 0.6 kcal/mol.
H22A is oriented toward a hydrogen of the buried water molecule in HIV-1 protease. In
contrast, the pepsin and cathepsin D complexes position H22A in a non-polar pocket and
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therefore would incur a greater desolvation penalty with an increased dipole magnitude on
the perturbed C22–H22A dipole, while not having any polar residues on the receptor with
which to interact. The neutralization of the N4–HN4 dipole results in a computed specificity
gain of 1.1 kcal/mol through stabilization of HIV-1 protease by 0.2 kcal/mol and
destabilization of both pepsin and cathepsin D by approximately 0.9 kcal/mol. While the
hydrogen bond made by HN4 in both pepsin and cathepsin D is of a good length (2.0 Å), the
distance in the HIV-1 protease complex is not as good (2.4 Å). This is an interesting case
because the enhancement in binding affinity to HIV-1 protease comes by eliminating an
unfavorable hydrogen bond where the desolvation free energy outweighs the interaction
energy.

The O7 hydroxyl of pepstatin is an example where targets and decoys are both stabilized,
with the target being more stabilized. Neutralization leads to a 0.6 kcal/mol gain in
specificity. Further perturbation to reverse the dipole direction leads to an even larger gain in
specificity (2.3 kcal/mol). Again, this specificity gain can be understood through a detailed
structural analysis. In the HIV-1 protease structure, the pepstatin O7 hydroxyl hydrogen is
closer to the backbone N–H hydrogen for Gly48 than to the carbonyl oxygen of that same
residue (1.7 Å vs. 2.0 Å). In the natural peptide substrate, one would expect a carbonyl in
place of the pepstatin O7 hydroxyl to make a β-sheet interaction with the Gly48 N–H, as can
be seen in the complexes with peptide substrates bound to a crystal structure with a peptide
bound to an inactivated HIV protease [49]. In the pepsin and cathepsin D complexes there is
a lack of direct interactions with the O7 hydroxyl, as this region is more solvent-exposed
due to the less complete coverage of the active site by the flaps (see Figures 1, 2, and 3).

Finally, specificity can be gained as a result of destabilization to all enzymes, with more
destabilization of the decoys relative to the target. The most extreme cases of this involve
the introduction of a net charge at buried sites in the complex, which is unfavorable for all
complexes. Introduction of a negative charge at the methyl groups of C9, C10, C19, and C31
yields computed specificity gains of 14.2, 6.2, 8.2, and 10.3 kcal/mol, respectively. While
these changes produce large specificity gains, they may not be desirable in practice because
of the drop in affinity to the target. Only the C10 perturbation results in a reduction of
predicted Ki of less than 100-fold. More practical specificity enhancements can come from
changes to dipoles that produce smaller gains in specificity but also less loss in target
affinity. A C11–H11 dipole modification to a C–F-like charge distribution leads to a
computed enhancement in specificity of 1.0 kcal/mol. In this case all three enzymes incur an
unfavorable desolvation penalty; however, in cathepsin D and pepsin there are also
unfavorable interactions with the hydroxyl of Thr218 (cathepsin D) and Thr234 (pepsin) and
the backbone carbonyls of Gly217 (cathepsin D) and Gly233 (pepsin).

Chemical modifications
To assess the feasibility of finding chemical group substitutions whose overall electrostatic
and non-electrostatic effect improves narrow specificity, we built chemical changes and
evaluated them computationally (Table 2). This is important because any chemical change
involves alterations in the internal geometry of the ligand (bond lengths, angles, and
torsions) and non-bonded interactions (van der Waals interactions) in addition to the
electrostatics. Because one aim of this study is to conserve the shape of pepstatin in order to
minimize the non-electrostatic effects of the changes, some charge compromises were made
in the modifications. For example, whereas a negative charge at the C4 group would be
ideal, such a chemical group is not available. Instead, we chose to replace the C2 isopropyl
group with a carboxylate, thus conserving the number of heavy atoms and roughly the
geometry; however, this modification also adds negative charge around the C3 atoms, which
is not computed to be as favorable as compared to a negative charge at the C4 site alone.
Such compromises are often necessary when moving from a theoretical charge space to a
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specific instance realized with chemical functional groups. Chemical functional group
changes with improved computed specificity include an isopropyl to carboxylate (C2, C8,
and C18), a hydroxyl to methyl or carbonyl (O7), and C–H dipole reversals (H11F, H16F,
and H22F).

Determinants of pepstatin's broad binding specificity
To evaluate the electrostatic characteristics that promote promiscuous binding, we
performed two additional specificity optimizations with either pepsin or cathepsin D as the
target. In regions with similar electrostatic potential for all three receptors, there will be little
charge variation in any of the optimizations. On the other hand, in regions with different
potentials, the ligand atom charges will vary in at least one optimization. Looking for atoms
in which the charges change least across all three optimizations helps reveal sites
contributing to broad specificity. The highest concentration of atoms with relatively small
charge changes is on either side of the O4 hydroxyl, which interacts with the catalytic
aspartates (data not shown). This might be expected, given that proteases act on substrates
with a common polypeptide backbone and make similar interactions in this region. It also
validates the ability of this methodology to detect similarities in the electrostatic potential
and convey that information in an intuitive form.

Broadening Specificity of Therapeutic HIV Protease Inhibitors Toward
Binding Escape Mutants

Here we examine the potential for broadening the binding profile of several HIV-1 protease
inhibitors to a target panel containing wild-type HIV-1 protease and two drug-resistant
variants, V82A (1X) and I63P/V82T/I84V (3X) [50, 51, 52]. The set of ligands includes
amprenavir, indinavir, nelfinavir, ritonavir, and saquinavir, as well as the more recently
approved inhibitor tipranavir, which is less sensitive to these common mutations [53].
Experimentally, the 1X and 3X mutants reduce Ki values of the inhibitors in the range of 4-
to 160-fold [54, 55]. The values reported below are relative changes in specificity (ΔSp)
from this starting state and therefore do not depend on the absolute differences in binding
free energies.

Optimization
The specificity-optimized partial atomic charges for each of the six ligands are shown in
Figures 5 through 10. A majority of the optimized charges vary by only a small amount,
indicating that many parts of the inhibitors are well optimized for broad specificity within
the three-target ensemble. Tipranavir, which is the least susceptible to resistance from these
mutations, shows the least amount of computed gain in electrostatic specificity. As in the
pepstatin studies above, we first perturb the starting inhibitor charges with guidance from
the specificity optimization and then computationally make chemical functional group
modifications based on the top perturbations. Table 3 shows total specificity and binding
affinities to the three HIV-1 protease targets for each inhibitor with the top perturbations.
The changes range from dipole modifications with an enhanced specificity of almost 1.0
kcal/mol to changes in monopole that have more significant effects of over 2.0 kcal/mol.

Monopole perturbations
The charge optimizations consistently find the tuning of interactions with Arg8 and Lys45 as
a way to improve broad specificity. This can be accomplished from either end of the ligands
due to the 2-fold symmetry of HIV-1 protease. Four of the six ligands show broadened
computed specificity of this type (amprenavir and nelfinavir are exceptions). For example,
the H34 atom of indinavir is in close proximity to Arg8 (3–4 Å) and is mostly solvent
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exposed. This proximity is maintained across the entire target ensemble and thus introducing
a negative formal charge at this atom center leads to improved electrostatic interactions with
Arg8 while paying only a minor desolvation penalty upon binding. The result is a net
computed gain in specificity of 2.0 kcal/mol. The F42 and H37 atoms of tipranavir
accumulate significant negative charge through optimization. A negative formal charge
placed on H37 results in a 1.0 kcal/mol gain in specificity whereas F42 results in a gain of
0.2 kcal/mol. While F42 is located closer than H37 to Arg8, it is also significantly more
buried by the receptor and therefore pays a more substantial desolvation penalty upon
introduction of a formal charge. This again illustrates the subtle balance between interaction
and desolvation effects that is difficult to judge visually or with algorithms that do not take
solvation effects into account. Ritonavir and saquinavir show similar effects.

Dipole perturbations
The majority of large specificity gains from dipole perturbations come from atoms close to
the buried water molecule (H5 of amprenavir, H12B of indinavir, H20 of nelfinavir, both
H12 and H15 of ritonavir, and H16 of saquinavir). Table 3 shows the specificity changes
that result from these perturbations. Maximal specificity improvements range from 0.6 to 0.9
kcal/mol for dipole perturbations of these atoms. Each of these hydrogen atoms is oriented
toward the hydrogen atoms of the buried water molecule. In the tipranavir complex this
water is displaced upon binding and thus a similar specificity gain is not observed.

Charge neutralizations
Finally, some sites are determined to be over-charged across the target ensemble, and thus
neutralization leads to broadened specificity. For example, neutralization of the N12–HN12
group of nelfinavir leads to enhanced computed specificity of 0.9 kcal/mol by reducing an
unfavorable desolvation penalty that is not adequately offset by favorable electrostatic
interactions. Structurally, this group does not make hydrogen-bonding interactions, yet is
still partially desolvated by the enzyme upon binding. A similar but less pronounced
situation is seen in indinavir, where neutralization of the N2–H2 dipole leads to a computed
0.2 kcal/mol enhancement of specificity. Other neutralization sites leading to enhanced
specificity are seen on ritonavir, saquinavir, and tipranavir. In each case the buried polar
atoms are making either poor or no hydrogen bonding interactions.

Chemical modifications
Three primary chemical modifications were used to reproduce the electrostatic changes
above: addition of a carboxylate group (change in monopole); the replacement of hydrogen
with fluorine (dipole reversal); and the modification of an amide or hydroxyl to a methylene
or methyl (neutralization). The optimizations show no sites in which a net positive charge is
preferred as a monopole change. Table 4 shows the changes in affinity to each target as well
as the net change in specificity upon computational modification. As opposed to the narrow
specificity study on pepstatin, all changes to a negatively charged group result in a loss of
specificity because the electrostatic interaction energy is not sufficient to offset the large
desolvation penalty.

The largest electrostatic specificity gains arise from dipole reversals on buried atoms
interacting with the bound water molecule, with gains in specificity ranging from 0.2 kcal/
mol (amprenavir H5) to 1.6 kcal/mol (ritonavir H12F). However, because of the buried
nature of the active site and the rigid receptor model employed here, in many of these cases
there is not sufficient room for the fluorine atom, which has both a greater bond length and
van der Waals radius than hydrogen by approximately 0.3 Å each. The computed clashes
could potentially be alleviated by accounting for receptor induced-fit effects [56] that were
not explored here. Maximum total specificity gains for each inhibitor range from 0.4 kcal/

Sherman and Tidor Page 7

Chem Biol Drug Des. Author manuscript; available in PMC 2012 October 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



mol (amprenavir H21 and saquinavir H8) to 1.3 kcal/mol (nelfinavir H80). Most of the
favorable specificity changes come from atoms around the periphery of the active site that
gain favorable interactions with Arg8 while allowing the additional size and bond length
associated with fluorine to fit. In other cases, such as the H4F mutation on ritonavir that is
more solvent exposed, computed gains in electrostatic specificity are further supplemented
by favorable van der Waals interactions, thus leading to a total specificity gain of 0.7 kcal/
mol.

Dipole modifications made by changing polar atoms to methyl or methylene groups can
create a change in hybridization from sp2 to sp3, which affects the geometry of the attached
groups. While the change in hybridization is accounted for in our protocol by allowing the
ligand to minimize after the modification, in many cases the change in hybridization is too
great to be accommodated without significant clashes between the ligand and protein. For
example, the greatest electrostatic gain is from the N5 modification of ritonavir that yields
1.3 kcal/mol in enhanced computed electrostatic specificity, yet creates unfavorable van der
Waals interactions with the receptors, resulting in a net 0.8 kcal/mol unfavorable specificity
change. The largest gain in total specificity is from a change of the N3 amide of saquinavir
to a methyl group, which has a computed enhancement of 0.6 kcal/mol due to both favorable
electrostatic and non-polar terms.

Additional target classes
To address the question of how more target classes could affect the specificity optimization,
we performed two broad specificity calculations with an additional mutant class added to the
target ensemble. In one study we added the D30N mutant to the nelfinavir ensemble. The
D30N mutation is found mostly in response to nelfinavir treatment and shows little cross-
resistance to other protease inhibitors [57]. The primary difference in the specificity-
optimized charges upon adding the D30N mutant is seen at the C15–H15 dipole, which is
near the D30N mutation. For the second case we included the G48V/L90M mutant as an
additional class to the saquinavir target ensemble. The G48V/L90M mutation has been
shown to be associated with saquinavir resistance and an increased Ki of over 400-fold
relative to the wild type protease [58]. The G48V mutation is in the flap region of the
enzyme and the L90M mutation is one shell removed from the active site. The primary
difference upon adding the G48V/L90M mutation is to the C16–H16 dipole (0.9 kcal/mol
specificity gain upon reversing this dipole). These atoms are not directly interacting with
residue 48 but are close to the buried water that is interacting with the flaps. Overall, the
addition of a target class resulted in small changes close to the site of mutation but the
overall specificity-optimized charge distribution was not changed substantially (data not
shown).

Wild-Type Ensemble
An important question that arises in specificity design is whether one can use information
from the wild-type protein to make predictions on potential mutant structures. It has been
proposed that targeting a conformational ensemble of wild-type structures can serve as a
surrogate for an actual mutant ensemble [6, 59]. To test this hypothesis we performed a
broad specificity optimization of tipranavir to a target ensemble that included six wild-type
HIV-1 protease receptors with different active site conformations. By placing each target
conformation within a separate class, we ensured that a broad specificity optimization would
result in a charge distribution computed to bind tightly to each receptor conformation. The
resulting broad specificity-optimized charges for tipranavir are shown in Figure 11. It is
useful to compare the partial atomic charges to those in Figure 10, in which the ensemble is
comprised of the wild-type protease and actual escape mutants. The similarity of the partial
atomic charge distributions strongly supports the concept that targeting a wild-type
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structural ensemble could be a valid approach for designing against potential drug-resistance
mutations.

Conclusions
The ability to explicitly account for binding specificity between a set of target and decoy
proteins is an important step in the drug discovery and optimization process. Early
considerations of specificity should lead to drugs with more desirable binding profiles. For
narrow specificity, the methods used here identify regions of differing binding potentials,
sometimes subtle, between target and decoy. For broad specificity, the methods identify
interactions that enhance binding across the entire target ensemble. While not explicitly
considered in this work, this method can also simultaneously optimize specificity of a ligand
to an ensemble containing both targets and decoys. This real-world scenario allows for
broad binding to a panel of desired targets while minimizing potential side effects from
interactions with undesirable decoys.

A typical challenge of any de novo optimization method is validating the predictions. This is
especially difficult to address in cases where an experimental lab of chemists is not available
to synthesize and test new compounds. For the work presented here, we feel that the
consistent agreement between the predictions and the detailed structural analysis provides
strong validation of the method. Furthermore, the specificity optimization function is
rigorous in its formulation and the ability to make valid predictions depends primarily on the
accuracy of the force field and implicit solvation method to estimate relative binding free
energies. Approximate binding free energy methods such as MM-PBSA and MM-GBSA
have proven to be useful in predicting trends in binding energies for a congeneric series of
ligands [60, 61, 62]. The binding free energy used in Equation 1 is the electrostatic
component of the MM-PBSA binding energy and therefore should be valid for estimating
the changes in energy associated with the predictions made in this work.

The similarity in broad specificity results between the studies on the ensemble with explicit
escape mutants and those in the conformational wild-type ensemble show that, at least for
this case, a conformational ensemble can capture some of the important properties
associated with an ensemble containing resistance mutants. This is encouraging for broad
specificity work in general because structural variants of a wild-type target are often easier
to generate than isolating escape mutants and therefore would allow the drug design process
to begin accounting for potential escape mutants or multiple reaction pathways at an earlier
stage. While we used a wild-type target ensemble obtained from multiple crystal structures
of HIV-1 protease bound to various inhibitors, ensembles generated by other means, such as
molecular dynamics, Monte Carlo, normal modes, or other tools that generate
conformational ensembles can be used within the methodology described here. It should also
be noted that an affinity charge optimization performed on a single target structure did not
yield results as similar to the mutant ensemble as did the conformational ensemble (data not
shown), further emphasizing the need to explicitly consider specificity in the design process.

In general, adding more receptors into the target class can only make obtaining specificity
more difficult because as more potential interaction partners are present, the chemical space
in which a ligand can exist to best satisfy interactions with all targets becomes smaller.
Similarly, as more decoys exist there becomes a greater chance that they will have similar
physical characteristics to the targets of interest and thus designing for narrow specificity
also becomes more difficult. In this work we have studied up to four target classes with up
to 6 conformational variants in each class and two decoy classes; however, in principle there
is no limit to the number of targets, classes, or decoys that can be used with this
methodology.
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While we have not explicitly taken into consideration many important drug molecule
properties, such as those that affect ADMET, the specificity framework described here is
capable of incorporating certain ligand properties into the optimization in the form of
constraints. For example, adding constraints related to the dipole or ligand solvation energy
is currently possible and could be used to simultaneously optimize specificity and logP.
Protein flexibility is another important consideration that was only partially considered in
this work through the use of multiple crystal structures. Accounting for induced-fit effects is
most important when decoys are involved because unfavorable interactions could be
partially eliminated through structural relaxation of the decoy. In the case when only broad
specificity is being considered (no decoys), accounting for protein flexibility does not
present a significant problem because receptor relaxation leads to improved binding energies
and therefore predicted enhancements to broad specificity should only get better. Future
work to more fully include receptor flexibility and ligand-induced conformational changes
will be valuable in increasing the accuracy and general applicability of the method.

Methods
Theoretical Background

We have constructed a matrix formulation of the binding energies for the reaction

(2)

where L and R are the ligand and receptor, respectively, and C is the complex. The
electrostatic free energy (ΔGes) associated with this reaction can be expressed as:

(3)

where Q⃗i and Q⃗r are the ligand and receptor charge vectors, respectively, L is the ligand
desolvation matrix, R is the receptor desolvation matrix, and C is the solvent screened
interaction matrix between the ligand and receptor. The vector Q⃗i is of length corresponding
to the number of ligand atoms (n) whereas L is an n×n matrix that contains the information
about changes in energetics within the ligand upon binding. The matrix C has dimensions
n×m, where m is the number of receptor atoms, and has elements corresponding to the
bound-state solvent-screened interaction potential between the ligand and the receptor. The
term Q⃗r†RQ⃗r is a constant for each ligand–receptor complex because the receptor has fixed
partial atomic charges (constant Q⃗r) and the receptor shape does not change upon charge
optimization (constant R). While we have chosen to use the vector Q⃗i to represent charges at
the ligand atom centers, it is possible to place basis points anywhere within the shape
defined by the ligand surface [23, 24].

A specificity objective for optimization based on the above framework can be defined as
[22]:

(4)

where β is , kB is the Boltzmann constant, and T is the absolute temperature used to tune
the behavior of the function. The first term in square brackets of Equation 4 takes account of
each decoy (d) within the set of all decoys (D); the second set of square brackets takes
account of the targets, where C represents a class of receptors within the whole set of targets
T and t is an individual target molecule within a particular class C. When there are no
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decoys and only a single target within a single class, this reduces to an equation for the free
energy of binding of a single ligand–receptor pair, as expected.

The term in the first square brackets in Equation 4 represents decoy binding and the term in
second square brackets represents target binding. The decoy term is a simple Boltzmann
sum over standard state decoy binding free energies. The second square-bracketed term
includes an inner Boltzmann sum of the standard state binding free energies of the targets
within a class. In the outer summation, the reciprocal of each of these terms is added, thus
selecting the Boltzmann-weighted contributions from the weakest-binding target class.

In this work, we use the low temperature limit of Equation 4, in which only the tightest-
binding decoy is retained from the first square-bracketed term. In the second square-
bracketed term, only the worst-of-best target (the energy of the worst target class, where the
energy of a class is defined by the tightest binding member of the class) is retained:

(5)

For practical applications this is a desirable formulation, because the objective function
maximizes the energetic gap between the binding affinity for the worst-of-best target and the
tightest binding decoy. In the case that no decoys are present, the function reduces to a form
in which the binding free energy of the worst-of-best target is minimized. Finally, in the case
with only a single target within a single class, the formula reduces to an affinity optimization
to the target [25, 28].

To solve Equation 5, we use the numerical solver package GAMS [63] implementing the CONOPT2

algorithm [64]. This algorithm is based on the generalized reduced gradient (GRG)
algorithm with modifications to allow for efficient solving of large systems. Modifications
to the original GRG formulations include the use of sparse matrix techniques, dynamical
convergence feasibility tolerances, and the reusing of Jacobians when possible. Locally
written code provides an interface that allows for the specificity optimizations to be
performed with constraints on any charge-related property, such as the net charge, dipole, or
the RMS charge deviation from the original partial atomic charges.

Choice of Structural Ensemble
The choice of structural ensembles was made based on biological relevance of the receptors
and the quality of the structural information available. All structures were obtained from the
RCSB Protein Data Bank (PDB; www.rcsb.org/pdb) [65].

Narrow specificity
For the narrow specificity optimizations, we chose the protease from the HIV-1 NY5 strain
(PDB identifier 5HVP) as a target and the human aspartyl proteases pepsin (1PSO) and
cathepsin D (1LYB) as decoys. Both pepsin and cathepsin D enzymes have the pepstatin
inhibitor bound. HIV-1 protease is instead bound to acetyl pepstatin, which is identical to
pepstatin except at the N-terminus where the isovaleryl group is truncated before the final
three carbon atoms. In order to create a system in which there was a one-to-one
correspondence between basis points in these three systems (a necessary step under the
current specificity framework), we built the additional methyl groups onto the acetyl
pepstatin molecule in the HIV-1 protease site and performed a rotamer search on the built
atoms to determine the low-energy conformations. Geometry minimizations were performed
on the best rotamers to select the low-energy conformation.
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Broad specificity
The explicit escape mutant ensemble was comprised of the wild-type protease (1FGC), the
V82A mutant (1ODX) and the triple mutant I63P/V82T/I84V (1K6V). Initial binding free
energies were normalized such that binding to the mutant complexes was 1.0 kcal/mol
higher than to wild type. Additional calculations were performed by adding the D30N
mutant (1FFI) as a nelfinavir target and the G48V/L90M mutant (1FB7) as a saquinavir
target. Initial binding free energies were normalized such that binding of nelfinavir to the
D30N mutant and saquinavir to the G48V/L90M mutant were 2.0 kcal/mol higher than to
wild type.

Wild-type ensemble
A structural ensemble of wild-type HIV-1 protease structures was used to obtain
conformational variation in the active site. The PDB identifiers for these targets are 1G2K,
1HVH, 1HWR, 2BPV, and 2BPY. Both occupancies in the 1HVH structure were kept and
treated as distinct targets to add additional structural diversity into the ensemble, resulting in
a total of six classes. Initial binding free energies were normalized to be equivalent among
all members of this wild-type ensemble.

Ligand Docked Conformation
In the narrow specificity studies with pepstatin, the bound complexes were taken directly
from the PDB structures. In the broad specificity studies, multiple ligand bound state
conformations were generated in order to populate each class with multiple targets. First, all
HIV-1 protease structures were aligned using an RMSD fit of the Cα atoms to the wild-type
1FGC structure. Ligands were placed based on known crystal structure coordinates; 1HPV,
1HSG, 1OHR, 1HXW, 1C6Z, and 1D4S for amprenavir, indinavir, nelfinavir, ritonavir,
saquinavir, and tipranavir, respectively. This gave us confidence in the binding mode and
allowed us to avoid variations associated with docking. The aligned ligands were minimized
for 100 steps in the context of each target using varying dielectric constants (ε= 1, 2, 4, 1r,
2r, and 4r) in order to generate six complexes within each target class. The receptor atoms
were held fixed throughout the procedure. The resulting ensembles maintained the same
hydrogen-bonding characteristics as seen in the crystal structures from which they were
obtained.

Structure Preparation
The CHARMM molecular modeling package [66] was used with the CHARMm all-atom
parameter set [67] for molecular mechanics calculations. For HIV-1 protease structures,
water molecules and ions were removed except for the single buried active site water
molecule making interactions with the backbone amide of Ile50 [68]. For the tipranavir
calculations, this water was removed because it is not present in the native tipranavir 1D4S
crystal structure. In the pepsin structure, water residue numbers 8, 17, and 46 were retained
while in the cathepsin D structure waters 1, 2, 3, 5, and 118 were retained. These water
molecules are either completely buried within the protein with no solvent accessible surface
area or make at least 2 hydrogen bonding interactions with pepstatin.

The HBUILD [69] facility of CHARMM was used to add all hydrogen atoms using a dielectric
constant of ε=1. Distance cutoffs for electrostatic or van der Waals interactions were not
applied. One of the catalytic aspartates was protonated at the position in which the hydrogen
was shared between the catalytic diad. Rotameric states of all histidine, asparagine, and
glutamine side chains were checked to ensure the appropriate hydrogen-bonding pattern.
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Continuum Electrostatics Calculations
Electrostatic binding free energies were calculated using the continuum electrostatic model
with a molecular dielectric of ε=4 and a solvent dielectric of ε=80. The molecular surface
was used to define the solvent boundary with a solvent probe radius of 1.4 Å to define the
surface [70]. A salt concentration of 0.145 mM and a 2.0 Å ion-excluding Stern layer were
used [71]. A locally modified version of the DELPHI software package [72, 73] was used to
solve the linearized Poisson–Boltzmann equation. Averages of the potentials were taken
over ten translations on a grid with density 3.8 grids/Å centered on the charged atoms.

The PARSE parameter set [74] was used for peptide atoms. For non-peptide-like ligands (all
except pepstatin) standard parameters were not available. Geometry optimizations were
performed using Gaussian98 [75] at the RHF level of theory with the 6-31G* basis set and
atom-based partial atomic charges were obtained using a 2-stage RESP fit [76]. Parameters
for the molecular mechanics calculations described above were obtained by using the closest
CHARMm atom types.

Charge Optimization
Equation 5 was solved using locally written and commercially available software. The free
energy ΔG is defined by Equation 3, as described above. Typical optimizations were
performed with constraints on each atomic charge qi such that |qi|≥0.85e to keep the charges
within chemically reasonable limits. Due to the nonlinear nature of Equation 5 and the
possibility for multiple extrema, a numerical solver was needed for the optimizations. We
performed the optimizations using the GAMS software package [63] and the CONOPT2 solver [64].
Two specificity optimizations were performed in each case with initial charges used to seed
the solver coming from either the affinity-optimized charges or all zero charges. All
optimizations converged to the same answer, providing assurance that the global optimum
was obtained. As a further test, optimizations of a few systems were run using the BARON

algorithm [77] in GAMS, which is a branch-and-bound procedure that is guaranteed to reach the
global solution. In each case this procedure converged to the same solution as the CONOPT2
solver.

In the case of narrow specificity optimizations with decoys, any dimension within the decoy
energy-charge space that is steeper than that of the target will result in an unbounded
optimum specificity. We added an additional constraint into the optimizations to eliminate
unbounded solutions such that the RMSD of the charge remain below a specified value.

(6)

The sum is taken over each charge qi in the set of N atoms. This constraint on the RMSD of
the charge forces the optimization to perturb the charges in the direction that can gain the
most specificity for the given change in the RMSD charge. We found that a constraint of
0.01eλ≤λ0.1e worked well in all optimizations.

Modeling Mutations
Modifications to the starting ligand structures were built using CHARMM with parameters as
described above. Torsion angles of the new group were sampled at 60° followed by 100
steps of adapted-basis Newton–Rhapson (ABNR) minimization of the new atoms with the
rest of the protein and ligand atoms fixed. Then, minimization of the entire ligand was
performed with the receptor fixed. The minimum energy structure from this procedure was
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used for continuum electrostatic calculations. The same procedure was repeated on the wild-
type structures to ensure an equal reference point. For fluorination, the hydrogen atom to be
replaced was mutated to a fluorine atom and the bond length was allowed to minimize to
convergence. In the case that a clash ensued with the protein, the ligand was allowed to
minimize to convergence with the receptor fixed.

Free energies of binding were computed using an MM-PBSA approach, adding the solvation
free energies to the in vacuo interaction energies (internal plus van der Waals). The non-
polar component of the solvation energy was computed using the solvent accessible surface
area and the relationship:

(7)

where a=5.2 cal/Å2, b=920 cal, and x is the calculated solvent accessible surface area using
a 1.4-Å probe radius [74].
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Figure 1.
HIV-1 protease in complex with pepstatin. Top: Ribbon representation of HIV-1 protease
colored by chain, pepstatin shown in van der Waals spheres, and the catalytic aspartates
shown in licorice. Bottom: LigPlot [78] representation of the HIV protease active site.
Hydrogen bonds shown with green dotted lines and van der Waals contacts are shown by red
hatched circles. The following two figures show the decoys used in this study, human pepsin
and human cathepsin D.
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Figure 2.
Human pepsin complexed with pepstatin. Refer to Figure 1 for description.
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Figure 3.
Human cathepsin D complexed with pepstatin. Refer to Figure 1 for description.
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Figure 4.
Narrow specificity-optimized charges of pepstatin. Top: Pepstatin atom names used in this
study. Middle: Starting pepstatin charges are shown in black. Bottom: Optimized charges
are shown with coloring such that red denotes charges that became more negative by at least
a value l, where l=0.2e+0.2|q| and q is the initial charge of that atom. Blue charges are those
that became more positive by at least l and green color represents atoms that changed by less
than the tolerance l. The following figures follow this same convention.
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Figure 5.
Broad specificity-optimized charges for amprenavir binding to a target ensemble comprised
of three classes: wild-type, V82A mutant (1X), and I63P/V82T/I84V mutant (3X). Colors
are as described in Figure 4. The net specificity gain is computed to be 9.3 kcal/mol for this
charge distribution.
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Figure 6.
Broad specificity-optimized charges for indinavir binding to a target ensemble comprised of
three classes: wild-type, V82A mutant (1X), and I63P/V82T/I84V mutant (3X). Colors are
as described in Figure 4. The net computed specificity gain is computed to be 11.8 kcal/mol
for this charge distribution.
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Figure 7.
Broad specificity-optimized charges for nelfinavir binding to a target ensemble comprised of
three classes: wild-type, V82A mutant (1X), and I63P/V82T/I84V mutant (3X). Colors are
as described in Figure 4. The net specificity gain is computed to be 8.7 kcal/mol for this
charge distribution.
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Figure 8.
Broad specificity-optimized charges for ritonavir binding to a target ensemble comprised of
three classes: wild-type, V82A mutant (1X), and I63P/V82T/I84V mutant (3X). Colors are
as described in Figure 4. The net specificity gain is computed to be 17.0 kcal/mol for this
charge distribution.
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Figure 9.
Broad specificity-optimized charges for saquinavir binding to a target ensemble comprised
of three classes: wild-type, V82A mutant (1X), and I63P/V82T/I84V mutant (3X). Colors
are as described in Figure 4. The net specificity gain is computed to be 15.1 kcal/mol for this
charge distribution.
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Figure 10.
Broad specificity-optimized charges for tipranavir binding to a target ensemble comprised of
three classes: wild-type, V82A mutant (1X), and I63P/V82T/I84V mutant (3X). Colors are
as described in Figure 4. The net specificity gain is computed to be 7.6 kcal/mol for this
charge distribution.
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Figure 11.
Broad specificity-optimized charges for tipranavir binding to a target ensemble comprised of
six classes, each containing different conformational states of the wild-type HIV protease.
The optimized charge distribution is similar to the explicit mutant charge distribution in
(Figure 10).
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