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In the treatment of patients with low-grade glioma, there
still is controversy on how surgical intervention, radia-
tion therapy, and chemotherapy contribute to an amelio-
rated progression-free survival, overall survival, and
treatment-related neurotoxicity. With the ongoing
changes in treatment options for these patients, neuro-
cognitive functioning is an increasingly important
outcome measure, because neurocognitive impairments
can have a large impact on self-care, social and profes-
sional functioning, and consequently, health-related
quality of life. Many factors contribute to neurocogni-
tive outcome, such as direct and indirect tumor effects,
seizures, medication, and oncological treatment.
Although the role of radiotherapy has been studied ex-
tensively, the adverse effects on neurocognitive function
of other treatment-related factors remain elusive. This
holds for both resective surgery, in which the use of
intraoperative stimulation mapping has a high potential
benefit concerning survival and patient functioning, and
the use of chemotherapy that might have some interest-
ing new applications, such as the facilitation of total
resection for initially primary or recurrent diffuse low-
grade glioma tumors. This article will discuss these
treatment options in patients with low-grade glioma
and their potential effects on neurocognitive functioning.
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W
orld Health Organization (WHO) grade II
diffuse gliomas, commonly referred as low-
grade gliomas (LGGs), are generally slowly

growing, locally infiltrative tumors in young or middle-
aged adults.1,2 Although some patients survive for

decades,3 these tumors invariably progress to the more
aggressive, anaplastic gliomas or secondary glioblasto-
mas,4 especially in older patients.5 The prognosis of a
primary or secondary glioblastomas is equally poor,
when corrected for age at diagnosis.4

With regard to treatment options for these tumors,
relatively little has changed since the position article by
Cairncross and Laperriere in 1989.6 They state that:

“We believe there is insufficient evidence to justify the
aggressive treatment (ie, surgery, radiotherapy, and che-
motherapy) of all low-grade gliomas of the cerebral
hemispheres. The indolent nature of these tumors
makes it difficult, in the absence of a properly controlled
clinical trial, to evaluate the true effectiveness of inter-
vention. Conclusions and recommendations based
solely on the analysis of retrospective data are suspect.
Further, the indolent course of these neoplasms raises
the possibility that the potential benefits of treatment
will, in the long run, be offset by treatment-related
toxic effects.”

Although a recent article, for instance, suggests that a
nihilistic approach to surgical treatment of gliomas
might be based on overgeneralizations of data from
older studies,7 management of LGG is still controversial.
This controversy mainly concerns the question of
whether in young patients with limited disease and
symptoms an aggressive treatment approach including
immediate surgical intervention should be pursued or
that a delayed intervention is expected to significantly
contribute to an ameliorated progression-free survival,
overall survival, and treatment-related neurotoxicity.
The same holds for the timing of radiation therapy,
either as adjuvant treatment immediately following
surgery or as delayed treatment until there is clinical or
radiological evidence of recurrent or progressive
disease. The decision as to whether a patient with
LGG should receive resection, radiotherapy, or chemo-
therapy is also based on a number of other factors, in-
cluding age, performance status, location of tumor,
and evidently, patient preference. Because LGGs are
such a heterogeneous group of tumors with variable
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natural histories, the risks and benefits of each of the 3
therapies must be carefully balanced with the data avail-
able from limited prospective studies. With 5-year and
10-year progression-free rates of 50% and 12%, respec-
tively, for supratentorial low-grade astrocytomas, low-
grade oligodendrogliomas, and mixed gliomas,8 and a
median better survival of 16.7 years for the latter 2
groups,9 patients with LGG can survive in a stable
state for several years after diagnosis. The long-term
effects of the disease and its treatment on neurocognitive
functioning and, thus, on health-related quality of life in
these long-term survivors are especially salient.

After discussing the rationale for the assessment of
neurocognitive functioning in patients with brain
tumor, we will discuss treatment options in patients
with LGG (surgery, radiotherapy, chemotherapy, anti-
epileptics, and corticosteroids) and their potential
effects on neurocognitive functioning.

Rationale for the Assessment of Cognitive
Functioning

In addition to seizures, patients with LGG may, to a
lesser extent, present with headaches, focal neurologic
signs, and neurocognitive impairment. Cognitive deficits
associated with brain tumors can be induced by com-
pression of normal brain, either directly or indirectly,
by reactive edema. In addition to compression, the inva-
sion of parenchymal glial tumors directly into functional
brain regions or indirectly by disconnection of structures
can further contribute to neurocognitive deficits.10–12

Although an increasing number of studies indicate that
primary brain tumors and their treatment are often asso-
ciated with neurocognitive deficits, there is still limited
knowledge about its incidence, nature, severity, and
causes.

Because most patients with glioma cannot be cured,
palliation of symptoms and maintenance or improve-
ment of physical functioning and health-related quality
of life are important goals of treatment. Evaluation of
treatment in these patients should thus not only focus
on progression-free or overall survival, but should also
aim at functional outcome and at adverse treatment
effects on the normal brain. Functional outcome refers
to neurological, cognitive, professional, and social per-
formance of an individual, usually abstracted as health-
related quality of life. With regard to the effects of tumor
and treatment on the normal brain, neurocognitive func-
tioning is a useful outcome measure for patients with
brain tumor, because neurocognitive deficits, even
mild, may negatively affect health-related quality of
life,13 professional reintegration, interpersonal relation-
ships, and leisure activities.

Factors Affecting Neurocognitive
Functioning

Many potential factors contribute to neurocognitive
functioning, including the tumor, distant mechanical

effects on the normal brain by the tumor, tumor-related
epilepsy, and its treatment, and psychological distress
and the premorbid level of neurocognitive functioning.
In attempting to determine the isolated effect of any
treatment on cognition, the multifactorial processes in-
volved should be recognized.

Surgery

After radiological diagnosis, resective surgery that aims
at prolonging survival by maximization of tumor
removal while minimizing morbidity is usually the first
of several treatment options for patients with LGG.
Mainly because of the lack of randomized trials compar-
ing surgery with a conservative approach that delays
surgery until tumor progression, there remains contro-
versy about the role of surgery in the initial treatment
of patients with LGG. On the basis of reviews of the lit-
erature that have found an impressive trend toward im-
proved survival,14–16 many neurosurgeons favor a
maximal safe resection at the time of diagnosis.
However, there is a bias in these observations, because
the surgical results are compared with those in patients
in whom it was not possible to do a maximal resection.
Considering the extent of surgery, retrospective evidence
supports a more extensive resection rather than simple
debulking in patients undergoing resection.16–18 In a
recent meta-analysis on the usefulness of intraoperative
stimulation mapping the outcomes of 90 reports pub-
lished from 1990 through 2010, 8091 adult patients
who had undergone resective surgery for supratentorial
infiltrative glioma, with or without intraoperative stimu-
lation mapping, were analyzed.19 The authors found
intraoperative stimulation mapping in infiltrative
glioma resections to be associated with fewer late
severe neurologic deficits and more extensive resection
and to involve eloquent locations more frequently.
From these findings, they conclude that intraoperative
stimulation mapping should be universally implemented
as standard of care for glioma surgery that aims at
achieving a maximal extent of tumor resection. In pa-
tients with small, minimally symptomatic LGGs, a
more conservative approach is usually considered.9,20,21

However, this approach in which aggressive surgery and
radiotherapy are delayed until there is radiological evi-
dence of tumor growth, intractable seizures, progressive
neurologic impairment, or transformation to a high-
grade glioma (HGG) is based on older studies not
including intraoperative stimulation mapping as a
standard element adjunct to surgical procedures.

Because of the limited number of studies including
pre- and postoperative neurocognitive evaluations, the
true incidence and extent of neurocognitive dysfunction
related to resective brain tumor surgery is unknown.
However, several interesting observations have been
made in smaller observational cohort studies. Although
reductions in neurocognitive functioning may originate
from the tumor and/or potentially from confrontation
with the diagnosis,22 surgery may also affect functi-
onal outcome in several unpredictable directions.
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Improvement in neurocognitive functioning has been ob-
served in several studies after brain tumor resection.
Long-term improvement of verbal memory, compared
with preoperative assessment, has been reported after
LGG resections in frontal premotor and anterior
temporal areas,23–25 usually after a transient immediate
postoperative worsening. Stable neurocognitive perfor-
mance was observed after brain tumor resection in
some studies. For instance, patients with tumors of the
third ventricle demonstrated neurocognitive impairment
in memory, executive functioning, and fine manual
speed prior to surgery, without worsening of cognition
after surgical removal.26,27 Of several executive tasks,
only letter fluency performance was impaired in patients
after glioma surgery in left frontal locations, compared
with right frontal and posterior lesions.28 Visuospatial
processing in patients after resective glioma surgery
in left and right, frontal and parietal locations was
comparable to that of normal subjects, according to
one study,29 and impaired spatial and positional memory
processing was demonstrated in patients with tumors
in the right posterior parietal cortex or in the
frontal cortex in other studies.30,31 Deterioration in neu-
rocognitive functioning after resection of parenchymal
frontal or precentral tumors24,32 was mostly associated
with minor attentional deficits. Resection of the right
prefrontal cortex rather than the left was associated
with a selective attentional impairment, as evidenced
by the Stroop test performance.33 After resection of the
supplementary motor area, patients exhibited impaired
procedural learning and agraphia.34,35 Subsets of pa-
tients with resections involving the frontal lobe demon-
strated a variety of deficits. For instance, impaired
sequence ordering of novel material was observed par-
ticularly in right-sided lesions, whereas recognition
memory was unaffected,36 and planning and executive
impairment, irrespective of side, site, and size.37,38

Furthermore, severe executive deficits in a reward learn-
ing task were observed in patients after bilateral
fronto-orbital resections for various tumor types39 and
impaired virtual planning of real life activities after re-
sections in the left and right prefrontal cortex, which
could not be explained by memory deficits.40,41

Increases in T2-weighted hyperintensities during the
early period following surgery are consistent with these
postsurgical neurocognitive defects.42

Deterioration of neurocognitive functioning or lack
of improvement following surgery of LGG in or near el-
oquent brain areas might theoretically be adverted by
performing awake craniotomies with intraoperative
electrical mapping.43–45 Theoretically, because sound
data on neurocognitive outcome associated with this
procedure are lacking, delineation of true functional
and nonfunctional areas by intraoperative mapping in
high-risk patients to maximize tumor resection can dra-
matically improve long-term survival46 A review that
questioned whether it is actually necessary to leave a
security margin around eloquent structures found that
a no-margin technique and the repetition of both cortical
and subcortical stimulation to preserve eloquent cortex
and the white matter tracts optimize the extent of

resection.47 Some authors even demonstrate that favor-
able outcome of LGG in noneloquent areas in the left
dominant hemisphere can be further enhanced by a
supratotal resection (ie, with a resection margin beyond
radiological abnormalities).48 Evidently, sufficiently
powered follow-up studies are needed to demonstrate
that these relatively new principles of tumor surgery
also benefit patients in terms of neurocognitive function-
ing and health-related quality of life.

Radiotherapy

Radiotherapy can be used after surgery to treat residual
tumor mass. Controversies in the use of radiotherapy for
LGGs concern the optimal timing and radiation dose.
EORTC trial 22845 randomized 311 patients with
WHO grade II astrocytoma or oligodendroglioma to
receive immediate or delayed radiotherapy and found
that, although immediate postoperative radiotherapy
significantly prolonged progression-free survival, it did
not enhance overall survival.49 Of interest, better
seizure control was observed in patients receiving post-
operative radiotherapy. Patients with greater risk of
rapid tumor progression may receive radiotherapy im-
mediately following surgery.5,14,15 The lack of survival
benefit with immediate adjuvant radiotherapy has been
used as a justification to postpone radiation until
disease progression, thereby postponing or avoiding po-
tential radiation-induced encephalopathy.

Cognitive deficits are the hallmark of late-delayed en-
cephalopathy,50 which is an irreversible and progressive
complication that may follow radiotherapy by several
months to many years through vascular injury, causing
ischemia of surrounding tissue and demyelination,
local radionecrosis, and cerebral atrophy. The severity
of neurocognitive deficits ranges from mild or moderate
to dementia with progressive mental slowing and deficits
in attention and memory, occuring in at least 12% of
patients who receive radiotherapy.51 In these cases,
MRI shows diffuse atrophy with ventricular enlarge-
ment and severe confluent white matter abnormalities.52

Nonspecific diffuse white matter changes, demyelina-
tion, and cerebral atrophy can be found in nearly all pa-
tients receiving high-dose volumes53 and may be related
to neurocognitive status.54,55 It should be noted,
however, that increases in MRI hyperintensities during
the early period following adjuvant radiotherapy for
LGG are likely not related to radiation effects, but
rather to surgical procedures.42 These hyperintensities
are consistent with postsurgical neurocognitive defects.

Although short-term follow-up studies show limited
or transient effects of radiotherapy,11 a number of
studies in long-term survivors of LGG (ie, .5 years
following radiotherapy) concluded that radiotherapy in
these patients poses a significant risk of long-term leu-
koencephalopathy and neurocognitive impairment.
Surma-Aho et al.56 reported that patients with LGG
with a follow-up of 7 years had more neurocognitive
deficits after early radiotherapy than did control subjects
without radiotherapy. Moreover, leukoencephalopathy
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was more severe in the group with postoperative irradi-
ation. A study among LGG survivors 6 years after diag-
nosis and initial treatment showed that the use of
radiotherapy was associated with poor neurocognitive
function on only a few tests and not restricted to one spe-
cific neurocognitive domain.57 This finding suggests that
neurocognitive deficits in these patients should not be at-
tributed to radiotherapy, but rather to the tumor or
other treatment factors, including epilepsy.58 Serious
memory deficits, however, are still to be expected
when fraction doses exceed 2 Gy.57 A follow-up of the
Klein et al. 2002 study57 demonstrated that, regardless
of fraction dose, all tumor progression-free patients
with LGG who had irradiation had neurocognitive dete-
rioration 13 years after radiotherapy, whereas all pa-
tients without irradiation remained stable.54 Taken
together, early neurocognitive dysfunction in patients
with LGG is most likely the result of the tumor.
However, in long-term LGG survivors, radiation may
cause some impairment, even when the radiotherapy is
given focally and fraction size is limited.

Chemotherapy

The results from recent studies on the effects of tumor re-
section in eloquent areas using intraoperative stimula-
tion mapping are promising. Unfortunately, a large
number of LGGs with a diffuse growth pattern still
cannot be removed without substantial compromise of
healthy brain tissue, thus preventing satisfactory onco-
logical control. In this group of patients, the use of
chemotherapy can be considered. Results from observa-
tional studies indicate that chemotherapy may be effec-
tive in patients with oligodendroglial tumors, but the
role of chemotherapy in diffuse low-grade astrocytomas
is less clear.59 Chemotherapy can reduce volume and
infiltration of LGG60–67 and can further facilitate total
resection for initially primary or recurrent diffuse
tumors,68,69 with preservation of quality of life and
probably also of neurocognitive functioning.70

Chemotherapy-related neurotoxicity to the central
nervous system may be increased by intra-arterial ad-
ministration, especially in combination with osmotic
blood-brain barrier disruption, meant to increase the
local concentration of chemotherapy in the brain.71,72

Modern delivery techniques might prevent some of the
neurotoxicity, however.73 Neurotoxicity may also be in-
creased by chemotherapy given after, or even during, ra-
diotherapy.74,75 In these cases, the chemotherapeutic
drugs also reach higher concentrations in normal brain
tissue because of leakage of the blood-brain barrier
caused by radiotherapy. In this way, radiation may po-
tentiate the toxic effects of chemotherapy.76 Finally, in-
trathecal chemotherapy, compared with systemically
applied chemotherapy, has a higher likelihood of
causing central nervous system toxicity.74 The increasd
risk of cognitive deficits after chemotherapy in combi-
nation with the apolipoprotein E4 alleles also suggests
a genetic role in chemotherapy-induced cognitive
decline.77

Neurocognitive functioning in patients with LGG
was studied as secondary outcome measure in EORTC
phase III study 22033–26033, in which after stratifica-
tion for genetic 1p loss, primary temozolomide therapy
was compared with radiotherapy.78 Although this
study is closed for recruitment, data are not yet
available. Because, apart from EORTC study 22033–
26033, none of the aforementioned clinical trials involv-
ing patients with LGG assessed neurocognitive
functioning as secondary outcome measure, potential
effects of chemotherapy on neurocognitive functioning
should be deduced with great caution from the few
studies involving patients with HGG. Although phase
II clinical trials using bevacizumab therapy in both
newly diagnosed and recurrent HGG yield promising
results, bevacizumab only shows some effectiveness in
the pediatric LGG population.79,80 In a recent phase II
study that evaluated neurocognitive changes over time
in 167 patients with recurrent glioblastoma treated
with bevacizumab, most patients with an objective re-
sponse or progression-free survival .6 months had
poorer neurocognitive functioning, compared with the
general population at baseline, and had improved or
stable neurocognitive functioning at the time of response
or at the 6-month assessment.81 With regard to the use of
temozolomide therapy, a small study showed that,
before treatment, the majority of patients with glioblas-
toma show clear-cut deficits in neurocognitive function-
ing. During the first 6 months of their disease, however,
patients with progression-free glioblastoma who
undergo radiotherapy plus concomitant and adjuvant
temozolomide treatment do not deteriorate in neurocog-
nitive functioning.82 A phase II one-arm study in
patients with previously untreated anaplastic astrocyto-
ma, oligoastrocytoma, or oligodendroglioma evaluated
the long-term efficacy and safety of accelerated
fractionated radiotherapy combined with intravenous
carboplatin.83 After radiotherapy, patients received pro-
carbazine, lomustine (CCNU), and vincristine (PCV) for
1 year or until tumor progression. Serious clinical neuro-
logic deterioration and/or dementia requiring full-time
caregiver attention was observed in 10% of patients.

Antiepileptics

Seizures occur as a presenting symptom in approximate-
ly 50% of LGG cases and have a prevalence .80%.84

The seizures originate not from the tumor but from
adjacent brain tissue.85,86 Nevertheless, both radiation
therapy49,87 and lesionectomy88,89 may significantly
reduce or even eliminate medically refractory seizures
in patients with LGG. Furthermore, patients with
WHO grade II diffuse astrocytomas often experience
neuropsychological and psychological problems that
are aggravated by epilepsy and its treatment.57,58,90,91

Cognitive adverse effects of antiepileptic drugs
can add to neurocognitive decline because of tumor
effects, previous surgery, or radiotherapy, and therefore
appropriate choice and dose of antiepileptic drug is
crucial. The classical antiepileptic drugs (phenytoin,
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carbamazepine, and valproic acid) are known to
decrease neurocognitive functioning.92,93 Of impor-
tance, these drugs may also have pharmacological inter-
actions with chemotherapy94,95 and, thus, potentially
affect survival. These drugs may result in impaired atten-
tion and neurocognitive slowing, which can subse-
quently have effects on memory by reducing the
efficiency of encoding and retrieval.93 The importance
of the classical antiepileptic drugs as a risk factor for
neurocognitive deficits has been reported in a study on
stable disease in long-term LGG survivors58 in which
neurocognitive deficits were significantly related to the
use of antiepileptic drugs. Because patients in this
study who took antiepileptic drugs had neurocognitive
impairment even in the absence of seizures, the use of
drugs primarily affects neurocognitive function.
Moreover, AED use in patients with LGG may be asso-
ciated with highly elevated levels of fatigue,96 which is
also associated with poorer neurocognitive outcome.
Several new generation AEDs, such as oxcarbazepine97

and levetiracetam as add-on therapy,98 appear to have
fewer adverse neurocognitive effects than the classical
agents. Of the newer agents, topiramate is associated
with the greatest risk of neurocognitive impairment, al-
though this risk is decreased with slow titration and
low target doses.99,100 It appears to be safe to switch pa-
tients from phenytoin to levetiracetam monotherapy
after craniotomy for supratentorial glioma.101

Corticosteroids

The potentially neurotoxic effects of corticosteroids are
often misdiagnosed and underestimated,102 and cortico-
steroids may induce behavioral, psychic, and neurocog-
nitive disturbances because of functional and, over
time, structural alterations in specific brain target
areas. Corticosteroids may cause mood disturbances,
psychosis, and neurocognitive deficits, particularly in
declarative memory performance. Steroid dementia is a
reversible cause of neurocognitive deficits even in the
absence of psychosis. Cognitive deficits may originate
from neurotoxic effects on both the hippocampal and
the prefrontal areas103 and have been shown to be re-
versible with dose reduction or discontinuation of
treatment.104

Assessment of Neurocognitive Functioning

Formal neurocognitive examination is time consuming
and may fatigue patients with brain tumors, thereby
biasing results. Less time-consuming alternatives, such
as the Mini Mental State Examination (MMSE), may
underestimate the proportion of patients with actual
cognitive decline, and important but small changes in
cognition can be missed. However, the MMSE appears
to be sensitive enough to detect cognitive deficits associ-
ated with tumor progression.105

Because a combination of cortical and sub-
cortical lesions, epilepsy, surgery, radiotherapy, AEDs,

corticosteroids, and psychological distress contributes
to neurocognitive dysfunctioning in an individually un-
predictable way, it is most pragmatic to choose a core
testing battery that gauges a broad range of neurocogni-
tive functions. The test battery that meets important psy-
chometric criteria (i.e. standardized materials and
administration procedures, published normative data,
moderate to high test-retest reliability, a relatively brief
administration time [30–40 min], suitable to monitor
changes over time) has successfully been used and is
still being used in a number of EORTC, NCCTG,
NCI-C, RTOG, MRC, and HUB multisite clinical
trials, and it has been shown that neurocognitive func-
tioning has independent prognostic significance in pa-
tients with LGG.106 Moreover, neurocognitive
deterioration indicates tumor progression before signs
of disease recurrence are evident on CT or MRI.107–109

The tests were as follows: memory, Hopkins Verbal
Learning Test;110 verbal fluency, Controlled Oral
Word Association;111 visual-motor scanning speed,
Trail Making Test Part A;112 and executive function,
Trail Making Test Part B.112

Those interested in a more extensive discussion
on bedside neurocognitive testing in patients with
brain tumor and indications for neuropsychological
consultation are referred to the online ECCO-initiated
library of ACOE CME accredited oncology instruc-
tion videos by accessing http://www.ecco-org.eu/
oncovideos/Neuro-Oncology.aspx.113.

Conclusion

With the development in treatment options for patients
with LGG, neurocognitive functioning is an increasingly
important outcome measure, because neurocognitive
impairments can have a large impact on self-care,
social and professional functioning, and consequently,
on health-related quality of life. Many factors contribute
to neurocognitive outcome, such as direct and indirect
tumor effects, seizures, medication, and oncological
treatment. Although the role of radiotherapy has been
studied extensively, the adverse effects on neurocogni-
tive function of other tumor and treatment-related
factors remain elusive. This not only holds for resective
surgery, in which the use of intraoperative stimulation
mapping has a high potential benefit concerning survival
and patient functioning, but also for the use of chemo-
therapy. Although chemotherapy might have some inter-
esting new applications, such as the facilitation of total
resection for initially primary or recurrent diffuse LGG
tumors, systematic studies are needed to fully under-
stand the effects of chemotherapy on neurocognitive
function. Likewise, concerted action into studying the
costs and benefits of presurgical, intrasurgical, and post-
surgical neurocognitive assessments related to outcome
in these patients is warranted.
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