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Sub-second temporal-resolution tomographic microscopy is becoming a reality

at third-generation synchrotron sources. Efficient data handling and post-

processing is, however, difficult when the data rates are close to 10 GB s�1. This

bottleneck still hinders exploitation of the full potential inherent in the ultrafast

acquisition speed. In this paper the fast reconstruction algorithm gridrec, highly

optimized for conventional CPU technology, is presented. It is shown that

gridrec is a valuable alternative to standard filtered back-projection routines,

despite being based on the Fourier transform method. In fact, the regridding

procedure used for resampling the Fourier space from polar to Cartesian

coordinates couples excellent performance with negligible accuracy degrada-

tion. The stronger dependence of the observed signal-to-noise ratio for gridrec

reconstructions on the number of angular views makes the presented algorithm

even superior to filtered back-projection when the tomographic problem is well

sampled. Gridrec not only guarantees high-quality results but it provides up to

20-fold performance increase, making real-time monitoring of the sub-second

acquisition process a reality.
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1. Introduction

At third-generation synchrotron facilities, highly brilliant

X-rays coupled with modern detector technology permit

routine acquisition of high-resolution tomograms in a few

minutes, making high-throughput experiments a reality

(Hintermüller et al., 2010; Marone et al., 2010; De Carlo et al.,

2006; Rivers et al., 2010; Chilingaryan et al., 2010). Recently,

the latest detectors based on CMOS technology (Baker, 2010)

have been tremendously pushing the achievable temporal

resolution bringing real-time tomography closer. This hard-

ware advance is paving the way to new science and making

new experiments possible that until recently were unimagin-

able, where dynamic processes can for the first time be

captured in three dimensions through time (Mokso et al., 2010;

Di Michiel et al., 2005). For instance, the study of evolving

liquid and metallic foams, the investigation of alloys under

thermal or mechanical stress, and the imaging of living animals

giving insight into physiological phenomena are only a few

examples of various challenging applications that will extre-

mely benefit from sub-second temporal-resolution tomo-

graphic microscopy.

A full tomographic dataset consists of a series of X-ray

projection images acquired with the sample at different

orientations around a vertical rotation axis. These images are

subsequently combined using tomographic reconstruction

algorithms to obtain the three-dimensional structure of the

investigated specimen. A high-resolution projection series

typically consists of more than a thousand images and the

projection size is usually of the order of 2000 � 2000 pixels.

Tomographic microscopy featuring both sub-second temporal

resolution and micrometer spatial resolution is therefore

intrinsically coupled to an extremely high data rate (up to

10 GB s�1). As a consequence, to fully exploit the potential

provided by sub-second temporal resolution, new solutions for

efficient handling and fast post-processing of such a large

amount of data are mandatory. Post-processing and tomo-

graphic reconstruction of raw datasets should ideally occur on

a similar time scale as their acquisition, so that data collection

and reconstruction can go in parallel, allowing online quality

assessments and data evaluation.

Filtered back-projection (FBP) has been the standard

reconstruction method for many years (Kak & Slaney, 2001).

For scan times of the order of tens of minutes to hours and

usual projection sizes not exceeding 1024 � 1024 pixels, FBP

algorithms running on small CPU (central processing unit)

clusters were able to provide full tomographic reconstructions

in a time frame similar to that for the data acquisition. With

the advent of third-generation synchrotron sources and new

detectors, this is no longer the case and new high-performance

computing solutions are mandatory.

Recently, emerging GPU (graphics processing unit) tech-

nology has attracted a lot of interest and is starting to be

successfully exploited, mostly integrated with CPUs to create
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hybrid architectures, for the acceleration of tomographic

reconstructions in different fields making use of standard FBP

algorithms (De Witte et al., 2010; Chalmers, 2011). A GPU is

still, however, a relatively specific hardware component and

specialized knowledge for the implementation of software

optimized for this novel architecture is necessary, but not

always readily available in-house.

In this paper an alternative algorithm to the standard FBP

routine, highly optimized for conventional CPU technology, is

presented and discussed. This fast reconstruction approach is

based on the Fourier transform method (FTM). The critical

step of such a method, the regridding of the Fourier space, is

performed by convolution of the data in the Fourier domain

with the Fourier transform of functions with particular char-

acteristics [one-dimensional (1D) prolate spheroidal wave-

functions], enabling excellent performance without accuracy

degradation.

In the following, first the mathematical background is laid

out and critical implementation issues are considered. Then

the accuracy of the reconstructions delivered by the described

algorithm is assessed using both synthetic and real datasets.

Finally the performance of this FTM is discussed.

2. Fourier transform methods

According to the Fourier slice theorem (Kak & Slaney, 2001),

the Fourier transform of a parallel projection of an object

obtained at angle ’ equals a line of the two-dimensional (2D)

Fourier transform of the object taken at the same angle.

Making use of this theorem, the 2D Fourier space can be filled

with the Fourier transforms of parallel projections of an object

taken at different angles. Specifically for X-ray absorption

tomography, information on the linear absorption coefficient

of the studied object can then be recovered by a 2D inverse

Fourier transform of the Fourier space, if this is sufficiently

sampled. Hence, such a tomographic reconstruction process

consists of a series of 1D Fourier transforms followed by a 2D

inverse Fourier transform.

Instead of the 2D inverse Fourier transform, FBP routines

exploit the analytic inverse Radon transform. It can be shown

(Kak & Slaney, 2001) that the reconstructed image at a certain

point is the summation of all projection samples that pass

through that point, after a filter has been applied; or, in other

words, the back-projection operation uniformly propagates

the measured projection value back into the image along the

projection path.

2.1. Interpolation

The critical step of FTMs, which prevented until recently

their wider application, is the interpolation in the Fourier

space from polar to Cartesian grid required for efficient

computation of the 2D inverse fast Fourier transform (FFT).

In fact, interpolation in the frequency domain is not as

straightforward as interpolation in real space. In direct space,

an interpolation error is localized to the small region where

the pixel of interest is located. This property does not hold,

however, for interpolation in the Fourier domain, because

each sample in a 2D Fourier space represents certain spatial

frequencies and contributes to all grid points in direct space.

Therefore, an error produced on a single point in Fourier

space affects the appearance of the entire image (after inverse

Fourier transform). It has been shown (Choi & Munson, 1998;

O’Sullivan, 1985) that optimal interpolation using sinc func-

tions is possible. However, owing to its heavy computational

burden caused by the infinite extent of the sinc function, this

approach soon appeared unviable. Various alternative inter-

polation techniques (linear, bilinear, splines, etc.) have also

been considered, but a trade-off between accuracy and speed

exists: with reasonable computational efforts the quality of

FBP reconstructions has never been achieved.

Owing to the need of using an iterative approach to over-

come missing data outside the resolution circle (Miao et al.,

2005), inevitably leading to longer reconstruction times, the

pseudo-polar FFT (Averbuch et al., 2008), an exact FFT

algorithm relating the pseudopolar and the Cartesian grid, is

also not an option.

As an alternative, the algorithm for tomographic recon-

structions presented here, initially introduced by Dowd et al.

(1999) and named gridrec, makes use of the gridding method

for resampling the Fourier space from polar to Cartesian

coordinates, offering both computational efficiency and

negligible artifacts. The general gridding approach was

originally proposed in radio astronomy (Brouw, 1975) to back-

transform irregularly sampled Fourier data and later intro-

duced in computerized tomography by O’Sullivan (1985). In

the gridding technique the data in the Fourier space are

mapped onto a Cartesian grid after convolution with the

Fourier transform of a certain function w(x, y), whose

contribution is removed after the 2D inverse FFT. The idea is

to pass a convolution kernel over the data sampled on the

polar grid with the convolution output evaluated at the points

of the Cartesian grid. The success of the method depends on

the rate of decay of the convolution kernel outside the region

of interest compared with the values within. For best recon-

struction accuracy and minimal aliasing [introduced by the

uniform spacing of the Cartesian grid (O’Sullivan, 1985)], the

convolution kernel w(x, y) needs to be well concentrated in

the region of interest and its Fourier transform should vanish

for spatial frequencies larger than a few grid spacings. The

compact support of these functions required for reconstruc-

tion accuracy also guarantees the necessary computing

performance.

Here we use a separable form for w(x, y) = w(x)w(y), with

w(x) chosen from the family of 1D prolate spheroidal wave-

functions (PSWFs) of zeroth order (Slepian & Pollak, 1961).

In fact, it has been shown (Slepian & Pollak, 1961; Landau &

Pollak, 1961, 1962; Slepian, 1964) that these functions best

satisfy the requirement for maximal concentration of a time-

limited function to a limited bandwidth.

PSWFs cannot be expressed by means of well studied

functions and are difficult to calculate exactly. Nonetheless

simple accurate approximations exist, enabling the efficient

computation and storage of these functions and their Fourier
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transforms at run time, using known rapidly converging

expansions of PSWFs in terms of Legendre polynomials (Van

Buren, 1975; Xiao et al., 2001). For highest reconstruction

accuracy it is, however, important to consider a sufficiently

high expansion degree.

To prevent confusion it must be pointed out that inter-

polation and discrete convolution are equivalent if the basis

functions used for interpolation are convolutional, i.e. if the

basis is constructed by integer shifts of a single function. This

is the case in FTMs, where the words interpolation and

convolution can be, and actually often are, exchanged.

2.2. Mathematical formulation

In the following the equations governing tomographic

reconstructions are laid out from a viewpoint of direct FTMs

rather than, as usually done, from the perspective of FBP.

In particular the relationship between the 2D Fourier trans-

form of the object under study and the acquired data is shown.

This section should enable a better understanding of FTMs

and of the critical steps inherent in the implementation of

tomographic reconstruction algorithms.

We define the original and rotated coordinate system

according to the sketch in Fig. 1. The function f(x, y) and its

equivalent fr (t, s) in the rotated coordinate space describe the

properties of the object, e.g. the linear attenuation coefficient,

which one wants to reconstruct. p(t, ’), being a parallel

projection of f(x, y) taken at angle ’, represents the data

actually acquired.

According to the Fourier slice theorem (Kak & Slaney,

2001), the Fourier transform of p(t, ’) equals a line of the 2D

Fourier transform of the object taken at angle ’. Making use

of this theorem, the 2D Fourier space can be filled with the

Fourier transforms of parallel projections of an object taken at

different angles. Information on the linear attenuation coef-

ficient of the studied object can then be recovered by a 2D

inverse Fourier transform of the Fourier space F(u, v),

according to

f ðx; yÞ ¼
Rþ1
�1

Rþ1
�1

Fðu; vÞ exp
�
� i2�ðuxþ yvÞ

�
du dv; ð1Þ

if this is sufficiently sampled.

In practice, F(u, v) is known along radial lines and not on a

Cartesian grid as required by (1). To be able to use (1) the

Fourier space needs to be mapped from polar coordinates to

a Cartesian grid. In gridding algorithms, such as the one

presented here, the idea is to pass a convolution kernel

W(u, v) over the data sampled on the polar grid, with the

convolution output evaluated at the points of the Cartesian

grid. The contribution of W(u, v) is then removed after the 2D

inverse FFT.

In Cartesian coordinates this convolution step can be

expressed as follows,

Hðu; vÞ ¼ Fðu; vÞ �Wðu; vÞ

¼
Rþ1
�1

Rþ1
�1

Fðu0; v0ÞWðu� u0; v� v0Þ du0 dv0: ð2Þ

With a transformation to polar coordinates, one obtains

Hðu; vÞ ¼ Fðu; vÞ �Wðu; vÞ

¼
R2�
0

Rþ1
0

Fð! cos ’; ! sin ’Þ

�Wðu� ! cos ’; v� ! sin ’Þ! d! d’ ð3Þ

or

Hðu; vÞ ¼ Fðu; vÞ �Wðu; vÞ

¼
R�
0

Rþ1
�1

Fð! cos ’; ! sin ’Þ

�Wðu� ! cos ’; v� ! sin ’Þ !j j d! d’; ð4Þ

making use of the symmetry property F½! cosð’þ 180Þ;
! sinð’þ 180Þ� = Fð�! cos ’;�! sin ’Þ, where Fð! cos ’,

! sin ’Þ represents the measured data in the Fourier domain.

The multiplication Fð! cos ’; ! sin ’Þj!j in (4) corresponds

to the filtering operation in FBP routines. As is the case for

FBP, for FTMs superior reconstructions with smaller noise

contamination are also obtained if a smoothing window (e.g.

Parzen) is additionally used.

The analytical expression (4) calls for integration over all

spatial frequencies. In practice the data are discrete and

confined in space, therefore band-limited. As a consequence,

for the implementation of this method, (4) needs to be

discretized. Information about a projection is known in N

discrete bins and a projection can be represented by p0ðT; ’Þ
for T = 0; . . . ;N � 1. Its Fourier transform is

Pð��f cos ’; ��f sin ’Þ ¼
PN�1

T¼0

p0ðT; ’Þ expð2�iT��f Þ; ð5Þ

with � = �N=2; . . . ; 0; . . . ;N=2 and �f = 1/N.

If the bin size is assumed to be 1, a projection in the Fourier

domain will only exhibit energy in the frequency interval � =

�0.5. In addition, during an experiment only a finite number

of projections M at discrete angles can be acquired. Equation

(4) can then be approximated as
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Figure 1
Original and rotated coordinate system used.



QðU;VÞ ¼ �f ��
PM�1

m¼0

PN=2

�¼�N=2

Pð��f cos m��; ��f sin m��Þ

� CðU � ��f cos m��;V � ��f sin m��Þ ��f
�� ��;
ð6Þ

where �� = M=�.

The unlimited integral over ! in (4) is expressed as a limited

sum in the discretized version (6).

2.3. Artifacts and solutions

Computer implementation of tomographic reconstruction

algorithms, based both on FTMs and FBP routines, can lead to

several artifacts adversely affecting the reconstructed images,

as a result of the inherent discretization required. In fact,

interperiod interference (Fig. 2a) and a DC-shift (Fig. 4a) can

occur (Kak & Slaney, 2001; Magnusson et al., 1992) if the

nature of the circular convolution and the discretization of the

truncated filter kernel are not properly taken into account.

Although the recognition of these artifacts and their solution

are not new, in implementation of reconstruction algorithms

[e.g. iradon function in Matlab (MathWorks, Natick, MA,

USA)] these issues are nonetheless often neglected. Here we

are therefore clearly describing the problem, its origin and

appropriate approaches for a clean implementation.

2.3.1. Interperiod interference. By taking into account the

discrete, finite and band-limited characteristics of the problem,

and therefore moving from an infinite integral in (4) to a finite

sum in (6), an aperiodic convolution is converted into a

circular convolution, typical for a discrete-time Fourier

transform. If the nature of the circular convolution is not

properly taken into account, in particular the fact that one of

the two functions is assumed to be periodic, some of the

convolution terms ‘wrap around’ into the reconstructed image,

strongly contaminating the image content. In addition to the

clearly visible features at the borders of the reconstruction

(Fig. 2a), a general cupping with a positive gradient towards

the center is also overlaying the image (Marone et al., 2010),

completely compromising the quantitative character of the

technique and making the data analysis (e.g. segmentation)

less straightforward. These aliasing artifacts can easily be

overcome by adequately zero-padding the projections

(Fig. 2b). The minimum number of added zeroes must equal

the number of samples in the original projection minus 1.

2.3.2. Constant offset. The discretization of tomographic

reconstruction algorithms as described in x2.2 implies zeroing

out all information for the frequency interval corresponding to

� = 0 in equation (6), as opposed to the theory [equation (4)],

which instead calls for zeroing only at one specific frequency

! = 0. This increased loss of information is responsible for a

constant offset in the obtained grey-level values throughout a

reconstructed slice.

This artifact can be overcome following a different imple-

mentation of (4), which takes into account the band-limited

nature of the projection in an alternative way (Kak & Slaney,

2001),

Hðu; vÞ ¼
R�
0

Rþ1
�1

Fð! cos ’; ! sin ’Þ

�Wðu� ! cos ’; v� ! sin ’ÞRð!Þ d! d’; ð7Þ

where

Rð!Þ ¼ !j jrð!Þ ð8Þ

and

rð!Þ ¼
1 for !j j < �;
0 otherwise:

�
ð9Þ

The impulse response �ðtÞ of the filter Rð!Þ is given by its

inverse Fourier transform,

�ðtÞ ¼
Rþ1
�1

Rð!Þ expði2�!tÞ d! ¼
1

2

sinð2�t�Þ

2�t�
�

1

4

sinð�t�Þ

�t�

� �2

;

ð10Þ

assuming a sampling interval of 1.

For a discrete implementation the filter needs to be eval-

uated only at discrete points,

�ðTÞ ¼
1=4 for T ¼ 0;
0 for T ¼ even;
�1=ðT�Þ2 T ¼ odd:

8<
: ð11Þ

The discrete Fourier transform of �ðTÞ is shown in Fig. 3

compared with the ideal ramp filter j!j. The major difference

lies in the DC component. The substitution in (6) of j��f j by

the discrete Fourier transform of �ðTÞ removes the observed

constant offset from tomographic reconstructions (Fig. 4). If

(6) is used, a negative offset compared with the original is

observed. This offset is dependent on the zero-padding used.

In fact, by increasing the zero-padding, one decreases the size

of the frequency bin in the Fourier domain, and therefore the

loss of information related to zeroing occurring for � = 0.

Although zero-padding can mitigate this artifact, it cannot

eliminate it completely, as it is instead possible (Fig. 4b) by

considering the band-limited nature of the data in this alter-

native way.
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Figure 2
Reconstructed slices of a modified Shepp–Logan phantom (a) without
zero-padding showing interperiod interference and (b) with adequate
zero-padding. The dotted line shows where the line profiles in Fig. 4 are
taken. The grey scale has been adjusted to make the features and artifacts
more easily discernible. In this way the ellipse contour (pixel value = 1.0)
is saturated.



3. Accuracy assessment

To assess and highlight different aspects regarding the accu-

racy of the reconstructions obtained with the presented

algorithm, a synthetic and a real dataset have been chosen.

The accuracy is investigated using in particular line profiles

and histogram plots, since these tools give better insight into

the quantitative aspects as opposed to simple visual inspection

of 2D reconstructed slices.

3.1. Shepp–Logan phantom

The synthetic dataset chosen was the well known Shepp–

Logan phantom introduced in 1974 (Shepp & Logan, 1974)

(Fig. 5) and still in common use today. The used phantoms

have been generated with Matlab. Two versions have been

taken into account: a high-resolution (2048� 2048 pixels) and

a low-resolution (512 � 512 pixels) case. The corresponding

sinograms with 1501 different views over 180� have subse-

quently been created and reconstructed using the presented

algorithm and a standard FBP routine (Huesman et al., 1977).

Since in the used FBP algorithm the filter kernel is not

properly implemented (|!| is used instead of the pink curve in

Fig. 3), in order to be able to compare results, in Figs. 6 and 7

an artificial constant offset (0.018) has been added to the FBP

reconstructions. Compared with the modified Shepp–Logan

phantom also provided by Matlab and previously successfully

used for the accuracy assessment of FTMs (Marone et al.,

2010), the standard phantom (Shepp & Logan, 1974) features

more challenging density jumps.

Line profiles through the reconstructed slices and the

corresponding grey-level histograms are shown in Figs. 6 and 7

for the high- and low-resolution sinograms, respectively.

The line profiles and histograms show a general agreement

between the results obtained with FBP and gridrec. When the
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Figure 3
Filter kernel: comparison between the ideal ramp filter |!| (dashed black)
and the discrete Fourier transform of the finite and discrete impulse
response of the filter R(!) (pink) in the vicinity of the origin.

Figure 4
Line profile along the dotted line through the reconstruction of the modified Shepp–Logan phantom in Fig. 2(b) using different algorithms: (a) using the
approximation in equation (6) resulting in a DC shift, and (b) using an appropriate implementation of the discretized truncated filter kernel shown
in Fig. 3.

Figure 5
Original Shepp–Logan phantom (Shepp & Logan, 1974). The grey scale
has been adjusted to make the features in the ellipse discernible. In this
way the background (pixel value = 0.0) and the ellipse contour (pixel
value = 2.0) are saturated. The dotted line shows the position of the line
profiles in Figs. 6 and 7. The dashed square delimits the area used for the
histograms shown in the same figures.



Parzen filter (Huesman et al., 1977) is used for the recon-

struction and therefore the high frequencies are significantly

damped, line profiles for the two algorithms are almost not

distinguishable [Figs. 6(b) and 7(b)]. The comparable recon-

struction quality for this case is also confirmed by the grey-

level histograms [Figs. 6(d) and 7(d)]. On the contrary, if

higher frequencies are also considered

[e.g. by using the Lanczos filter

(Duchon, 1979)], some differences in

the noise level are obvious [Figs. 6(a)

and 7(a)]. This difference is also high-

lighted by the histograms [Figs. 6(c) and

7(c)]. For the high-resolution phantom,

gridrec reconstructions are visibly

noisier than the FBP ones [Figs. 6(a, c)];

for the low-resolution phantom, the

contrary is true [Figs. 7(a, c)]. These

observations hint at the sensitivity of

the presented algorithm to the angular

sampling of the Fourier space and

therefore to the total number of

projections acquired for a tomographic

scan. To fulfil the sampling theorem, the

required number of projections M is M =

N�/2, where N is the projection width

(Kak & Slaney, 2001). For the high-

resolution case, the 1501 views used are

not sufficient for satisfying the sampling

theorem and the problem is therefore

undersampled. For the low-resolution

case, 1501 views represent an over-

sampled problem. Since in FTMs the

critical step consists of the resampling of

the Fourier space from polar to Carte-

sian coordinates, the quality of the

reconstructions strongly depends on the

number of projections used. For FBP

routines this dependency is weaker and

the reconstruction quality is mainly

dominated by the accuracy of the back-

projection step. If the Fourier space is

strongly undersampled, the interpola-

tion in the Fourier space required by the

presented algorithm, in particular for

high frequencies where the sampling

is sparser, will lack accuracy and

the reconstructions will be noisier

compared with the results obtained with

a back-projection approach. This effect

is particularly evident in the Lanczos

reconstructions [Figs. 6(a) and 6(c)],

where the high-frequency content is

only marginally suppressed. In contrast,

if the Fourier space is oversampled, the

achieved interpolation accuracy guar-

antees superior results compared with

FBP routines [Figs. 7(a) and 7(c)]. For a

well sampled problem (not shown here),

the performance of these two types of

algorithms is comparable.
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Figure 7
The same as for Fig. 6, but the size of the original phantom used and the reconstructed images is
512 � 512 pixels.

Figure 6
(a, b) Line profiles along the dotted line in Fig. 5 and (c, d) grey-level value histograms for the
region delimited by the dashed square in Fig. 5. Black: original phantom; green and red:
reconstructions obtained with FBP and gridrec, respectively. For the reconstruction, different filters
have been used: Lanczos (a, c) and Parzen (b, d). The size of the original phantom used and the
reconstructed images is 2048 � 2048 pixels.



As expected, the chosen spatial

sampling of the projections combined

with the filter used has an influence on

the achieved spatial resolution in the

reconstructions. The observed degraded

resolution for the 512 � 512 pixel case

(Fig. 7), particularly evident when the

Parzen filter is used [rather smooth

transitions at density jumps in Fig. 7(b)],

is however common to both FBP and

gridrec reconstructions. The limited

spatial sampling is also at the origin of

ringing/lobe artifacts close to the largest

density jump, when the high-frequency

content is only slightly suppressed

(Fig. 7a).

The addition of noise to the synthetic

sinograms does not change the overall

picture. In particular, if the amount of

added noise is comparable with that

observed in real data, the trends of the observed reconstruc-

tion quality, including the superiority of the presented algo-

rithm for well sampled problems, agree with those for the

noise-free case. With increasing noise, the advantage of FTMs

in dealing with oversampled problems slowly disappears

however.

The resolution degradation inherent in the reconstruction

process has also been more rigorously assessed by character-

izing the point-spread function for the two approaches. For

this purpose a test pattern consisting of 162 points distributed

throughout the image in concentric circles has been used. In

addition to a high rotation symmetry, all recovered structures,

characterized by a bell shape, show a high similarity inde-

pendent of their position in the image plane, indicating an

almost spatially invariant point-spread function. We express

resolution in terms of the FWHM. For this purpose we aver-

aged all structures in each reconstruction. Comparison of the

FWHM of these mean curves indicates a small resolution

degradation when gridrec is used. This resolution difference is

marginal (about 5%) when Parzen is the chosen filter, and

slightly larger (15%) for reconstructions obtained with the

Lanczos filter. This observation is independent of the sampling

degree of the problem.

3.2. Real data

In Fig. 8 an axial slice through a real dataset used for the

accuracy assessment of the presented algorithm is shown. The

sample is a Ca-apatite human kidney stone measured at the

TOMCAT beamline (Stampanoni et al., 2006) at the Swiss

Light Source at the Paul Scherrer Institut. For optimized

contrast the used energy was set to 21.5 keV. The specimen

was magnified with the 4� objective resulting in a pixel size of

1.85 mm. Over 180�, 1501 equiangularly spaced projections

were acquired. Since each projection consists of 2048 � 2048

pixels, this problem is rather undersampled. The used sample

is complex, showing both intricate structural features and the

presence of different minerals.

The line profiles [Figs. 9(a) and 9(b)] through the recon-

structions obtained with gridrec and FBP show a remarkable

agreement. Despite the complex sample structure, a one-to-

one correspondence of the wiggles in the line profiles can be

observed. For the reconstructions obtained with the Lanczos

filter (Fig. 9a) where the high-frequency content is only

partially suppressed, slightly higher noise is observed in the

gridrec results, as was the case for the synthetic dataset. If the

Parzen filter is used and the high frequencies are therefore

more damped, the noise level resulting from the two consid-

ered algorithms is more comparable.

These observations are confirmed by grey-level histograms

[Figs. 9(c) and 9(d)], which consist of two major peaks. The

sharper peak around zero corresponds to the background, the

broader peak on the right to the sample. Although, in the

background, gridrec reconstructions are slightly noisier than

FBP results, accuracy differences in the sample region are

minor [Figs. 9(c) and 9(d), insets], and, when the Parzen filter

is used [Fig. 9(d), inset], basically non-existent, confirming the

high reconstruction quality guaranteed by the presented FTM.

Despite the filter kernel in the used FBP algorithm not

being properly implemented, a grey-level offset between the

reconstructions obtained with the two different methods is

hardly visible when real data are used. After careful investi-

gation of the magnified background peak, an offset in the grey

level of approximately 1.5 � 10�6 can be detected. A small

shift between the two histogram curves is also visible in the

inset in Fig. 9(c).

A degradation of the spatial resolution when gridrec is used

is not readily visible.

4. Algorithm performance

The main advantage of FTMs over FBP routines lies in the

possibility of using the FFT to perform the inverse 2D Fourier
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Figure 8
Axial slice through the tomographic reconstruction of a Ca-apatite human kidney stone. (a)
Overview: the dotted line shows the location of the line profiles in Fig. 9. The dashed square delimits
the area used for the histograms shown in Fig. 9. (b) Magnification of the specimen better
illustrating its complexity. [Sample courtesy of A. Pasch, Inselspital Bern, Switzerland. Image
acquired at the TOMCAT beamline (Stampanoni et al., 2006) at the SLS-PSI, Villigen, Switzerland.
Pixel size: 1.85 mm.]



transform in a number of steps in the

order of N 2 logN for an N � N array,

as opposed to nangle � N 2 for standard

FBP algorithms, resulting in a significant

increase in the reconstruction speed.

For the performance comparison

discussed here, a single 2048 � 2048

pixel slice has been reconstructed from

a 1501 � 2048 pixel sinogram on a

machine equipped with 12 Intel Xeon

processors clocked at 2.67 GHz (using

though only one single core) and 36 GB

RAM. Table 1 lists the time required

for slice reconstructions using different

algorithms and amounts of zero-

padding (ZP = 0.5 means an extension

of each sinogram side by half of the

original field of view).

For all reconstructions shown in this

work, ZP = 1.5 has been chosen to

match the zero-padding inherent in the

used FBP routine (Huesman et al., 1977). In such a case,

gridrec provides high-quality reconstructions in about one-

sixth of the time required by FBP. Moderate zero-padding

(ZP = 0.5) is, however, theoretically sufficient to avoid inter-

period interference (Kak & Slaney, 2001). Marone et al. (2010)

showed in fact that gridrec with ZP = 0.5 also guarantees a

comparable quality as FBP. In this case a 20-fold performance

improvement is achieved without accuracy degradation.

Also, compared with reconstruction approaches based on

FBP routines optimized for hybrid CPU/GPU architectures

(Chilingaryan et al., 2010), gridrec performs particularly well.

For a reconstruction with moderate padding, gridrec is in fact

about two times faster (Ferrero, 2011).

Other reconstruction methods [e.g. hierarchical back-

projection algorithms (Basu & Bresler, 2001)] have so far not

been considered for this performance comparison.

5. Conclusion

At third-generation synchrotron facilities, sub-second

temporal-resolution tomographic microscopy is becoming a

reality. From the hardware point of view (e.g. detectors,

photon sources), tremendous progress has been made during

the past few years, enabling the acquisition of invaluable new

tomographic datasets and therefore promising new science.

It is, however, still difficult to fully exploit the potential

of this order-of-magnitude increase in temporal resolution,

for lack of appropriate solutions for efficient data handling

and post-processing, when the generated rates are close to

10 GB s�1.

In this paper we demonstrate that the fast reconstruction

algorithm gridrec is a serious alternative to standard FBP

routines. The mathematical details of this FTM are for the first

time clearly laid out making this algorithm more accessible

to a wider community. Using both synthetic and real datasets

we show that this approach guarantees high-quality results.

Because it requires interpolation in the 2D Fourier domain,

gridrec exhibits a stronger dependency on the number of

acquired projections compared with FBP. With increasing

angular views, the improvement in signal-to-noise ratio for

gridrec reconstructions is larger than for the case of FBP.

Gridrec not only guarantees high-quality results but also

provides up to a 20-fold performance increase on standard

CPU clusters. Without the need for more specialized tech-

nology such as the emerging GPU architecture, ultrafast

reconstruction of single tomographic slices is within reach,

making real-time monitoring of the sub-second acquisition

process a reality. If raw data are readily rearranged into

sinogram format during camera read-out, with a moderate size

(up to a hundred nodes) CPU cluster high-resolution full

tomographic datasets can be reconstructed using gridrec in a

few seconds, making FTMs interesting for several applications

(e.g. medical imaging, homeland security), where real-time

visualization of the results would be extremely beneficial.
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Figure 9
(a, b) Line profiles along the dotted line in Fig. 8 and (c, d) grey-level value histograms for the
region delimited by the dashed square in Fig. 8. Green and red: reconstructions obtained with FBP
and gridrec, respectively. For the reconstruction, different filters have been used: Lanczos (a, c) and
Parzen (b, d). The insets in panels (c, d) represent the magnification of the peak containing the
specimen information.

Table 1
Algorithm performance.

Reconstruction algorithm Time (s)

Gridrec, ZP = 0.5 0.9
Gridrec, ZP = 1.5 2.9
FBP, ZP = 1.5 16.7



The authors would like to thank Mark Rivers and Francesco

De Carlo from APS for providing a basic version of the gridrec

algorithm. Discussions with Daniel Citron (at APS) have also

been very fruitful. Peter Modregger (at PSI) provided

insightful comments on theoretical details. For help during

optimized compilation of the developed C code, Roman Geus,

originally at PSI, is gratefully acknowledged. Claudio Ferrero

at ESRF provided important information for performance

comparison with hybrid CPU/GPU architecture codes. The

invaluable help of Heiner Billich from the PSI AIT depart-

ment for hardware management, maintenance and optimiza-

tion is strongly appreciated.

References

Averbuch, A., Coifman, R. R., Donoho, D. L., Israeli, M. &
Shkolnisky, Y. (2008). Siam J. Sci. Comput. 30, 764–784.

Baker, R. J. (2010). CMOS: Circuit Design, Layout, and Simulation,
3rd ed. Piscataway: IEEE Press.

Basu, S. & Bresler, Y. (2001). IEEE Trans. Image Process. 10, 1103–
1117.

Brouw, W. N. (1975). Methods Comput. Phys. 14, 131–175.
Chalmers, M. (2011). ESRFnews, 57, 15–16.
Chilingaryan, S., Kopmann, A., Mirone, A. & dos Santos Rolo, T.

(2010). Real Time Conference (RT), 2010 17th IEEE-NPSS, pp. 1–8.
Choi, H. & Munson, J. D. C. (1998). Int. J. Imaging Syst. Technol. 9,

1–13.
De Carlo, F., Xiao, X. H. & Tieman, B. (2006). Proc. SPIE, 6318,

63180K.
De Witte, Y., Vlassenbroeck, J., Dierick, M. & Van Hoorebeke, L.

(2010). Second Conference on 3D Imaging of Materials and
Systems, Hourtin, France.

Di Michiel, M., Merino, J. M., Fernandez-Carreiras, D., Buslaps, T.,
Honkimaki, V., Falus, P., Martins, T. & Svensson, O. (2005). Rev.
Sci. Instrum. 76, 043702.

Dowd, B. A., Campbell, G. H., Marr, R. B., Nagarkar, V., Tipnis, S.,
Axe, L. & Siddons, D. P. (1999). Proc. SPIE, 3772, 224–236.

Duchon, C. E. (1979). J. Appl. Meteorol. 18, 1016–1022.
Ferrero, C. (2011). Private communication.
Hintermüller, C., Marone, F., Isenegger, A. & Stampanoni, M. (2010).

J. Synchrotron Rad. 17, 550–559.
Huesman, R. H., Gullberg, G. T., Greenberg, W. L. & Budinger, T. F.

(1977). Report PUB-214. Lawrence Berkeley Laboratory, Univer-
sity of California, USA.

Kak, A. C. & Slaney, M. (2001). Principles of Computerized
Tomographic Imaging. Philadelphia: Society for Industrial and
Applied Mathematics.

Landau, H. J. & Pollak, H. O. (1961). Bell Syst. Tech. J. 40, 65–84.
Landau, H. J. & Pollak, H. O. (1962). Bell Syst. Tech. J. 41, 1295–1336.
Magnusson, M., Danielsson, P.-E. & Edholm, P. (1992). Nucl. Sci.

Symp. Med. Imaging Conf. 2, 1138–1140.
Marone, F., Münch, B. & Stampanoni, M. (2010). Proc. SPIE, 7804,

780410.
Miao, J. W., Forster, F. & Levi, O. (2005). Phys. Rev. B, 72, 052103.
Mokso, R., Marone, F. & Stampanoni, M. (2010). Proceedings of the

10th International Conference on Synchrotron Radiation Instru-
mentation (SRI2009), edited by R. Garrett, I. Gentle, K. Nugent
and S. Wilkins, pp. 87–90. Melville: American Institute of Physics.

O’Sullivan, J. D. (1985). IEEE Trans. Med. Imaging, MI-4, 200–207.
Rivers, M. L., Citron, D. T. & Wang, Y. B. (2010). Proc. SPIE, 7804,

780409.
Shepp, L. A. & Logan, B. F. (1974). IEEE Trans. Nucl. Sci. 21, 21–43.
Slepian, D. (1964). Bell Syst. Tech. J. 43, 3009–3057.
Slepian, D. & Pollak, H. O. (1961). Bell Syst. Tech. J. 40, 43–63.
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