
LARGE-SCALE BIOLOGY ARTICLE

The Grapevine Expression Atlas Reveals a Deep
Transcriptome Shift Driving the Entire Plant into
a Maturation ProgramW OA

Marianna Fasoli,a Silvia Dal Santo,a Sara Zenoni,a Giovanni Battista Tornielli,a Lorenzo Farina,b

Anita Zamboni,a Andrea Porceddu,c Luca Venturini,a Manuele Bicego,d Vittorio Murino,e

Alberto Ferrarini,a Massimo Delledonne,a and Mario Pezzottia,1

a Dipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
b Dipartimento di Informatica e Sistemistica Antonio Ruberti, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy
c Dipartimento di Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy
d Dipartimento di Informatica, Università degli Studi di Verona, 37134 Verona, Italy
e Istituto Italiano di Tecnologia, 16163 Genoa, Italy

We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and
woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent
leaves. Together, these samples expressed ;91% of the predicted grapevine genes. Pollen and senescent leaves had unique
transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis
grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/
green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the
maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among
samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed
genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the
mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in
vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on
codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual
species and may be a defining characteristic of perennial woody plants.

INTRODUCTION

Grapevine (Vitis spp) is the most cultivated fruit crop in the
world, covering nearly 7.8 million hectares in 2011 and pro-
ducing 67.5 million tons of berries (http://www.oiv.int/). The
berries are harvested primarily for wine making (68%) but also to
provide fresh table grapes (30%), raisins (2%), and minor
products, such as grape juice, jelly, ethanol, vinegar, grape seed
oil, tartaric acid, and fertilizers. Grape berries contain anti-
oxidants such as polyphenols (e.g., resveratrol) with important
health benefits that are valued in the food, cosmetic, and phar-
maceutical industries.

Grapevine is a perennial from the family Vitaceae, which in-
cludes woody deciduous plants within the basal eudicots (Judd,
1999). It has a biennial reproductive cycle, and its growth

characteristics and patterning during development are distinct
from annual herbaceous and woody polycarpic plants (Mullins
et al., 1992; Carmona et al., 2007; Roubelakis-Angelakis, 2009).
To provide insight into the transcriptional programs controlling

the development of different organ systems, we generated a
global gene expression atlas for the common grapevine species
Vitis vinifera (cv Corvina). Comparable resources for other plant
species have been described but none representing perennial
woody crops. Functional developmental modules based on
expression profiling have been described in Arabidopsis thaliana
(Schmid et al., 2005), and dynamic transcriptional profiles rep-
resenting different cell types and developmental processes have
been identified through the analysis of gene expression atlases
in rice (Oryza sativa) (Li et al., 2006; Jiao et al., 2009) and barley
(Hordeum vulgare) (Druka et al., 2006). A recent atlas of tobacco
(Nicotiana tabacum) development based on gene expression
profiles from seed to senescence provided new regulatory tar-
gets and allowed the manipulation of specific pathways involved
in quality control (Edwards et al., 2010). Most recently, whole-
plant transcriptome surveys were published for soybean (Gly-
cine max), potato (Solanum tuberosum), tomato (Solanum
lycopersicum), and maize (Zea mays) (Aoki et al., 2010; Severin
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et al., 2010; Massa et al., 2011; Sekhon et al., 2011). Our com-
prehensive grapevine transcriptome map combined with the
complete genome sequence (Jaillon et al., 2007) provides the
basis for gene functional analysis on a global scale and elevates
grapevine to the status of a model fruit species.

RESULTS AND DISCUSSION

Defining the Grapevine Transcriptome

To study the entire grapevine transcriptome, we collected
triplicates of 54 diverse samples representing different vege-
tative and reproductive organs at various developmental stages.
In addition to developing and ripening berries, we included
berries that had undergone postharvest withering, a common
winemaking process. This represented the only stress condition
imposed in our survey (Figure 1; see Supplemental Table 1
online).

The expression of >98% of grapevine genes (http://srs.ebi.ac.
uk/) was monitored using the NimbleGen 090918_Vitus_exp_HX12
array. Robust multichip average data were used to evaluate the
number of expressed genes, allowing us to identify significant
signals representing gene expression and to hypothesize a posi-
tive correlation between the number of expressed genes and the
degree of bimodal distribution (see Supplemental Figure 1 online).
We detected the expression of 27,435 genes in at least one of

the 54 samples, representing ;91% of all genes on the array
(Figure 1A; see Supplemental Data Set 1 online). The number of
transcripts detected during organ development varied sub-
stantially in most of the systems we sampled, fluctuating be-
tween 5864 and 24,059 (representing 20 to 81% of all genes on
the array). The greatest fluctuations were seen in bud and leaf
samples, where more transcripts were detected during active
growth and fewer in autumn/winter months when the buds be-
come dormant and the leaves undergo senescence. By con-
trast, the number of transcripts detected in the seeds remained

Figure 1. Overview of the V. vinifera cv Corvina Samples Used for Microarray Analysis.

The photographs and diagrams show the shoot/cane organs (A) and berry cluster (B) from clone 48. The exact developmental stages are indicated by
the modified E-L classification keys on each picture. Rachis, seed, berry flesh, and skin samples were taken at the stages indicated in (B). Schematic
illustrations were modified from Jackson (2000).
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constant, and there were only minor fluctuations in the number
of transcripts detected in the rachis. The distribution of tran-
scripts among grapevine samples, despite their biological
complexity, was similar to that previously reported for different
rice cell types (Jiao et al., 2009) (see Supplemental Figure 2
online).

To identify and characterize organ-specific genes, we con-
structed a reduced 38-sample data set, excluding from the
analysis samples with redundant organ identity and those col-
lected during senescence and withering (see Supplemental
Table 2 online). The floral organs and buds expressed the
greatest number of organ-specific transcripts (Figure 2B). Seeds
and roots expressed more organ-specific transcripts than
leaves, as previously reported (Schmid et al., 2005). Surprisingly,
a large number of rachis-specific genes were identified, sug-
gesting this organ is particularly important during grapevine
fruiting. By contrast, there were very few genes expressed ex-
clusively in berries, tendrils, or stems.

Organ-specific transcripts were analyzed in more detail to
identify those expressed in multiple organs (i.e., within the
flower) and/or at multiple developmental stages (Figures 2C and
2D; see Supplemental Figure 3 online). Shared expression pro-
files were more common among different organs than at differ-
ent developmental stages in the same organ (e.g., no common
organ-specific genes were expressed in the developing bud or
berry at the different stages we tested). Few organ-specific
genes were shared among the different developmental stages of
the rachis and seed, but up to 16% of the organ-specific genes
expressed in the flower were common to the different floral or-
gans. These data imply that organ identity in the grapevine
transcriptome is less important than the developmental stage.
We assessed the function of the organ-specific transcripts

and found that bud-specific transcripts were primarily represented
by transcription factors, signaling proteins, and transporters (see
Supplemental Data Set 2 online). Many of the flower-specific
transcripts represented transport functions, including several ABC

Figure 2. Global Gene Expression Patterns in the Different Samples.

(A) Number of genes expressed in each of the 54 samples. Total: number of gene expressed in at least one organ (27,453; ;93% of all genes on the
array). Common: genes expressed in all 54 organs (2948; ;10% of all genes on the array).
(B) Number of organ-specific genes. Only samples with nonredundant organ identity were analyzed (see Supplemental Table 2 online).
(C) Shared and specific expression profiles of genes expressed in multiple floral organs.
(D) Shared and specific expression profiles of genes expressed at multiple bud developmental stages.
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transporters, some of which may be required to form a cuticular
layer in the petals to act as a diffusion barrier (Bessire et al.,
2011). Several of the seed-specific transcripts represented
transcription factors, including a TT2-like Myb factor (present at
the postfruit set [PFS] and veraison stages) required for seed
coat proanthocyanidin biosynthesis in Arabidopsis (Baudry
et al., 2004). Many of the root-specific transcripts represented
secondary metabolic functions, predominantly monolignol and
monoterpene biosynthesis. The roots also expressed six tran-
scripts encoding germin-like proteins, which may help to form
a defensive barrier during emergence from the soil but are also
implicated in symbiosis (Himmelbach et al., 2010). Only a few
tendril-specific transcripts were identified, including several re-
lated to auxin signaling/responses and one encoding a TT16-like
MADS transcription factor that is thought to control organ
growth in Arabidopsis (Prasad et al., 2010). Most of the rachis-
specific transcripts were identified at the mature stage (Rachis-
R). Approximately 30% of these transcripts encoded proteins
involved in stress responses, but others were related to trans-
port and signal transduction (e.g., kinases and annexins), indi-
cating that the rachis is not solely a structural organ. Remarkably,
more than half of the berry-specific genes we identified do not
have an assigned function yet, suggesting that berry development
has unique characteristics that are not well understood at the
molecular level.

Tissue Transcriptome Relationships

To score the quality of our expression data set, we performed
coexpression analysis using selected grapevine genes as
queries to identify correlations between genes involved in the
same process. We used the closest grapevine homologs of
Arabidopsis PSAD1 (photosystem I reaction center subunit II)
and LHCII (for light-harvesting complex II), both related to
photosynthesis, as well as a regulatory gene (MYBA1) and
a structural gene (FLAVANONE 3-HYDROXYLASE1 [F3H1]) from
the flavonoid pathway. This identified several photosynthesis-
related genes that correlated with PSAD1 and LHCII, and several
additional flavonoid pathway genes correlated with MYBA1 and
F3H1, with some of them representing known transcriptional
hierarchies (see Supplemental Figure 4 online). We generated
a Pearson’s distance correlation matrix to compare the tran-
scriptomes from each sample (Figure 3A). This showed a strong
correlation among the mature/woody samples and a clear dis-
tinction between the mature/woody and vegetative/green sam-
ples. The pollen transcriptome was highly distinctive as was the
transcriptome of the leaf undergoing senescence, both showing
little resemblance to the other samples. The resulting dendro-
gram showed that samples clustered predominantly in relation
to temporal dynamics and that organ identity was less important
(Figure 3B; see Supplemental Figure 5A online). Remarkably,
this distribution did not depend on the expression levels of the
corresponding genes (see Supplemental Figure 5B online). We
also noted a separation between ripened berries and vegetative/
green tissues when overrepresented berry samples were ex-
cluded from the analysis (see Supplemental Figure 5C online).
This was confirmed by generating a Pearson’s distance corre-
lation matrix using previously released RNA-seq data mapped

onto the 12x Grape Genome, V1 Gene Prediction (Denoeud
et al., 2008; Zenoni et al., 2010) (Figures 3C and 3D; see
Supplemental Table 3 online). These results confirmed that or-
gan maturity was more important than organ identity in defining
a common transcriptome, and the same effects were observed
regardless of the analytical method employed and the over-
representation of particular samples.
The partition between mature/woody and vegetative/green

samples was also maintained for gene expression profiles (Figure
3E; see Supplemental Figure 6 online). Hierarchical clustering
(HCL) analysis revealed four major groups of genes whose tran-
scriptional profiles defined the mature/woody samples, vegeta-
tive/green samples, pollen, and leaves undergoing senescence.
The last two samples were typified by their characteristic tran-
script profiles, validating our hypothesis that these two organs
possess highly distinguishable physiological traits based on
their unique transcriptomes.

Molecular Biomarkers

To gain insight into the physiological and molecular factors un-
derlying the separation between samples, we performed prin-
cipal component analysis (PCA) on the complete data set. We
used the first 11 principal components to explain 70.65% of the
variability. The second component (11.40%) represented leaves
undergoing senescence and the third component (7.99%) rep-
resented pollen (see Supplemental Figure 7A online). The rela-
tionships among the other samples were investigated in more
detail by carrying out a second PCA on the 52-sample reduced
data set (without pollen and senescent leaves). The first principal
component (19.27%) included four clusters of gene expression
profiles (see Supplemental Figure 7B online). We used orthogonal
bidirectional projections to latent structures discriminant analysis
(O2PLS-DA) (Trygg, 2002) to confirm the PCA data, which verified
the four-class distribution: withered berries, mature/woody sam-
ples, flowers/stamens, and all the remaining vegetative/green
samples (Figure 4A). Samples of berries treated by postharvest
withering were clearly separated from the other mature/woody
samples, and flowers and stamens were clearly separated from
the other vegetative/green samples.
Putative molecular biomarkers (i.e., transcripts whose pres-

ence or absence defines the samples in a given class) were
identified by applying four distinct two-class O2PLS-DA models,
using in each case the observations from one class as a refer-
ence and grouping the other three observations in one unique
class (Zamboni et al., 2010). An S-plot (Wiklund et al., 2008) was
then used to select putative biomarkers within the first (positive
biomarkers) and last (negative biomarkers) percentiles (Figures
4B and 4C; see Supplemental Data Set 3 online). Positive bio-
markers representing the flowers and stamens included tran-
scripts corresponding to enzymes in the monoterpenoid and
sesquiterpenoid biosynthesis pathways (e.g., enzymes that syn-
thesize germacrene, cadinene, terpineol, pinene and myrcene,
which are prominent components of floral scents) (Martin et al.,
2010). There were also eight pectinesterase and seven poly-
galacturonase transcripts encoding cell wall–modifying enzymes
involved in flower abscission (van Doorn and Stead, 1997) and
pollen tube elongation (Bosch and Hepler, 2005). Notably,

3492 The Plant Cell

http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1
http://www.plantcell.org/cgi/content/full/10.1105/tpc.112.100230/DC1


Figure 3. Tissue Transcriptome Relationships.
(A) Correlation matrix of the whole data set. The analysis was performed by comparing the values of the whole transcriptome (29,549 genes) in all 54
samples, using the average expression value of three biological replicates and Pearson’s distance as the metric. Correlation analysis was performed
using R software.



a homolog of Arabidopsis galacturonosyltransferase-like 4,
which scored the highest p(corr) value, was previously shown to
be expressed specifically in Arabidopsis stamens and pollen
grains (Kong et al., 2011). Pectinesterase and stilbene synthase
transcripts were identified as biomarkers of withered berries,

agreeing with previous studies showing that cell wall modifica-
tion and resveratrol biosynthesis are important aspects of the
withering process (Versari et al., 2001; Zamboni et al., 2008). We
also identified the Ras GTP binding protein RAN3, which regu-
lates RNA and protein transport through nuclear pores and has

Figure 3. (continued).

(B) Cluster dendrogram of the whole data set. The Pearson’s correlation values were converted into distance coefficients to define the height of the
dendrogram.
(C) Correlation matrix for the RNA-seq data set. Reads generated in previous experiments (Denoeud et al., 2008; Zenoni et al., 2010) were remapped on
the 12x grapevine genome, V1 gene prediction.
(D) Cluster dendrogram for the RNA-seq data set. Reads generated in previous experiments (Denoeud et al., 2008; Zenoni et al., 2010) were remapped
on the 12x grapevine genome, V1 gene prediction.
(E) HCL analysis on the whole 54-sample data set. Pearson’s correlation distance was used as the metric, and TMeV 4.3 software was used to create
the transcriptional profiles dendrogram.

Figure 4. Global Gene Expression Trends in Grapevine.

(A) Variables and scores scatterplot of the O2PLS-DA model (3 + 5 + 0, UV, R2Y = 0.967, Q2 = 0.868) applied to 52 samples, confirming the separation
into four classes sharing similar expression signatures. Components 3 and 5 represent the predictive and orthogonal components identified by the
model, whereas 0 represents the background variation (UV = unit variance scaling method).
(B) and (C) The expression profiles of positive (B) and negative (C) putative molecular biomarkers were selected using an S-plot (Wiklund et al., 2008)
within the first (positive) and the last (negative) percentile.
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previously been identified as a positive biomarker of withering
in Corvina berries (Zamboni et al., 2010). Several transcripts
encoding stress response, ethylene response, and protein re-
cycling functions were strongly represented in mature/woody
samples, along with a population of (predominantly zinc finger)
transcription factors, suggesting that significant transcriptional
reprogramming is required for the transition to the mature
phase. As expected, vegetative/green sample markers were
rich in photosynthesis-related transcripts, including those en-
coding 11 light-harvesting complex subunits, five photosystem
reaction center subunits, and the COP-1–interacting protein
CIP-7, a positive regulator of light-induced genes (Yamamoto
et al., 1998).

Division of Samples into Topics Defined by High-Level
Gene Expression

Potential correlations between samples in terms of the magni-
tude and consistency of gene expression were evaluated using
a biclustering analysis method based on a probabilistic topic
model called probabilistic latent semantic analysis (PLSA),
which allows data sets to be modeled in terms of hidden topics
or processes that can reflect underlying meaningful structures
(Hofmann, 2001; Joung et al., 2006; Bicego et al., 2010). We
applied this method to the entire data set to discover groups of
genes sharing compatible expression patterns across subsets
of samples (Madeira and Oliveira, 2004; Preli�c et al., 2006). The
basic idea in the gene expression scenario is that a topic may be
roughly intended as a biological process, which can characterize
a subset of samples (namely, the samples in which the process
is active). At the same time, a topic may be related to the acti-
vation of a particular set of genes (namely, the genes related to
the particular process). Following this reasoning, the relation
between gene expression and samples is said to be mediated
through the probabilistic presence of the topics (Joung et al.,
2006; Bicego et al., 2010). Penalized likelihood statistical anal-
ysis (Bayesian information criterion) (Schwarz, 1978) was used
to define the optimal number of topics containing highly cor-
related samples (see Supplemental Figure 8 online). The eight-
topic model confirmed the modulation of the grapevine
transcriptome in relation to temporal dynamics, reflecting specific
metabolic processes rather than organ identity (Figure 5A).
Topic 1 (pollen, stamen, and, with lower probability, whole
flower samples) was characterized by the strong expression of
genes related to transport, cell wall structure, and lipid metab-
olism (Figure 5B; see Supplemental Data Set 4 online). The cell
wall group included several pectin metabolism genes, the cel-
lulose synthase gene CSLG2 (associated with the inner pollen
grain wall or intine), and ECERIFERUM1, whose product is as-
sociated with the anther cuticle and the outer pollen grain wall or
exine in Arabidopsis, suggesting a protective role during grape-
vine pollen grain development (Jung et al., 2006). The lipid me-
tabolism group included transcripts for three Gly-Asp-Ser-Leu
esterases/acylhydrolases that may regulate changes in lipid
composition at the pollen-stigma interface (Updegraff et al.,
2009). We also identified a transcription factor homologous to
Arabidopsis MYB24, which plays a role in anther development
(Matus et al., 2008). Topic 2 (leaves undergoing senescence)

was characterized by the strong expression of stress response
genes, including those encoding several ribosomal proteins and
histones that may control stress-induced gene expression and
protein synthesis (Pandey et al., 2008; Falcone Ferreyra et al.,
2010), abiotic stress response enzymes, such as stilbene syn-
thase, glutathione S-transferase (oxidative stress), and EARLY
LIGHT-INDUCED PROTEIN1 (illumination stress), and patho-
gen response factors, including metallothionein (Breeze et al.,
2011), PATHOGENESIS-RELATED10-like proteins, and two
ADP-ribosylation factors (Nomura et al., 2011). Samples from
mature/woody samples were distributed over three topics: rip-
ening berries (topic 3), withering berries (topic 5), and veraison
and mid-ripening seeds, winter buds, and woody stems (organs
related to woody structures or to the dormant state; topic 4).
Topics 3 and 5 were characterized by the strong expression of
genes related to carbohydrate metabolism (particularly starch
and sugar), but remarkably no genes representing secondary
metabolism were included. Topics 3 and 5 also included stress
response genes relevant to dehydration and/or pathogens,
which characterize berry ripening and withering (Davies and
Robinson, 2000; Zamboni et al., 2010). Topic 5 also included
the high-level expression of polyubiquitin, protease, and pro-
teasome subunit genes, representing the transcriptional con-
trol of protein degradation and recycling during withering, where
dehydration and sugar concentration lead to significant physiol-
ogical changes. Topic 4 was represented by a small number of
genes, mainly encoding stress and hormone response pro-
teins, such as metallothionein and dehydrin, an ABA-INDUCED
WHEAT PLASMA MEMBRANE-19 protein homolog that could
mediate ABA-induced freezing tolerance, and the dormancy
regulator DRM1. Topic 4 also contained an AtMYB73 homolog,
which is related to cold acclimation in Arabidopsis (Jung et al.,
2008).
Samples from vegetative/green samples were also distributed

over three topics: green leaves (topic 6), rachis and tendrils at
fruit set and rachis at postfruit set (topic 7), and young green
tissues (topic 8). Topic 6 was characterized by the high-level
expression of genes related to photosynthesis and glycolysis,
as expected for a grouping of young and mature leaves and
(as minor contributors) petals, including those encoding several
apoproteins of the light-harvesting complex associated with
photosystem II (Lhcb) and a homolog of the Arabidopsis circa-
dian clock Myb transcription factor CCA1, supporting its role in
the regulation of Lhcb expression and its close association with
circadian rhythms in the grapevine leaf (Wang and Tobin, 1998).
Topic 7 grouped the first two rachis stages and the last tendril
stage, confirming the ontogenic relationship between these two
organs, which are peculiar to grapevine. The three last rachis
stages, the berry pericarp, skin, and flesh at PFS, the green
stem, and root samples were also represented (albeit with
a lower probability) in this topic. All these organs are charac-
terized by reaching their final shape and size and by a forth-
coming metabolic shift to the mature phase. Many of the
strongly expressed genes included in this topic are involved in
transport and stress responses, including at least four encoding
aquaporins that regulate the movement of water across mem-
branes. This is consistent with the translocation activity of most
of the organs represented in this topic (Shatil-Cohen et al.,
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Figure 5. Biclustering Analysis with the PLSA Algorithm.

(A) Samples were divided into eight topics defined by high-level gene expression.
(B) Functional category distribution of topic-specific transcripts. The V1 version of the 12x draft annotation of the grapevine genome allows the
identification of ;70% of genes. This was manually verified and transcripts were grouped into the 18 most represented functional categories, based on
Plant GO Slim biological processes classification.



2011). Transcripts representing the grape homologs of the
Arabidopsis transcription factors ETHYLENE INSENSITIVE3
(EIN3) and JASMONATE-ZIM DOMAIN1 (JAZ1), which may in-
tegrate ethylene and jasmonate signaling during development
(Zhu et al., 2011), were also strongly expressed in this topic. The
JAZ1 homolog (but not the EIN3 homolog) was also strongly
expressed in topic 6, perhaps reflecting a role in the repression
of epidermal differentiation as previously established in Arabi-
dopsis (Qi et al., 2011). Topic 8 included the two inflorescence
stages, seeds at fruit set and postfruit set, berry pericarp at fruit
set, latent bud, bud at burst, bud after burst, green stem, and
young and well-developed tendrils. These growing organs were
characterized by the high-level expression of genes involved in
growth (e.g., carbohydrate and cell wall metabolism, photo-
synthesis, and ribosomal activity). The protection of such de-
veloping organs is underlined by the strong expression of genes
encoding flavanone-3-hydroxylase and leucoanthocyanidin di-
oxygenase, which contribute to the accumulation of flavonoid
compounds that protect plants against UV radiation.

Gene Coexpression Dynamics Contribute to the Division
between Green/Vegetative and Mature/Woody Samples

We studied the transcriptomic behavior of clustered samples in
more detail by analyzing the coexpression of genes previously
identified by HLC analysis as typical representatives of vege-
tative/green or mature/woody samples (Figure 3E). We looked at
the correlation among gene pairs from these selected groups
independently (see Supplemental Data Set 5 online). Tran-
scriptome correlation analysis in vegetative/green samples re-
vealed genes potentially involved in diverse processes, such as
photosynthesis, secondary metabolism, and hormone signaling.
A clear example of genes from the same pathway with a high
degree of gene pair correlation is provided by two linalool syn-
thases and three 1,8-cineole synthases from the plastidial 2-
methyl-D-erythritol-4-phosphate pathway (Bohlmann et al., 1998;

Emanuelli et al., 2010). In mature/woody samples, transcriptome
correlation revealed several genes potentially involved in defense/
stress responses, lipid metabolism, and cell wall assembly. For
example, the dehydration-responsive protein RD22 was highly
correlated with many late embryogenesis abundant proteins,
which protect tissues from water loss (Hanana et al., 2008;
Olvera-Carrillo et al., 2010). The expression profiles of mature/
woody genes in the mature/woody samples were evidently more
correlated than those of green/vegetative genes in green/
vegetative samples (Figure 6). Surprisingly, the most correlated
gene pairs in vegetative/green samples (>99 percentile) showed
a higher correlation in the mature/woody samples sub–data set
than the converse analysis in which the most correlated mature/
woody gene pairs were investigated in the vegetative/green
samples sub–data set (see Supplemental Figure 9 online). Fur-
thermore, the 1000 best-correlated gene pairs in mature/woody
samples represented only 105 single genes, whereas those in
green/vegetative samples represented 163 single genes, indi-
cating that individual mature/woody genes participate on aver-
age in more gene pairs to establish tightly correlated groups
or small networks (see Supplemental Figure 10 online). This
suggests that the onset of the mature/woody developmental
program is characterized by the coexpression of a few genes
belonging to the same metabolic pathways.
The chromosomal locus of a gene influences its transcription

in higher eukaryotes (Williams and Bowles, 2004; Weber and
Hurst, 2011), so we integrated the pairwise correlation analysis
with a sliding-window analysis of coexpressed neighboring
genes. This identified several chromosome regions containing
neighboring genes coexpressed at a higher frequency (over a
threshold P value) than would be expected by chance (see
Supplemental Figures 11A and 12 and Supplemental Data Set 6
online). Most of these regions contained duplicated genes, as
previously reported in other eukaryotes (Williams and Bowles,
2004; Weber and Hurst, 2011). A remarkable example is pro-
vided by cluster 34 on chromosome 16 (chr16-clA34), which

Figure 6. Coexpression Distribution among Green/Vegetative Samples and Ripe/Woody Samples.

Pairwise gene correlation analysis was computed by calculating the Pearson’s correlation for each gene pair in both specific subsets of organs. Curve
distributions are represented by the areas under the curves normalized to 1. Green curve, green/vegetative samples; red curve, ripe/woody samples.
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includes 35 stilbene synthase genes. Some groups of coex-
pressed neighboring genes identified during the whole data set
analysis were found to be coexpressed in a particular subset of
samples following a more detailed analysis (e.g., chr3-clA5 in
withered berries, roots, and seeds and chr10-clA18 in green
buds and other vegetative samples). To determine whether
vegetative/green or mature/woody samples could be charac-
terized specifically by the coexpression of neighboring genes,
we analyzed changes in coexpression between the two groups
of samples (see Supplemental Figures 11B, 11C, and 13 on-
line). Significant coexpression peaks found on chromosome 2
during the whole data set analysis were shown to be confined
predominantly to mature/woody samples, such as cluster chr2-
clMW5, which contained R2R3 Myb family genes involved in the
control of anthocyanin synthesis (Matus et al., 2008). Conversely,

coexpression peak chr2-clVG5 contained thaumatin and osmotin
genes that are likely to be involved in defense responses during
vegetative growth (de Freitas et al., 2011a, 2011b) (Figure 7; see
Supplemental Data Sets 7 and 8 on line). Several Phe ammonia
lyase (PAL) genes were clustered on chromosome 16, one group
coexpressed in mature/woody organs, and another in vegetative/
green samples, suggesting phenylpropanoid-derived compounds
are abundant in both types of samples. The presence of mul-
tiple segmental duplications in this region could explain the
divergence of PAL gene expression profiles within the cluster
(Giannuzzi et al., 2011). The coexpression of neighboring genes
with apparently uncorrelated functions was observed in both
vegetative/green and mature/woody samples, which contrasts
with the coexpression analysis data covering the entire data set.
This may suggest a partnership between genes in the same

Figure 7. Sliding-Window Analysis of Coexpression along Grapevine Chromosomes 2 and 16.

Red and green lines correspond to positions on the chromosome where coexpression is specific for nonvegetative samples (positive variation) and
vegetative samples (negative variation), respectively (see Supplemental Methods 1 online for further details on sliding-window analysis).

Figure 8. Mutual Information of Synonymous Codon Usage in Grapevine Gene Coexpression Clusters.

Each row represents a coexpression cluster, whereas each column represents a synonymous codon. Significant mutual information is shown in blue
(P # 1024).
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cluster and a given developmental process, despite their ap-
parently unrelated molecular or cellular functions, and may be
related to epigenetic regulatory mechanisms that exert their
effects over genes in the same chromatin domain and recruit
them into coregulated pathways.

Vegetative/Green and Mature/Woody Samples Have
Different Codon Usage Preferences

Cellular tRNA pools can be highly dynamic, helping to tune
protein synthesis to meet specific physiological or develop-
mental requirements (Najafabadi et al., 2009). The analysis of
mutual information (MI) between codon usage and 60 transcrip-
tional clusters revealed the nonrandom use of many codons in
genes with the same expression profiles (see Supplemental Figure
14 online). This suggested that tRNA availability may contribute to
the regulation of gene expression in grapevine leading to the hy-
pothesis that transcriptomic differences between vegetative/green
and mature/woody clusters may be associated with differences in
tRNA availability. Indeed, we found that genes belonging to the
green/vegetative and mature/woody clusters (Figure 3E) have
significantly (P < 0.0001) different codon usage preferences (see
Supplemental Table 4 online).

To gain more insight into the expression profiles that con-
tribute most to the codon usage diversity, we grouped vege-
tative/green and mature/woody samples into 12 clusters and
tested coclustering genes for their codon usage preferences.
Genes expressed in either the vegetative/green or mature/
woody samples were compositionally diverse, confirming an
association between transcriptional and compositional clus-
tering (Figure 8; see Supplemental Figure 15 online). This means
that grapevine genes defining vegetative/green and mature/
woody samples not only have distinct expression profiles but
also different codon usage preferences and implies that a typi-
cal green/vegetative gene is disadvantaged if expressed in
mature/woody samples and vice versa. Clusters with the most
significant preferential codon usage often represented specific
developmental phases in certain samples (e.g., rachis and ten-
dril, cluster 4; berry withering, clusters 13 and 22; and seeds,
cluster 24).

Summary and Conclusions

We constructed a genome-wide transcriptomic atlas of a woody
fruit crop, using grapevine as a model because it is the most
widely cultivated fruit crop in the world. We analyzed gene
expression profiles in 54 diverse organ/tissue samples using
a comprehensive grapevine genome microarray and detected
the expression of ;91% of the predicted genes from the latest
12x grapevine genome annotation in at least one sample. The
remaining genes are probably expressed uniquely under con-
ditions that were not evaluated in our survey (i.e., different forms
of biotic and abiotic stress) (see Supplemental Data Set 1 and
Supplemental Figure 16 online). Microarray analysis revealed
that samples with unique characteristics (such as pollen grains
and leaves undergoing senescence) were clearly distinguishable
at the transcriptomic level from all other samples, which grouped

more according to their maturity and developmental stage
than their organ or tissue identity, as also supported by the in
silico analysis of RNA-seq data. Previous studies have fo-
cused mostly on berry development and ripening (Zamboni
et al., 2010; Zenoni et al., 2010; Tornielli et al., 2012), but
our transcriptomic atlas presents a comprehensive grapevine
transcriptome.
The fundamental reprogramming of the transcriptome during

maturation was highlighted by all three statistical approaches
we used to mine our microarray data. These different methods
also allowed us to identify the transcriptional relationships
among samples (Pearson’s correlation distance approach), pu-
tative biomarkers (O2PLS-DA approach), and sets of strongly
and consistently expressed genes that define groups (topics) of
similar samples (biclustering analysis based on a topic model
approach).
Coexpression analysis provided further insight into the dy-

namic reprogramming of the transcriptome during maturation by
revealing specific characteristics that defined vegetative/green
and mature/woody samples. The shift to the mature/woody
developmental program results from the reiterative coactivation
of particular pathways that are inactive or minimally active in
vegetative/green samples, whereas some pathways that are
active in vegetative/green samples remain at least partially ac-
tive after maturation. In many cases, the coexpression of genes
and, indeed, pathways involved in the maturation process in-
volved the coregulation of neighboring genes in clusters as well
as global regulation based on codon usage preference. This
peculiar behavior of the grapevine transcriptome might be
shared with other perennial woody plants, but it has not been
reported previously in the transcriptomes of herbaceous annual
species.
The grapevine genome sequence revealed several exam-

ples of expanding gene families (Jaillon et al., 2007; Velasco
et al., 2007; Matus et al., 2008), and some of which may have
an impact on ripe berry quality and the organoleptic proper-
ties of wine. Our gene expression atlas provides further insight
into the molecular mechanisms underlying berry development,
particularly the biclustering topic model analysis that identi-
fied both structural and regulatory genes that are potentially
the key players defining groups of organs with similar de-
velopmental and metabolic features. Many genes that define
the ripe berry topic currently have no known function and
therefore are important targets for functional annotation to
increase our knowledge of the processes that control berry
ripening.
Combined with the complete grapevine genome sequence,

our comprehensive transcriptome atlas elevates grapevine to
the status of a model fruit tree species, facilitating large-scale
investigations of gene function in the future. Our gene expres-
sion survey could be used to infer the specific metabolic pro-
cesses and cellular structures within each of the samples, as
recently reported in tomato (Matas et al., 2011). The tran-
scriptome atlas will also support vineyard management by
providing the means to pinpoint molecular changes that affect
yield, quality, environmental responses, and molecular factors
that underlie the phenotypic plasticity of different grapevine
varieties during cultivation.
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METHODS

Vineyard Features

Grapevine (Vitis vinifera cv Corvina, clone 48) samples were collected from
a 7-year-old vineyard (45° 279 1799 N, 11° 039 1499 E, Montorio, Verona
Province, Italy) during the 2008/2009 growing seasons at the same time of
day (;9:30 AM). The vineyard was 130 m above sea level, and the soil
comprised 36% sand, 36% clay, and 28% silt. The replacement cane
Guyot rows were north–south oriented, and 41B was used as the root-
stock.

Sample Collection

We collected 54 grapevine samples (bud, inflorescence, tendril, leaf, stem,
root, developing berry, withering berry, seed, rachis, anther, carpel, petal,
pollen, and seedling) covering most organs at several developmental
stages (see Supplemental Table 1 online). Three biological replicates were
taken for each sample. Buds were collected at five developmental stages,
the first corresponding to the first-season latent bud (E-L 23), the second
representing the winter dormant bud (E-L 1), the third corresponding to
the bud-swelling stage (E-L 2), the fourth representing the initial bud burst,
showing a green tip (E-L 4), and the last representing bud burst, when
a rosette of leaf tips is visible (E-L 5). Inflorescences were collected at two
developmental stages, the first representing the young inflorescence with
single flowers in compact groups (E-L 14) and the second representing
a well-developed inflorescence with separated flowers (E-L 17). Flowers
were collected at the beginning of flowering (10% of caps off; E-L 20) and
at the 50% caps off stage, which is considered the flowering phase (E-L
23). Floral organs were collected from undisclosed flowers collected at
two time points corresponding to E-L 20 (10% caps off, 16 to 18 leaves)
and E-L 23 (50% caps off, 17 to 20 leaves). A pool of these two de-
velopmental stages was created for each sample of petal, anther, and
carpel. Pollen was collected from opened flowers (>50% caps off, E-L 25).
Tendrils are slender structures with the same developmental origin as the
inflorescence. They grow opposite the leaf at each node, except for the
first two to three supporting leaves at the base of the shoot. Tendrils were
collected at three developmental stages, the first corresponding to a pool
of tendrils collected when the shoot bears seven separated leaves (E-L
14), the second corresponding to a pool of well-developed tendrils col-
lected when the shoot bears 12 separated leaves (E-L 17), and the last
corresponding to a pool of mature-coiled tendrils collected at fruit set
(berry diameter ;4 mm; E-L 29). Leaves were collected at three de-
velopmental stages, the first representing a pool of young light-green
leaves starting from the second from the tip, when the shoot bears ap-
proximately five well-separated leaves (E-L 14), the second corresponding
to mature leaves collected when the berry size was;4 mm diameter (E-L
29), and the third representing leaves undergoing senescence collected
before the beginning of leaf fall (E-L 43). Berries (pericarp) were sampled at
five developmental time points by freezing whole berries and removing the
seeds. The first stage (15 d after flowering [DAF]; E-L 29) corresponds to
the fruit set, when young berries are enlarging (>3 mm diameter); the
second stage (35 DAF; E-L 32) is the PFS, when berries (>7 mm diameter)
start touching; the third stage (70 DAF; E-L 35) is the veraison, when
berries begin to change color and enlarge (10.4° Brix); the fourth stage (84
DAF; E-L 36) corresponds to the mid-ripening stage (15.5° Brix); and the
final stage (115 DAF; E-L 38) represents complete ripening (20.0° Brix).
The sugar content (mean Brix degree value) was recorded at each time
point using a PR-32 bench refractometer (Atago Co.). Starting from the
PFS stage, berries were further dissected into skin and flesh tissues. After
harvest, clusters were placed for three months in single layers in a nat-
urally ventilated room with no automated temperature or humidity control.
Withered berries were sampled each month, and weight percentages of
the withering samples were compared with the weight of the ripening

berries (E-L 38). The sugar content was recorded as above. At the first
withering stage (WI), berry weight was 76.4% the ripe value and the sugar
content was 24.5° Brix. The second stage (WII) was characterized by
69.7% berry weight and 25.9° Brix, and the last stage (WIII) was char-
acterized by 67.3%berry weight and 26.7° Brix. At each time point, berries
were further dissected into skin and flesh tissues. Seeds were collected at
the first four stages of berry development, corresponding to E-L 29, E-L
32, E-L 35, and E-L 36. The rachis is the main inflorescence axis of the
grape berry cluster, and rachis samples were collected along with the
berry samples. Stems were collected at two developmental stages,
the first representing a pool of stems collected starting from the second
node from the tip (E-L 14) and the second representing a pool of woody
stems (cane) collected at E-L 43. Corvina roots were collected from in vitro
cuttings. The growth medium (HB) was prepared as described by Blaich
(1977). Developing young roots were pooled to create three biological
replicates. Ripened seeds were stored a 4°C for at least 2 weeks and then
planted in soil under normal greenhouse conditions. Seedlings were
collected after 2 months to create three pools at three different de-
velopmental stages. Cotyledons were still closed in the first stage, just
opened in the second stage, and wide open at the third stage.

RNA Extraction

For most samples, ;100 mg of tissue was ground under liquid nitrogen,
and total RNA was extracted using the Spectrum Plant Total RNA kit
(Sigma-Aldrich) following the manufacturer’s protocol. For berry flesh,
senescing leaves, and woody stems, ;400 mg of ground material was
required, and for berry pericarp and skin, seed, rachis, root, and latent and
winter buds, ;200 mg of ground material was required. We precipitated
the total RNA from winter buds, seeds, woody stems, and rachis at
veraison and mid-ripening with LiCl to remove contaminants that ab-
sorbed at 230 nm. LiCl was mixed with total RNA to a final concentration
of 2.5 M, incubated overnight at 4°C, and centrifuged at 13,000g, and the
pellet was washed with 70% ethanol before resuspending in water. RNA
quality and quantity were determined using a Nanodrop 2000 spectro-
photometer (Thermo Scientific) and a Bioanalyzer Chip RNA 7500 series II
(Agilent).

Microarray Hybridization and Data Extraction

Weperformed cDNA synthesis, labeling, hybridization, andwashing steps
according to the NimbleGen Arrays User’s Guide (version 3.2). Each
sample was hybridized to a NimbleGen microarray 090818 Vitis exp HX12
(Roche, NimbleGen), which contains probes targeted to 29,549 predicted
grapevine genes (http://ddlab.sci.univr.it/FunctionalGenomics/), repre-
senting;98.6% of the genes predicted from the V1 annotation of the 12x
grapevine genome (http://srs.ebi.ac.uk/) and 19,091 random probes as
negative controls. Each microarray was scanned using an Axon GenePix
4400A (Molecular Devices) at 532 nm (Cy3 absorption peak) and GenePix
Pro7 software (Molecular Devices) according to the manufacturer’s in-
structions. Images were analyzed using NimbleScan v2.5 software
(Roche), which produces pair files containing the raw signal intensity data
for each probe and calls files with normalized expression data derived
from the average of the intensities of the four probes for each gene. All mi-
croarray expression data are available in the Gene Expression Omnibus
under the series entry GSE36128 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?token=lfcrxesyciqgsjoandacc=GSE36128).

Statistical Evaluation of Gene Expression and Tissue Specificity

To find the threshold expression level, which defines a gene as “ex-
pressed” or “nonexpressed,” we computed the log2 data and estimated
the control group probability density for the 19,091 random probes in
each experiment using a normal kernel smoothing method with the
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threshold P = 0.05 and averaged the biological replicates only if at least
two (out of three) expression values exceeded the threshold. For each
group of samples (see Supplemental Table 2 online), we defined a tran-
script as tissue specific if its mean expression value exceeded the
threshold in at least one sample form a given organ.

Functional Category Distribution and GO Enrichment Analysis

All transcripts were annotated against the V1 version of the 12x draft
annotation of the grapevine genome (http://genomes.cribi.unipd.it/DATA/),
allowing 70% of the genes to be identified. This was verified manually and
integrated using gene ontology (GO) classifications. Transcripts were
then grouped into the 16 most represented functional categories
(GO:0008150, other processes; GO:0051090, transcription factor activity;
GO:0009725, response to hormone stimulus; GO:0019725, cellular ho-
meostasis; GO:0007165, signal transduction; GO:0006950, response to
stress; GO:0032502, developmental process; GO:0006810, transport;
GO:0015979, photosynthesis; GO:0006091, generation of energy;
GO:0090304, DNA/RNA metabolic process; GO:0044036, cell wall me-
tabolism; GO:0019748, secondary metabolic process; GO:0006629, lipid
metabolic process; GO:0006520, cellular amino acids and derivative
metabolic process; GO:0005975, carbohydrate metabolic process),
based on GO biological processes. Genes with unknown functions or with
a “no hit” annotation were also included. The distribution of functional
categories is represented in a histogram showing the percentage of the
genes in each topic (Figure 6B).

GO annotation analysis was applied to gene clusters and organ-
specific genes using the BiNGO 2.3 plug-in tool in Cytoscape version 2.6
with PlantGOslim categories, as described by Maere et al. (2005).
Overrepresented PlantGOslim categories were identified using a hyper-
geometric test with a significance threshold of 0.05 for gene clusters and
of 0.5 for organ-specific genes, after Benjamini and Hochberg false
discovery rate correction (Klipper-Aurbach et al., 1995).

Estimation of Bimodal Distribution

For each sample experiment, we first averaged the replicate genome-wide
data andestimated theprobability distribution usinganormal kernel smoothing
method. We then calculated the mean and SD by optimally fitting the data to
a unimodal normal distribution. Finally, we computed the mean square of the
difference between the estimated distribution and the normal unimodal dis-
tributionwith the estimatedmean and variance. Themean square is ameasure
of the “distance” of data from a unimodal normal distribution.We then ordered
these error data according to the number of expressed genes in each organ
and found a positive trend (see Supplemental Figure 1 online).

Correlation Analysis

A correlation matrix was prepared using R software and Pearson’s cor-
relation coefficient as the statistical metric to compare the values of the
whole transcriptome (29,549 genes) in all 54 samples, using the average
expression value of the three biological replicates. Correlation values were
converted into distance coefficients to define the height scale of the
dendrogram. FPKM (fragments per kilobase per million of reads mapped)
values were used to create the correlation matrix and the cluster den-
drogram from the RNA-seq data set. MATLAB scripts were used to
analyze the correlation among samples at different statistical metrics
(euclidean, spearman rank, cityblock, and cosine) and at three expression
levels (top 20%, between 20% and 80%, and bottom 20%).

Remapping Reads on the 12x Grapevine Genome Prediction

Illumina sequences derived from poly(A+) RNA isolated from four Pinot
noir tissues (in vitro–cultivated juvenile leaf, juvenile stem, juvenile root,

and embryonic callus) and three developmental stages of Corvina berry
pericarp (PFS, veraison, and ripening) were previously generated using
the Solexa/Illumina technology (Denoeud et al., 2008) and Illumina ge-
nome analyzer II (Zenoni et al., 2010) platforms, respectively. Sequence
alignments were generated with TopHat version 1.0.14 (Trapnell et al.,
2009) (see Supplemental Data Set 2 online). The V. vinifera RefSeq se-
quences were based on the 12-fold PN40024 genome newer Version 1
(http://srs.ebi.ac.uk/). Gene expression was evaluated using Cufflinks
software (version 0.9.2; http://cufflinks.cbcb.umd.edu/) (Trapnell et al.,
2010). Briefly, Cufflinks uses the alignment information at each gene locus
to assign multimapping reads to a specific locus using a maximum
likelihood estimation. On the basis of the relative abundance of fragments
(defined as a single read in single-end experiments or as two reads from
the same cDNA in paired-end experiments), the software is able to
compute the normalized expression measure as FPKM. The number of
reads falling in a given gene locus can be estimated from the FPKM value
as follows: n = FPKM 3 L 3 NTot 3 1029, where n = number of mapping
reads at a given gene locus, L = estimated length (bp) of the gene locus,
NTot = number of total mapping reads, and FPKM 5 gene locus FPKM
value.

PCA, O2PLS, and Putative Marker Genes

PCA was performed using SIMCA P+ (Umetrics). O2PLS-DA was used to
integrate the PCA data and reduce experimental variability. The latent
structures of the joint X-Y correlated variation were used to identify small
groups of correlated variables belonging to the two different blocks by
evaluating the similarity between each variable and the predictive latent
components of the X-Y O2PLS model by means of their correlation. The
significance threshold for the similarity was set using a permutation test,
and data integration was performed on each small group of X-Y variables
with significant correlation. O2PLS-DA allowed the identification of latent
variables yielding a parsimonious and efficient representation of the
process. To define the number of latent components for our O2PLS-DA
models, we applied partial cross-validation and a permutation test to
reveal overfitting. Multivariate data analysis was performed using SIMCA
P+ (Umetrics). Putative biomarker transcripts were selected from the
class-specific S-plots within the first (positive biomarkers) and the last
(negative biomarkers) percentile (Wiklund et al., 2008). Gene expression
values from the 52-sample data set of each group were log2 transformed
and normalized. Expression profiles were plotted in two different graphs
describing the peculiar trends of positive and negative biomarker genes
(R software).

Hierarchical Clustering

Cluster analysis was performed by the k-means method with Pearson’s
correlation distance (TMeV 4.3; http://www.tm4.org/mev) on the 54-
sample data set. HCL was performed on each cluster to represent gene
relationships in dendrograms (TMeV), with Pearson’s correlation distance
as themetric. An entire HCL representation was created by joining the four
groups. Supplemental Data Set 1 online provides information about the
membership of different clusters.

Biclustering Analysis with the PLSA Algorithm

Biclustering analysis aims to discover groups of genes sharing com-
patible expression patterns across subsets of samples (Madeira and
Oliveira, 2004; Preli�c et al., 2006).We used a technique (Joung et al., 2006;
Bicego et al., 2010) that employs PLSA, which allows data sets to be
modeled in terms of hidden topics or processes that can reflect underlying
meaningful structures. The basic idea in the gene expression scenario is
that a topic may be roughly intended as a biological process, which can
characterize a subset of samples (namely, the samples where the process
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is active). At the same time, a topic may induce the activation of a par-
ticular set of genes (namely, the genes related to the particular process).
Following this reasoning, it can be said that the relation between gene
expression and samples is mediated through the probabilistic presence of
the topics (Joung et al., 2006; Bicego et al., 2010). Given the expression
matrix, the relation topics/samples and genes/topics were learned using
the expectation maximization algorithm (Hofmann, 2001). To avoid local
minima, we performed 20 different training scenarios starting from dif-
ferent random initializations and retained the best model. The number of
topics (representing the free parameter of the model) was set using the
classic Bayesian information criterion, a penalized likelihood criterion
(Schwarz, 1978), and training the model with two to 30 topics (see
Supplemental Figure 8 online). The first type of information (relation topic/
samples) is completely encoded in the probability distribution p(z|d),
representing the probability of finding the topic “z” in the sample “d.” The
second type of information (relation topic/genes) was inferred by selecting
the 500 highest entries of the p(w|z) matrix, which describes the prob-
ability of the gene “w” given the topic “z,” namely, the level of presence of
such gene in such topic. Subsequently, for every topic, the selected genes
were grouped by their functional category.

Coexpression Analysis

Coexpression analysis of the whole data set was performed as sanity test
to score the quality of the expression data with a small number of selected
genes as queries, using the Pearson correlation distance (CorTo; http://
www.usadellab.org/cms/index.php?page=corto).

Pairwise Gene Correlation Analysis

We averaged replicate genome-wide data and computed the Pearson
correlation for each gene pair of a specific group of genes, using data
relative to a specific group of samples. This was achieved by computing
four pairwise gene correlation analyses: mature/woody cluster genes over
mature/woody samples, mature/woody cluster genes over vegetative/
green samples, vegetative/green cluster genes over vegetative/green sam-
ples, and vegetative/green cluster genes over mature/woody samples.

Sliding-Window Analysis of Chromosomal Coexpression

As previously described (Williams and Bowles, 2004), we averaged
replicate genome-wide data and computed the mean Pearson’s corre-
lation coefficient (R) of all possible pairs of neighboring genes for each
group over a sliding window of size 10 to give a measure of similarity in
expression profiles. We therefore assessed 45 different correlations, and
the mean R was used as a measure of the level of coexpression for each
particular block. Thesemean R values may be interpreted as the degree of
coexpression for each chromosomal region of 10 genes. Neighboring
genes were defined as genes that were immediately adjacent in the
grapevine genome. Themean R calculated from the real data set was then
compared with the mean R calculated from 10,000 data sets, in which the
order of both the genes and experiments were randomized. The distance
between genes was defined as the distance in base pairs on either strand
between the last coding position of the first gene and the first coding
position of the second. In the case of gene families, the specificity of the
probe set for each single gene was assessed to exclude the possibility of
cross-hybridization signals and misleading coexpression results.

Codon Usage Preference Analysis

MI between codon usage and expression profile was calculated by
comparing variable g (i.e., the normalized genic frequency of each codon)
and cluster a (a list of genes assigned to a given cluster) to determine any
nonrandom distribution (Elemento et al., 2007; Najafabadi et al., 2009).

The number of bins was set to five and gene cluster assignments were
shuffled 104 times for the assessment of MI significance. The normalized
frequency of a synonymous codon in a given gene was calculated as the
usage of that codon divided by the usage of the corresponding amino acid
in the same gene product. This statistic was calculated only when the
corresponding amino acid was present more than five times the de-
generacy of the encoded amino acid. Gene clusters were defined by the
k-means method with Pearson’s correlation distance (TMeV 4.3; http://
www.tm4.org/mev). The MI-RSCU package of the ICodPack suite was
used to calculate the mutual information of each codon. More information
can be found in Supplemental Methods 1 online. The codon usage di-
versity between genes belonging to the green/vegetative and mature/
woody was calculated using the PIRSCU script (Najafabadi et al., 2009). In
brief, the normalized frequency of each codon in each gene was cal-
culated as the usage of that codon divided by the usage of the amino acid
it codes for. The distance (d) of a pair of genes was calculated as the
absolute value of the difference between the normalized codon usage
frequencies in the two genes. The distance of all gene pairs was calculated
andgenepairswere sorted according to their d values. Then, the sorted gene
pairs were divided into 50 several equally populated bins and for each bin the
likelihood of being in the same cluster was calculated as by Najafabadi et al.
(2009). Pearson correlation coefficient betweenminimumdvalue for each bin
and the L values associatedwith that bin were calculated. The significance of
Pearson correlation coefficient was estimated by randomly shuffling gene
cluster assignments 104 times, each time repeating the calculations and
comparing with the original correlation coefficient.
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