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Abstract

A fundamental issue in biology and medicine is illustration of the overall drug impact which is always the consequence of
changes in local regions of metabolic pathways (subpathways). To gain insights into the global relationship between drugs
and their affected metabolic subpathways, we constructed a drug–metabolic subpathway network (DRSN). This network
included 3925 significant drug–metabolic subpathway associations representing drug dual effects. Through analyses based
on network biology, we found that if drugs were linked to the same subpathways in the DRSN, they tended to share the
same indications and side effects. Furthermore, if drugs shared more subpathways, they tended to share more side effects.
We then calculated the association score by integrating drug-affected subpathways and disease-related subpathways to
quantify the extent of the associations between each drug class and disease class. The results showed some close drug–
disease associations such as sex hormone drugs and cancer suggesting drug dual effects. Surprisingly, most drugs displayed
close associations with their side effects rather than their indications. To further investigate the mechanism of drug dual
effects, we classified all the subpathways in the DRSN into therapeutic and non-therapeutic subpathways representing drug
therapeutic effects and side effects. Compared to drug side effects, the therapeutic effects tended to work through tissue-
specific genes and these genes tend to be expressed in the adrenal gland, liver and kidney; while drug side effects always
occurred in the liver, bone marrow and trachea. Taken together, the DRSN could provide great insights into understanding
the global relationship between drugs and metabolic subpathways.
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Introduction

The increasing rate of failure in drug designs over the past

few decades is mainly due to the dominant assumption which

has historically relied upon particular families of ‘‘druggable’’

proteins [1–5]. More and more evidences has suggested that

rational drug designs should focus on all the drug-affected

proteins simultaneously and on the cellular networks or

pathways formed by these proteins from a genome-wide

perspective [4,6,7]. Metabolic pathways, which have crucial

and broad functions in organism, participate in most processes

of drug action on the cell and may be potentially available for

drug discovery [8–13]. In particular, if a local region of a

metabolic pathway (subpathway) contains many drug-affected

proteins, this region may be highly associated with these drugs.

The special regions containing highly-interactive proteins among

the intricate metabolic pathways could help us understand the

underlying mechanism of drug action on a subtle level [14,15].

Moreover, different drugs often exert both therapeutic and

adverse effects, because the proteins affected by these drugs may

interact with each other in a metabolic subpathway to carry out

special biological function together [16,17]. In addition, a drug

may affect many metabolic subpathways simultaneously carrying

therapeutic or adverse effects. Based on the complex relation-

ships between drugs and their affected metabolic subpathways, a

large-scale drug–subpathway network should be established and

network analysis should be utilized to study drug action on

these metabolic subpathways which could provide a system-level

understanding of drug action [18–20]. A variety of studies have

demonstrated the power of network analysis on biology and

pharmacology [1,2,4,5,16,21–23]. However, it is difficult to

construct the global relationship between drugs and metabolic

subpathways using traditional biological experimental studies.

Furthermore, many studies have focused on one aspect of drug

impact (for example, drug targets or side effects) and not take

into account the global relationships between drugs and the

affected metabolic subpathways [5,21,24,25].

These limitations could be alleviated to a great extent by the

development of high-throughput experimental and bioinfor-

matics technologies. On the one hand, some databases such as

the Connectivity Map (CMap), which is a genome-wide

transcriptional expression data set of selected human cells (5

cell lines) treated with bioactive small molecules including many

drugs [26], could provide a system detailing the impact of drugs
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including therapeutic and side effects. On the other hand, high

quality pathway structure data from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and some software packages are

available for effectively identifying drug-affected regions of

metabolic pathways [17,27]. Thus, we can obtain the drug-

affected genes from expression profiles in CMap and then

identify corresponding subpathways by the pathway-enriched

method. Here, we generated a bipartite drug metabolic

subpathway associated network (DRSN) in which nodes

represent drugs and metabolic subpathways and they were

connected if the drug-affected genes could be significantly

enriched to the subpathways. We then combined network

biology and pharmacology to (i) analyze the relationships

between drug dual effects and metabolic subpathways based

on the connection in the DRSN, (ii) explore the global inter-

relationships between diseases and drug response through

metabolic subpathways, and (iii) assess the tissue-specific

differences between drug therapeutic and non-therapeutic

subpathways. Our results showed that the DRSN may not only

offer insights into understanding underlying mechanisms of drug

actions but also provide a rational way to improve the drug

efficacy and clinical safety.

Results

Generating the Drug–metabolic Subpathway Network
We used genome-wide transcriptional expression data from the

CMap database and pathway data from the KEGG database to

construct the drug–metabolic subpathway network (DRSN)

(Figure 1). Currently, CMap contains 1309 bioactive small

molecules corresponding to 6100 instances (experiments) [26].

First, we selected the bioactive small molecules which were used as

drugs according to drug type descriptions extracted from the

DrugBank and the KEGG DRUG database [27,28]. After some

automatically and manually dealing steps such as matching

bioactive small molecule names to drug names and adding drug

classifications, etc. (see Text S1), we obtained 913 small molecular

drugs which were grouped into 14 drug classes using the

Anatomical Therapeutic Chemical (ATC) classification system

(see Dataset S1). Every drug (bioactive small molecule) has several

perturbation experiments (instances) under different conditions.

Second, we used fold-change analysis to identify differentially

expressed genes (DEGs) for every instance with |log2fold

change|.1 from the corresponding treatment and control gene

expression profiles. The DEGs were merged if the corresponding

experiments belonged to the same drug and these genes were

Figure 1. Schematic of the construction of the drug–metabolic subpathway network. We generated the drug–metabolic subpathway
network (DRSN) based on the drug-affected genes and pathway structure data from KEGG. First, we selected the small molecules which were used as
drugs and then found the affected genes for each drug from corresponding expression profiles in CMap. Second, for each drug, we applied the ‘‘k-
clique’’ subpathway identification method to identify the statistically significantly enriched subpathways by setting k = 3 and P-value ,0.01 to obtain
associations between the drugs and metabolic subpathways. Finally, we combined these drug–metabolic subpathway associations to form the DRSN.
doi:10.1371/journal.pone.0047326.g001
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considered to be affected genes for this drug. After the above steps,

we obtained 128734 unique drug–gene associations composed of

10412 drug-affected genes and 913 drugs. Third, we used the ‘‘k-

clique’’ subpathway identification method from the Subpathway-

Miner software package to identify significantly drug affected

metabolic subpathways [17] (see Text S1). There were 743

subpathways when k = 3. This parameter setting meant that the

distance among the enzymes in one subpathway was not greater

than 3 to ensure that enzymes in the subpathways have highly

similar functions. Finally, for each of the 913 drugs, we used

enrichment analysis in the ‘‘k-clique’’ subpathway identification

method to identify the statistically significant drug-affected

subpathways based on the corresponding drug-affected gene set

with a P-value,0.01. We then found that 488 drugs were

significantly associated with 403 subpathways. These drugs and

subpathways generated 3925 significant associations (see Dataset

S2). We then constructed a bipartite drug–metabolic subpathway

network consisting of small molecular drugs and drug-related

metabolic subpathways in which a drug and a subpathway were

connected if the drug-affected genes could be significantly

enriched in the corresponding subpathways (Figure 2).

The Basic Properties of the DRSN
The DRSN was composed of 891 nodes (403 subpathways and

488 drugs), and 3925 edges (Figure 2). 883 nodes formed a giant

component suggesting that the drugs and metabolic subpathways

were closely connected in the DRSN. The average degree of drug

and subpathway nodes in the DRSN was significantly higher than

that of 1000 randomized networks (P-value,0.001, see Figure

S1A and S1B) and the edges in the DRSN were denser than that

in randomized networks (P-value = 0 see Figure S1C), suggesting

that the drugs and metabolic subpathways were closely connected

at the system level. The reason for this may be that the DRSN

could represent the dual and complicated relationships between

drugs and subpathways. The degree of distribution of the drug and

subpathway nodes both followed power law distributions approx-

imately with a slope of 20.5835 and 20.887 respectively

andR2 = ,0.9421 and ,0.966 respectively (Figure S2A and

S2B). Thus, the DRSN was scale-free [29]. These results suggested

that a few subpathway nodes linked many drugs and a few drug

nodes act as hubs with a large number of links to subpathway

nodes.

The degree of subpathway nodes spanned a wide range from 1

to 53. Considering the top five highest degree subpathways nodes,

four nodes with degree.50 belonged to the folate biosynthesis

pathway (path:00790) (black ellipse in Figure 2), which is

important in drug design and is the potential therapeutic targets

of many types of drugs including antibiotics and anticancer drugs,

etc. [30–33]. Another subpathway node in the top five was inositol

phosphate metabolism (path:00562_5) (degree = 48) (blue ellipse in

Figure 2). Defects in this pathway contribute to many diseases

including cancers, leukemias, immunodeficiencies, autoimmune,

neurodegenerative, allergic and inflammatory disorders [34].

Some reports have indicated that many drugs such as anti-bipolar,

anticancer, cardiovascular and anti-inflammatory drugs could

target the inositol phosphate metabolism pathway [35–38]. In

contrast, many subpathways with a low degree were connected to

only a few drugs. For example, some subpathways belonging to

glycan biosynthesis and metabolism were only linked to verte-

porfin. Some subpathways in the DRSN revealed the potentially

functional mechanisms of drug side effects. For example, as shown

in Figure 3A, some antibiotic drugs such as ribavirin were linked to

steroid hormone biosynthesis (path:00140_1). Studies showed that

antibiotic treatment could affect normal steroid hormone synthesis

and lead to a disrupted intestinal homeostasis [39].

Similar to subpathway nodes, the drug nodes also displayed

evident differences in connection. The highest degree drug node

(degree = 53) was clindamycin (red ellipse in Figure 2), an

antibiotic, which can be used in topical or systemic treatment

[40]. It was linked to many types of subpathways, partly because of

its broadly large effects [41]. On the one hand, clindamycin can

cause a hypersensitivity reaction in many tissues including colon,

vascular, sensory organs, muscle, epithelium and liver [42–47]. On

the other hand, there may be many unknown clindamycin-

induced therapeutic and side effects which could provide insights

into drug repositioning. To alleviate the influence of chosen

threshold of hypergeometric tests, we also constructed a DRSN

with P-value = 0.05. We found that clindamycin had second

highest degree (degree = 104). Many drug nodes with degree = 1

were observed in the DRSN. For example, hesperidin, a vitamin

with anti-carcinogenic activity against lung cancer [48], was only

linked to phenylalanine, tyrosine and tryptophan biosynthesis

(path:00400_6). Some studies have reported that the concentra-

tions of tyrosine and tryptophan were changed in lung cancer [49],

suggesting a potential new anticancer mechanism of hesperidin.

Interestingly, some drugs belonging to different ATC classes were

connected to the same subpathways in the DRSN. A possible

reason for this is that these drugs may affect the same biological

process which may not have been noticed before. As an example,

berberine and physostigmine, which belong to different ATC

classes, were connected to the same subpathways (Figure 3B and

Table 1). Studies have shown that both these drugs can inhibit

acetylcholinesterase activity [50]. To better interpret drug–

subpathway associations, we searched more literatures about

some drug–subpathway associations from various significant levels

(Table S1).

It was noted that some drugs and subpathway nodes were

connected more closely and formed a module in the DRSN. As

shown in Figure 3C, these drugs mainly belonged to the

alimentary tract and metabolism (ATC code: A), nervous system

(ATC code: N), and genitourinary system and sex hormones (ATC

code: G) class. The subpathways mainly belonged to three

pathways: androgen and estrogen metabolism, tryptophan metab-

olism and arachidonic acid metabolism (Table 1). The connections

between these drugs and the subpathways were potentially

valuable. On the one hand, some connections between drugs

and subpathways revealed drug therapeutic effects. For example,

some sex hormone drugs were linked to androgen and estrogen

metabolism; and some nervous system drugs were connected to

tryptophan metabolism, which is considered to be involved in

serotonergic neuronal function [51,52]. Also, some connections

between drugs and subpathways provided potentially novel

therapeutic targets and applications for existing drugs. For

example, in Figure 3C, arachidonic acid metabolism subpathways

were connected to three classes of drugs. Some studies have

suggested that sex hormones such as testosterone and progester-

one, and some metabolism drugs and nervous system drugs can

modulate arachidonic acid metabolism in the brain or in neural

membranes and the arachidonic acid metabolism pathway is a

potential therapeutic target for neurological diseases [53–59]. On

the other hand, some connections revealed the mechanisms of

potential drug side effects. For example, the metabolism and

nervous system drugs were connected to androgen and estrogen

metabolism subpathways. Studies have shown that omeprazole

and some nervous system drugs are possibly agents responsible for

gynecomastia due to an impaired balance in the serum estrogen/

serum androgen ratio [60].

The Drug-Metabolic Subpathway Network
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Figure 2. The DRSN network. The circles and rectangles in the network correspond to drugs and metabolic subpathways, respectively. A drug and
a metabolic subpathway are connected by an edge if the corresponding drug-affected genes are statistically significantly enriched to the
corresponding subpathway. Node size is proportional to the degree of the node. Nodes are colored according to 14 ATC and 11 KEGG pathway
categories.
doi:10.1371/journal.pone.0047326.g002
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Drug Therapeutic and Side Effects and Metabolic
Subpathways in the DRSN

Drugs can produce desirable and undesirable changes in the

physiological cellular process and lead to subsequent therapeutic

effects and side effects. In the DRSN, the connections between

drugs and subpathways revealed the drug dual effects on the

human body. Some researchers have indicated that drugs binding

to similar proteins tend to cause similar effects and these affected

proteins may interact with each other to form a biological

subpathway [21,61–63]. Thus, if two drugs were connected to the

same subpathways in our network, they were likely to cause the

same therapeutic or side effects.

To examine this, we first downloaded the dataset of drug–

indication association from the paper by Yildirim et al. (see

Materials and methods) [5]. In the DRSN, there were 160 drugs

recorded in this drug–indication association and these drugs

formed 1586 unique connected drug pairs (two drugs which were

connected by the same subpathways in the DRSN). Of these

connected drug pairs, 67 shared the same indications. We then

generated 1586 randomized drug pairs for 1000 times. We found

that there were only 36 times when the number of randomized

drug pairs which shared the same indications were more than 67,

suggesting that connected pairs tended to share the same

indications (P-value = 0.036) (Figure 4A). We then downloaded

the public and accurate side-effect records from the SIDER

database including 888 drugs corresponding to 1450 side effects

[64]. In the DRSN, there were 199 drugs recorded in the SIDER

database and these drugs formed 2350 unique connected drug

pairs. In the SIDER database, some side effects, such as dizziness

and nausea, were caused by most drugs [21]. To improve the

specificity of similarity of drug pairs, we calculated the number of

side effects shared by drug pairs rather than the number of drug

pairs which shared the same side effects. We found that the

number of side effects shared by connected drug pairs was also

Figure 3. Three examples representing features of DRSN. All the examples are from the DRSN (A) Some antibiotic drugs were linked to steroid
hormone biosynthesis (path:00140_1). (B) Berberine and physostigmine were linked to the same subpathways. (C) Some drugs and subpathways
were closely connected closely in the DRSN. The drugs mainly belonged to alimentary tract and metabolism, nervous system, and genitourinary
system and sex hormones classes. The subpathways mainly belonged to three pathways: androgen and estrogen metabolism (path:00150),
tryptophan metabolism (path:00380) and arachidonic acid metabolism (path:00590).
doi:10.1371/journal.pone.0047326.g003

Table 1. Information of example subpathways in Figure 3.

SubpathwayID Pathway name

Example 1 path:00140_1 C21-Steroid hormone metabolism

Example 2 path:00460_2 Cyanoamino acid metabolism

path:00460_3 Cyanoamino acid metabolism

path:00400_2 Phenylalanine, tyrosine and tryptophan biosynthesis

path:00400_7 Phenylalanine, tyrosine and tryptophan biosynthesis

path:00350_16 Tyrosine metabolism

path:00650_16 Butanoate metabolism

path:00362_10 Benzoate degradation via hydroxylation

path:00362_13 Benzoate degradation via hydroxylation

Example 3 path:00590_1 Arachidonic acid metabolism

path:00590_3 Arachidonic acid metabolism

path:00590_4 Arachidonic acid metabolism

path:00590_5 Arachidonic acid metabolism

path:00590_6 Arachidonic acid metabolism

path:00590_7 Arachidonic acid metabolism

path:00150_1 Androgen and estrogen metabolism

path:00150_2 Androgen and estrogen metabolism

path:00071_2 Fatty acid metabolism

path:00591_1 Linoleic acid metabolism

path:00232_1 Caffeine metabolism

path:00232_2 Caffeine metabolism

path:00380_1 Tryptophan metabolism

path:00380_2 Tryptophan metabolism

path:00380_3 Tryptophan metabolism

path:00380_4 Tryptophan metabolism

path:00380_13 Tryptophan metabolism

The ID and names of example subpathways are provided. These subpathways were used as examples to illustrate the DRSN. Example 1, 2, 3 correspond to Figure 3A, 3B
and 3C, respectively.
doi:10.1371/journal.pone.0047326.t001

The Drug-Metabolic Subpathway Network

PLOS ONE | www.plosone.org 6 October 2012 | Volume 7 | Issue 10 | e47326



significantly higher than the number of side effects shared by total

drug pairs in the SIDER database (P-value,10{16Wilcoxon rank-

sum test) (Figure 4B). These results suggested that two drugs

connected by the same subpathways in the DRSN tended to be

used for the same indications and cause the same side effects.

Thus, the DRSN may help us explain the mechanism of drug

therapeutic effects and unwanted toxicity caused by drugs. As

shown in Figure 3C, some sex hormone drugs were connected to

subpathways involved in androgen and estrogen metabolism

(path:00150), suggesting the therapeutic effects of these sex

hormone drugs. Also, in Figure 3A, some antibiotics such as

netilmicin and lymecycline were connected to steroid hormone

biosynthesis (path:00140_1). This subpathway is related to

disrupted intestinal homeostasis which is a side effect always

caused by antibiotics [39].

In the DRSN, we found that the number of subpathways shared

by drug pairs ranged from 1 to 24. Thus, we questioned whether

more subpathways shared by two drugs mean more shared side

effects. Furthermore, we measured the correlation between the

number of the subpathways and the number of side effects shared

by the connected drug pairs, and found that the number of shared

side effects significantly increased as the number of the shared

subpathways increased (P-value = 0.0034) (Figure 4C). These

results indicated that if two drugs affected more subpathways

together, they tended to cause more of the same side effects.

Exploring Drug–disease Associations Through Metabolic
Subpathways

In the DRSN, the drug-affected subpathways revealed the

molecular mechanism of drug therapeutic effects and side effects.

Abnormalities in the biological functions of subpathways are

highly associated with the initiation and progression of many

diseases. It is likely that on the one hand, drugs exerted their

therapeutic effects through the subpathways related to the

corresponding indications; on the other hand, drugs also caused

many undesirable diseases (side effects) through the corresponding

disease-related subpathways. Thus, we can elucidate the dual

relationships between drugs and diseases through the metabolic

subpathways. To do this, we obtained the disease-metabolic

subpathways associations from the disease–metabolic subpathway

network (DMSPN) in our previous work [65] (see Materials and

methods). There were 545 nodes (302 subpathways and 243

diseases) in the DMSPN, of which 230 subpathway nodes were in

the drug–metabolic subpathway network. This indicated that a

large proportion (76%) of disease-related metabolic subpathways

was also affected by drugs (Figure 5A). We calculated the

association scores (see Materials and methods and Text S1)

between each drug class and each disease class (Figure 5B). The

association scores quantified the extent of correlation between

each drug class and disease class by the shared subpathways. As

shown in Figure 5B, we found that a few drug classes displayed

high correlation with their corresponding indications, especially

‘‘alimentary tract and metabolism’’ drugs (ATC code: A) and

metabolic diseases. Another example was the genitourinary system

and sex hormones drugs (ATC code: G) and reproductive diseases.

This indicated that some drugs exert their therapeutic effects

through the subpathways related to the corresponding indications.

However, we found that most drug classes were highly associated

with other disease classes rather than their indications suggesting

that the drugs could cause these undesirable diseases (side effects).

For example, the ‘‘system anti-infective’’ drugs (ATC code: J)

displayed close correlations with development diseases and

metabolic diseases suggesting that the system anti-infective drugs

may potentially lead to side effects belonging to these disease

Figure 4. The relationship between drug dual effects and
metabolic subpathways in the DRSN. (A) Of 1586 connected drug
pairs (drugs that were linked to the same subpathways), 67 shared the

The Drug-Metabolic Subpathway Network
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classes. Furthermore, we also found some interesting correlations

between drugs and diseases in Figure 5B, representing dual and

complicated drug-disease relations. For example, ‘‘genitourinary

system and sex hormone’’ drugs (ATC code G) displayed a high

correlation with cancers. Some studies have shown that sex

hormones have played a dual and implicated role in the

progression of breast, prostate, gynecologic, and colorectal cancer

[66]. However, the detailed mechanism is still unclear. A possible

reason for this phenomenon is that some sex hormone drugs

affected the subpathways belonging to tryptophan metabolism

(path:00380), arachidonic acid metabolism (path:00590) and

caffeine metabolism (path:00232) (Figure 3C). These subpathways

were also highly correlated with cancers in the disease–metabolic

subpathway network [65]. These results might provide insights

into cancer therapy and prevention.

On the contrary, some drugs displayed low correlations with

almost all disease classes (for example, ‘‘systemic hormonal

preparations’’ drugs and ‘‘sensory organs’’ drugs corresponding

to ATC code: H and S). These drugs may cause fewer side effects

which were spread rather than centered in one disease class.

Similarly, some disease classes also showed low correlation with

most drug classes (For example, aging diseases). The reason for this

may be that there were few drugs able to treat these diseases and

most drugs did not lead to undesirable diseases (side effects).

Tissue-specificity Analysis of Drug Therapeutic Effects
and Side Effects Through Subpathways

Drug therapeutic effects and side effects always occur in

different tissues because they are carried out by different genes

which are expressed in different tissues and make a desirable or

undesirable change in different physiological cellular pathways

[62]. To examine the tissue specificity of drug therapeutic effects

and side effects, we classified all the subpathways in the DRSN

into therapeutic subpathways and non-therapeutic subpathways

according to whether they had therapeutic targets in the drug-

affected genes. Of the 488 drugs in the DRSN, 293 drugs have 325

therapeutic targets (see Text S1 and Dataset S3). If the drug-

affected genes in a subpathway contained these therapeutic

targets, this subpathway was considered to be a drug therapeutic

subpathway corresponding to drug therapeutic effects. Otherwise

it was considered as non-therapeutic subpathway involved in drug

side effects. We thus classified all 403 metabolic subpathways into

102 therapeutic subpathways and 301 non-therapeutic subpath-

ways. We found that the degree of therapeutic subpathways was

significantly higher than that of non-therapeutic subpathways (P-

value,10{6) and all the subpathways (P-value,10{4) (Wilcoxon

rank-sum test) (Figure 6A). These findings suggested that the

therapeutic subpathways were deliberately prone to be affected by

drugs for easy implementation of drug therapeutic effects in

patients.

The therapeutic and non-therapeutic subpathways represented

drug therapeutic effects and side effects respectively. The tissue-

specific expression of drug-affected genes in the subpathways was

responsible for the tissue specificity of drug therapeutic effects and

side effects. To test this, we obtained the housekeeping genes

(HKGs) and tissue-specific genes (TEGs) dataset from the paper by

She et al. The dataset contained the gene expression profiles of 42

normal human tissues and identified 1,522 HKGs and 975 TEGs

[67]. We then examined the ratios of the number of TEGs and

HKGs to the number of all the drug-affected genes in each

therapeutic/non-therapeutic subpathway in the DRSN. We found

that there were no significant differences in the ratios of drug-

affected HKGs between the two types of subpathway (P-

value = 0.65) and between the therapeutic subpathways and all

subpathways (P-value = 0.73) (Wilcoxon rank-sum test) (Figure 6B).

However, the average ratio of drug-affected TEGs in drug

therapeutic subpathways was 0.14, nearly one-fold larger than

that of non-therapeutic subpathways (average ratio = 0.065) (P-

value = 0.0001) and that of all subpathways (average ratio = 0.08)

(P-value = 0.003) (Wilcoxon rank-sum test) (Figure 6C). This

showed that HKGs were expressed more stably than TEGs [68]

and maintained a stable ratio in drug-affected genes in all types of

subpathways. However, the TEGs tended to represent different

physiological processes and were considered as candidates for drug

therapeutic targets [67]. Our finding indicated that the therapeutic

subpathways were more likely to be activated in different tissues by

drugs, thus the drug therapeutic effects displayed a tissue-specific

tendency.

Although therapeutic subpathways had higher drug-affected

TEGs ratios than non-therapeutic subpathways, we attempted to

assess whether the TEGs in a subpathway tended to be expressed

in one tissue. To test this, we calculated the tissue-homogeneity

(TH) coefficient for a subpathway. The TH coefficient introduced

by Goh et.al. [69] is defined here as the maximum fraction of

genes which were expressed in a specific tissue among all drug-

affected TEGs belonging to one subpathway (see Materials and

methods). The TH coefficient quantified whether drug-affected

TEGs in one subpathway tended to be expressed in one tissue. If

all drug-affected TEGs in a subpathway were expressed in one

tissue, the TH coefficient was 1 representing perfect tissue-

homogeneity in this subpathway. We found that the TH

coefficients of drug therapeutic subpathways were significantly

higher than that of non-therapeutic subpathways (P = 0.0001 using

Wilcoxon rank-sum test), implying that drug-affected TEGs in

therapeutic subpathways tended to be expressed in fewer tissues

than those in non-therapeutic subpathways (Figure 6D). A

potential explanation for this is that therapeutic subpathways

should be deliberately under-targeted in other tissues, except the

target tissues, to avoid potential side effects [70].

For each subpathway, the TH coefficient was identified as the

maximum fraction of genes which were expressed in a specific

tissue among all drug-affected TEGs in this subpathway. The

specific tissue in which most drug-affected TEGs were expressed

was considered as the most affected tissue for a subpathway. We

calculated the sum of the TH coefficient for each tissue for

therapeutic and non-therapeutic subpathways respectively to

examine the difference in affected tissues between drug therapeutic

effects and side effects. Compared to non-therapeutic subpath-

ways, in therapeutic subpathways, three tissues (adrenal gland,

liver and kidney) had a high sum of TH coefficient (Figure 6E),

suggesting that these tissues contained more therapeutic targets.

For example, the adrenal gland, an important endocrine tissue, is

same indications, compared to 55 drug pairs on average of 1000
randomized 1586 drug pairs. Of 1000 times randomized 1586 drug
pairs, there were only 36 times when the number of drug pairs which
shared the same indications were more than 67 (P-value = 0.036). (B)
The number of side effects shared by connected drug pairs was
significantly higher than the number of side effects shared by all drug
pairs in the SIDER database (P-value ,10{16). (C) The number of shared
side effects significantly increased as the number of the shared
subpathways increased between two drugs (P-value = 0.0034). The grey
horizontal line is the average number of side-effects all drug pairs
shared. The Y axis represents the number of side-effects shared by drug
pairs. The X axis represents the number of the same subpathways drug
pairs shared. Blue ‘‘&’’ symbols correspond to the binned average
number of side-effects shared by drug pairs. The linear regression
model (black line) is used to test the trends in correlations and the
significance of the trends is estimated.
doi:10.1371/journal.pone.0047326.g004
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the target of a large number of exogenous chemicals including

many drugs [71]. For the non-therapeutic subpathways, the sum of

the TH coefficient for liver, bone marrow and trachea was higher

than that for the therapeutic subpathways (Figure 6F). Many

frequent side effects (asthma and anemia for example) were

produced in bone marrow and trachea. For example, in the

DRSN, some bone marrow specific non-therapeutic subpathways

were connected to antazoline, a histamine receptor antagonist

[72], which can induce immune hemolytic anemia, thrombocy-

topenia, and hemoglobinuria [73]. Another example was etodolac,

a highly lipophilic anti-inflammatory drug [74], which was

connected to trachea-specific non-therapeutic subpathways in

the DRSN, and has been proved to have an adverse effect on the

trachea and leads to asthma [75]. Interestingly, both drug

therapeutic and side effects had an impact on the liver. The

critical synthetic, metabolic, and detoxifying function of the liver

Figure 5. Drug–disease associations through affected metabolic subpathways. (A) There were 743 metabolic subpathways when the
setting k = 3. There were 302 disease–related subpathways according to the disease–metabolic subpathways association in the DMSPN and 403 drug-
affected subpathways in the DRSN. 230 subpathways were overlapped between the two sets of subpathways. (B) The association scores between
each drug class and disease class. The darker color represents the higher association scores.
doi:10.1371/journal.pone.0047326.g005
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may partly explain its therapeutic importance and arguably its

vulnerability to be injured by drugs [76]. In summary, therapeutic

subpathways and non-therapeutic subpathways had significant

tissue specific differences including the ratio of TEGs and HKGs

in drug-affected genes, the TH coefficient and affected tissues.

Therapeutic subpathways tend to be more tissue-specific and non-

therapeutic subpathways have specific functional tissues for drug

degradation and metabolism.

Discussion

We constructed a drug–metabolic subpathway network (DRSN)

based on drug-affected genes using the ‘‘k-clique’’ subpathway

identification method. To date, many studies on drugs and their

affected subpathways have been limited to low-throughput

experiments and many large scale studies on drugs have only

focused on one aspect of drug impact (therapeutic effects or side

effects) [5,21,24,25]. These limitations hinder the assessment of

cellular processes under drug influence to a great extent and do

not provide a global insight into rational drug design. In our study,

the drug-affected genes were obtained from whole genome gene

expression profile data in the CMap database, thus providing a

resource of genome-wide drug influence on the human body

including therapeutic effects and side effects. We used fold change

analysis to identify drug-affected genes with |log2fold change|.1,

which could control the quality to some extent. Furthermore, by

applying the ‘‘k-clique’’ subpathway identification method to all

drug-affected gene sets, we identified affected subpathways for all

drugs and showed that on the one hand, the genes in one

subpathway were highly interactive and tended to be involved in

similar biological processes; on the other hand, the affected

subpathways indicated the overall impact of drugs on the human

body. We used the hypergeometric test in ‘‘k-clique’’ subpathway

identification method to identify drug-affected subpathways.

Hypergeometric test accesses the enrichment significance of a

gene set rather than individual genes. Individual noise would not

have a significant influence on the enrichment accuracy. In

particular, we selected a strict significance threshold of 0.01. These

measures further alleviated the noise to a great extent. We finally

obtained 3925 drug–metabolic subpathway associations composed

of 488 drugs and 403 metabolic subpathways. Taking the drug–

metabolic subpathway associations together, we were able to

investigate the global relationship between drugs and their affected

subpathways.

Figure 6. Tissue-specific differences between therapeutic and non-therapeutic subpathways Therapeutic and non-therapeutic
subpathways had tissue-specific differences. (A) The degree of therapeutic subpathways (THSP) was significantly higher than that of non-
therapeutic subpathways (NTHSP) (P-value ,10{6) and all subpathways (ALLSP) (P-value ,10{4). (B) There were no significant differences in the
ratios of drug-affected HKGs between the two types of subpathway (P-value = 0.65) as well as that between therapeutic subpathways and all
subpathways (P-value = 0.73). (C) The ratios of drug-affected TEGs in drug therapeutic subpathways (average ratio = 0.14) were higher than that of
non-therapeutic subpathways (average ratio = 0.065; P-value = 0.0001) and that of all subpathways (average ratio = 0.08; P-value = 0.003) (D) TH
coefficients of drug therapeutic subpathway were significant higher than that of non-therapeutics (P = 0.0001) (E) The sum of TH coefficients of drug
therapeutic subpathways in different tissues (F) The sum of TH coefficients of drug non-therapeutic subpathways in different tissues.
doi:10.1371/journal.pone.0047326.g006
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In the DRSN, some drug–metabolic subpathway connections

revealed the mechanism of drug therapeutic effects such as links

between sex hormone drugs and androgen and estrogen metab-

olism, while some connections revealed side effects such as links

between and links between antibiotic drugs and steroid hormone

biosynthesis. Interestingly, some connections suggested potentially

novel therapeutic targets and applications such as links between

arachidonic acid metabolism and three classes of drugs (Figure 3C).

Furthermore, many drugs which belonged to different classes were

connected to the same metabolic subpathways (Figure 3B as an

example). These new drug–drug relationships might offer insights

into drug combinations and drug repositioning. We also found

that if drugs were connected to the same subpathways in the

DRSN, they tended to share the same therapeutic effects and side

effects and the number of shared side effects increased as the

number of shared subpathways increased. These results showed

that the drug-affected subpathways in the DRSN could provide an

in-depth understanding of the molecular mechanism of drug

therapeutic and side effects. We further investigated the drug–

disease associations by integrating drug-affected subpathways in

the DRSN and disease-related subpathways. After calculating the

association scores between each drug class and disease class, we

found that most drug classes were closely related to their side

effects rather than their indications. It is worth noting that our

work also suggested drug dual effects. For example, some sex

hormone drugs displayed a high correlation with cancers. These

drug–disease associations through the subpathways may help us

find new indications for existing drugs and identify novel side

effects. Finally, to further study the mechanism of drug dual

effects, we classified all the subpathways in the DRSN into

therapeutic and non-therapeutic subpathways representing drug

therapeutic effects and side effects, respectively. Compared to side

effects, the therapeutic effects tended to affect more tissue-specific

genes and these genes tended to be expressed in fewer tissues,

indicating that drug therapeutic effects should be deliberately

under-targeted in other tissues, except its target tissues, to avoid

potential side effects. After calculating the sum of the TH

coefficient for all the tissues, we found that the therapeutic effects

tended to affect the tissues such as the adrenal gland which is

important in drug therapy, while side effects always affected tissues

such as liver which is vulnerable to injury by drugs. The research

on tissue-specific differences between two kinds of subpathways

could improve our understanding of cellular function in different

tissues due to drug action as well as the mechanism of drug

therapeutic and side effects. Taken together, the DRSN offered a

comprehensive and functional understanding of the global

relationship between drugs and metabolic subpathways.

To confirm the validity of our results, we also constructed the

DRSN with k = 4 and repeated some of the analyses for the

network. We found that the two networks and results of the two

networks were robust (see Text S1, Figures S3 and S4). To

alleviate the influence of chosen threshold of hypergeometric tests,

we also constructed a DRSN with P-value = 0.05. We found that

clindamycin had second highest degree (degree = 104). Further-

more, after we compared the drug degree rank of two networks,

we found that there were 10 same drugs in the top 12 degree rank

(see red font in Dataset S5). This result indicated that our method

was robust in different threshold of hypergeometric tests. We also

noted that there were several limitations in our study. Firstly, only

small molecular drugs were included in the DRSN. The

completeness of the DRSN will be improved by adding other

types of drugs and integrating more drug-affected gene expression

profiles from different resources. Another limitation of our DRSN

is the incompleteness of the metabolic pathway data and the false

positive results of the enrichment analysis. These limitations will be

alleviated, to a great extent, with the development of a drug

database and accurate reconstructions of metabolic networks and

the integration of different pathway databases. We used sub-

pathwayMiner to identify subpathways as the k-cliques method

has been proved to be effective in subpathway identification

[65,77,78]. We selected a relatively small distance k = 3 and 4 to

ensure that enzymes in the subpathways have highly similar

functions. This method could successfully identify the significant

subpathways which may be ignored using the entire pathway

identification method [17]. Although this method can more

accurately identify drug-affected subpathway regions in pathways,

further improvement of the identification strategy is also needed.

For example, other factors such as linear/non-linear and hub

genes, etc are likely to further improve accuracy of subpathway

identification. Although our data and methodology are far from

completeness, our analysis of the DRSN, based on the network

pharmacology [4,13,79,80], offers a comprehensive picture of

global and significant associations between drugs and their

subpathways (see Dataset S2) by considering the system effects of

drugs at a functional level. A user-friendly web server, called the

DRSN database, to query, visualize and download for all the data

in our research can be freely accessed at http://bioinfo.hrbmu.

edu.cn/DRSN.

Materials and Methods

Drug Database
We selected bioactive small molecules which are used as drugs

according to the information from the DrugBank and KEGG

DRUG database. As of vision 2.5, the DrugBank database

contained nearly 4,800 drug entries, including .1,350 FDA-

approved small molecule drugs, 123 FDA-approved biotech drugs,

71 nutraceuticals and more than 3,243 experimental drugs [28].

We extracted all the small molecule drugs according to the drug

descriptions. For KEGG DRUG, we downloaded the drug card

from website (ftp://ftp.genome.jp/pub/kegg/medicus/drug/)

[27], and then extracted all the small molecule drugs. Of the

1309 small molecules in the Connectivity Map (CMap), 581 of

these small molecules were recorded as drugs in DrugBank. Of the

remaining 728 small molecules, 332 were recorded as drugs in

KEGG DRUG. In CMap, we finally obtained 913 small

molecular drugs (see Dataset S1) corresponding to 4320 instances

(experiments).

For the 488 drugs in the DRSN, we extracted the therapeutic

targets of these drugs from information in DrugBank and KEGG

DRUG. We finally obtained 325 therapeutic targets correspond-

ing to 293 drugs (see Dataset S3).

CMap Database
We obtained the drug-affected genes from the Connectivity

Map (CMap). In CMap, the genome-wide transcriptional expres-

sion data is from cultured human cells lines treated with bioactive

small molecules [26]. To date, CMap contains 6100 instances

corresponding to 1309 bioactive small molecules. We downloaded

all the expression profiles and their associated annotation file

‘‘cmap_instances_02.xls’’ from the CMap website (http://www.

broadinstitute.org/cmap/). We matched perturbation and control

pairs of expression profiles for each instance according to

descriptions of the instances in the file ‘‘cmap_instances_02.xls’’.

Then we used fold-change analysis to identify differentially

expressed genes (DEGs) for each instance with |fold change|.1

from the corresponding treatment and control gene expression

profiles. The DEGs were merged if the corresponding instances
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(experiments) belonged to the same drug (bioactive small molecule)

and these genes were considered to be affected genes for this drug.

SubpathwayMiner and Disease–metabolic Subpathway
Network (DMSPN)

In this study, we used the ‘‘k-clique’’ subpathway identification

method provided by the SubpathwayMiner software package [17]

to identify statistically significantly enriched drug-affected subpath-

ways. This method was developed according to pathway structure

data provided by KEGG (see Text S1). After inputting gene sets

(drug-affected genes) and distance parameter k, the method can

mine each metabolic subpathways and then identify statistically

significantly enriched subpathways with a P-value,0.01. By

applying this method to all the drugs, we obtained the global

relationships between drugs and metabolic subpathways.

We obtained the relationships between diseases and metabolic

subpathways from the DMSPN which was constructed based on

disease genes from the Genetic Association Database (GAD) and

pathway structure data from KEGG [65]. First, disease genes were

identified by processing all terms of gene–disease associations from the

GAD. Second, for each disease, the corresponding statistically

significantly enriched subpathways were identified using the ‘‘k-clique’’

subpathway identification method by setting k = 3 and P-value,0.01

[17]. There were 545 nodes (302 subpathways and 243 diseases) in the

DMSPN. All data on the network including figures and tab delimited/

excel table format are available from http://www.plosone.org/article/

info%3Adoi%2F10.1371%2Fjournal.pone.0021131.

SIDER Database
Drug side effects data were obtained from the side effect

resource (SIDER), which is a public computer-readable side effect

resource. The SIDER database contains 888 drugs corresponding

to 1450 side effect terms. We downloaded the data file

‘‘costart_adverse_effects.tsv’’ from the website (http://sideeffects.

embl.de) which is freely available for academic research. In the

DRSN, 199 drugs were recorded in the SIDER database.

Housekeeping Genes and Tissue-specific Genes
Housekeeping genes (HKGs) are constitutively expressed in all

tissues to maintain cell functions, while tissue-specific genes (TEGs)

are expressed at a much higher level in a single tissue. We

downloaded the HKGs and TEGs dataset from the paper by She et

al. The dataset contains 1,522 HKGs and 975 TEGs which were

systematically identified from the gene expression profiles of 42

normal human tissues using conservative identification criteria [67].

Tissue Homogeneity (TH) Coefficient
Goh et al. used the TH coefficient to quantify whether genes

belonging to one disease tended to be expressed in the same tissue

[69]. In our article, the TH coefficient was used to quantify whether

the drug-affected TEGs in one metabolic subpathway tended to be

expressed in the same tissue. Here, we defined the TH of the ith

metabolic subpathway as follows:

THi ~ maxj

nji

ni

��

where ni denotes the number of drug-affected TEGs in the ith

subpathway, nji denotes the number of genes that are expressed in

the tissue j among all the drug-affected TEGs in the ith subpathway,

and maxj gf denotes the function returning the maximum-value

argument across j. The TH coefficient has a maximal value of 1 if all

the drug-affected TEGs in a subpathway are expressed together in

one tissue, and has a minimum value of 0 when there are no TEGs

in the drug-affected genes in a subpathway.

Association Scores (AS) between Drugs and Diseases
Through Shared Metabolic Subpathways

If a subpathway is related to some diseases and some drugs also

affect this subpathway, these drugs and diseases are considered to be

associated. Drug–metabolic subpathway associations and disease–

metabolic subpathway associations were obtained from the DRSN

and DMSPN, respectively. Then, we calculated the AS to quantify

the extent of the association between any drug class and disease class

using the shared subpathways. We defined the AS as follows:

AS(i,j)~
1

Ni | Nj

XNi

s~1

XNj

t~1

FER(s,t)

Where Ni denotes the number of drugs in the ith drug class and

Nj denotes the number of diseases in the jth disease class. The

FER (fold enrichment ratio) is used to quantify the extent of the

association between any drug s in the ith drug class and any

disease t in the jth disease class. It is defined as FER(s,t)~ O
E

, O is

the observed value and E is the expected value [81]. We also use

hypergeometric test to assess the overlap of the two subpathway

sets of the drug i and disease j. The significant drug-disease pairs

(P-value ,0.01), the drug and disease names, their fold

enrichment ratio and corresponding P-value are documented in

Dataset S4. In our article, the observed value and expected value

are identified as O~ nst and E~ ns | nt

N
respectively, where ns is

the number of subpathways affected by drug s, nt is the number of

subpathways related to disease t and nst is the number of

subpathways shared by drug s and disease t; N is the number of

unions of subpathways which belong to the ith drug class or the jth

disease class. The higher the AS value the closer the correlation

between a drug class and a disease class. The AS could quantify

the extent of the association between any drug class and disease

class.

Supporting Information

Figure S1 The basic network features of the DRSN. To

estimate the background distribution of the drug–metabolic

subpathway network, we randomly shuffled the drug–gene

associations, while both the number of genes that a drug affected

and the number of drugs that a gene was affected by remain

unchanged. We generated 1000 independent randomized samples.

(A) The average degree of subpathway nodes in the DRSN was

significantly higher than that of 1000 randomized networks (P-

value,0.001). (B) The average degree of drug nodes in the DRSN

was significantly higher than that of 1000 randomized networks (P-

value,0.001). (C) The number of edges in the DRSN was

significantly higher than that in randomized networks (P-value = 0).

(TIF)

Figure S2 The degree distribution of the DRSN. (A)

Degree distribution of drugs in the DRSN. (B) Degree distribution

of subpathways in the DRSN.

(TIF)

Figure S3 The relationship between drug dual effects
and metabolic subpathways in the DRSN with k = 4.

(TIF)
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Figure S4 Tissue-specific differences between therapeutic
and non-therapeutic subpathways in the DRSN with k = 4.
(TIF)

Table S1 Literatures about some drug–subpathway
associations from various significant levels
(DOC)

Text S1.

(DOC)

Dataset S1 913 small molecule drug information.
(XLS)

Dataset S2 The drug-metabolic subpathway associa-
tions.
(XLS)

Dataset S3 Drug-Target associations.

(XLS)

Dataset S4 The drug–disease association through met-
abolic subpathways.

(XLS)

Dataset S5 Drug degree rank of two networks.

(XLS)
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