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Abstract

Survival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we
study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard
models. We demonstrate via simulations and real data analysis that the compound covariate method generally competes
well with ridge regression and Lasso methods, both already well-studied methods for predicting survival outcomes with a
large number of covariates. Furthermore, we develop a refinement of the compound covariate method by incorporating
likelihood information from multivariate Cox models. The new proposal is an adaptive method that borrows information
contained in both the univariate and multivariate Cox regression estimators. We show that the new proposal has a
theoretical justification from a statistical large sample theory and is naturally interpreted as a shrinkage-type estimator, a
popular class of estimators in statistical literature. Two datasets, the primary biliary cirrhosis of the liver data and the non-
small-cell lung cancer data, are used for illustration. The proposed method is implemented in R package ‘‘compound.Cox’’
available in CRAN at http://cran.r-project.org/.
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Introduction

Predicting survival outcomes in the presence of a large number

of covariates has received much attention in the recent decade.

The prominent motivation for this comes from predictions of

patient survival based on gene expression profiles. For example,

gene expression profiles have been used to improve the prediction

power of the clinical outcomes for breast cancer patients [1,2,3,4]

and lung cancer patients [5,6,7]. Utilizing gene profiles, van’t Veer

et al. [3] provided a criterion for selecting patients who would

benefit from adjuvant therapy, which reduces patients’ risks over

traditional guidelines based on histological and clinical character-

istics. Chen et al. [6] examined 672 gene profiles for non-small-cell

lung cancer patients to identify a gene signature closely related to

survival. Even without gene expression profiles, patients data often

include a large number of clinical, serologic and histologic

characteristics. Hence, it is of interest to efficiently utilize a large

number of covariates to predict clinical outcomes.

A statistical challenge arises if the number of covariates p is large

relative to the number of individuals n. The problem becomes

further involved with the presence of censoring. The standard

regression techniques in the presence of censoring, including the

Cox regression analysis [8], fail to provide a satisfactory result.

Two types of strategies have been commonly used to perform

survival prediction with a panel of covariate data. The first strategy

is to select subsets of covariates by univariate survival analyses

[1,6] or various clustering algorithms [9]. Then, one can apply

standard methods for prediction. The second strategy for resolving

high-dimensionality utilizes some penalizing schemes on the Cox

regression analysis. In particular, the Lasso [10,11,12] and ridge

regression [13,14] are obtained by penalizing the Cox’s partial

likelihood function with L1 and L2 penalties, respectively. The two

types of penalization yield p regression coefficients that are shrunk

toward zero.

In this paper, we study a methodology known as the compound

covariate prediction. The compound covariate prediction method

is based on a linear combination of the univariate Cox regression

estimates and has been previously used in medical studies with

microarrays [5,6,15,16]. However, few papers have investigated its

statistical properties and comparative performance with other

methods. For instance, recent comparative studies of Bovelstad

et al. [17], van Wieringen et al. [18], and Bovelstad and Borgan

[19] have all demonstrated that ridge regression has the overall

best predictive performance among many well-known survival

prediction methods, including univariate selection, forward

selection, Lasso, principal components, supervised principal

components, partial least squares, random forests, etc., but

excluding the compound covariate method. Additionally, the

compound covariate prediction can be a powerful method even for

more traditional survival data that may not involve microarrays, as

we will see in the analysis of the primary biliary cirrhosis of the

liver data. Hence, the first objective of this paper is to study the

statistical properties and comparative performance of the com-

pound covariate method, in order to fill a gap in the current

literature and highlight the competitive performance of the

compound covariate method with other methods.

The second objective of this paper is to develop a new statistical

methodology that refines the compound covariate method. This
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methodology aims to incorporate the combined predictive

information of covariates into a compound covariate predictor

by forming a mixture of multivariate and univariate Cox partial

likelihoods. Such a method is shown to have a theoretical

justification under a statistical large sample theory, and is naturally

interpreted as a shrinkage-type estimator, a popular class of

estimators in statistical literature.

We also compare the compound covariate and the newly

proposed methods with the benchmark methods of ridge

regression and Lasso analyses via Monte Carlo simulations and

real data analysis. The primary biliary cirrhosis of the liver data

and the non-small-cell lung cancer data are used for illustration.

All the numerical performances of the methods are evaluated via

cross-validated schemes.

Methods

Existing Methods
To facilitate the subsequent discussions, we shall introduce

existing methods for predicting survival outcomes. Let

xi~( xi1, :::, xip )’ be a p-dimensional vector of covariates from

individual i. We observe ( ti, di, xi ), where ti is either survival or

censoring time, and di satisfies di~1 if ti is survival time and di~0
otherwise. In the Cox regression [8], the hazard function for

individual i is modeled as

h(t D xi) ~ h0(t) exp (b’xi), ð1Þ

where b~( b1, :::, bp )’ are unknown coefficients and h0 is an

unknown baseline hazard function. Let Ri~f ‘ : t‘§ti g be the

risk set that contains individuals who still survive at time ti. The

regression estimate is obtained by maximizing the partial

likelihood given as

L1
n(b)~ P

n

i~1

exp (b’xi)P
‘[Ri

exp (b’x‘)

 !di

: ð2Þ

When the dimension p is large relative to the sample size n, the

maximum of L1
n(b) is not uniquely determined.

An intuitive and widely used approach to resolve high-

dimensionality is based on the univariate selection. As the initial

step, a Cox regression based on the univariate model

h(tDxij)~h0j(t) exp (bjxij), or a log-rank test between the high

and low covariate groups, is performed for each j~1, :::, p, one-

by-one. Then one picks out a subset of covariates that have low P-

values from the univariate analysis (e.g., Jenssen et al. [1]). The top

t covariates with lowest P-values are then included in a

multivariate Cox regression, where the number t can be

determined by cross-validation and/or biological consideration.

Although the univariate selection is easy to implement, the process

of selecting covariates is solely based on the marginal significance,

and hence there is no guarantee that the resultant multivariate

model achieves an accurate prediction.

A more sophisticated approach to resolve high-dimensionality is

to utilize the L1 penalized partial likelihood

log L1
n(b) { l

Xp

j~1

Dbj D, ð3Þ

or the L2 penalized partial likelihood

log L1
n(b) { (l=2)

Xp

j~1

b2
j , ð4Þ

where lw0 is the tuning (shrinkage) parameter. The two

methods shrink the coefficients to zero. The estimator resulting

from equation (3) is called the Lasso [10,11,12]. An important

feature of the Lasso is that many coefficients will be estimated

exactly as zero. This implies that the Lasso can be used as a

variable selection tool for a parsimonious prediction model. On

the other hand, the estimation based on equation (4) is called ridge

regression [13,14], which results in p non-zero coefficient

estimates. Therefore, unlike the Lasso, the prediction model from

ridge regression uses all the covariates. The tuning parameter l
can be obtained empirically by a cross-validation criterion

proposed by Verweij and van Houwelingen [20]. Both the Lasso

and ridge regression methods are implemented through the R

package ‘‘penalized’’ [21].

There are a number of other methods available to handle high-

dimensional covariates, including the forward stepwise selection,

principal components, supervised principal components, Lasso

principal components, partial least squares regression, and tree-

based methods, etc.; refer to Witten and Tibshirani [22] for an

excellent summary. Bovelstad et al. [17], van Wieringen et al. [18],

and Bovelstad and Borgan [19] systematically compared these

methods and concluded that ridge regression has the best overall

performance for survival prediction. However, the compound

covariate method has not been included in these comparative

studies.

Compound Covariate Prediction
For a future subject with a covariate vector x~( x1, . . . , xp )’,

the survival prediction can be made by the prognostic index (PI)

defined as w’x, where w~( w1, :::, wp )’ is a vector of weights.

Typically, w is determined by the dataset

f (ti, di, xi); i~1, . . . , n g and is chosen so that w’x is associated

with the subject’s survival. When p is small relative to n, the

multivariate Cox’s partial likelihood estimator maximizing equa-

tion (2) can be used for w. Alternatively, one can set wj to be the

estimated regression coefficient for bj by fitting the univariate Cox

model h(tDxij)~h0j(t) exp (bjxij), for each j~1, :::, p, one-by-one.

This prediction method is called the compound covariate prediction [23]

and it is applicable even when p. n. The method has been shown

to be useful in medical studies with microarrays as a convenient

and powerful tool for survival prediction [5,6,15,16]. Note that

even when p, n, where a multivariate Cox regression is

applicable, the compound covariate prediction may further

improve predictive power. We will demonstrate this aspect

through the analysis of the primary biliary cirrhosis of the liver

data.

Refinement of the Compound Covariate Method
The construction of the compound covariate predictor is purely

based on the univariate (marginal) likelihood functions. This

methodology may be further improved by incorporating the

combined predictive information of covariates into the compound

covariate predictor. Here we propose a mixture of the multivariate

and univariate (marginal) likelihoods. For each covariate

j (~1, :::, p), the univariate Cox regression estimator for bj is

obtained by maximizing

Survival Prediction
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L0
n, j(bj) ~ P

n

i~1

exp (bjxij)P
‘[Ri

exp (bjx‘j)

 !di

: ð5Þ

We combine the likelihoods in equation (5) over all

j (~1, :::, p), namely,

L0
n(b)~ P

p

j~1
L0

n,j(bj):

Note that the maximizer of L0
n(b) is found as the set of the p

univariate Cox regression estimates even when pwn, and hence

L0
n(b) adapts easily to high-dimensionality. On the other hand,

L1
n(b) does not have a unique solution when pwn, although it

potentially contains the combined predictive information of

covariates. To gain an adequate compromise between L1
n(b) and

L0
n(b), we consider a mixture log-likelihood

‘a
n(b) ~ a log L1

n(b) z (1 { a) log L0
n(b), ð6Þ

where a[½0, 1� is the tuning (shrinkage) parameter. For a fixed

a[½0, 1), the maximizer of equation (6) is denoted by b̂b(a). We will

call b̂b(a) the compound shrinkage estimator, and b̂b(0) the compound covariate

estimator, which is a special case of b̂b(a) at a~0. The compound

shrinkage predictor b̂b(a)’x can thus be viewed as a generalization

of the compound covariate predictor b̂b(0)’x, with a larger a
leading to a larger degree of multivariate likelihood information

(Figure 1). It will be seen that the value of a can be empirically

estimated by cross-validation.

The idea of the compound shrinkage as a mixture of the

multivariate and univariate likelihoods is closely related to a

‘‘shrinkage’’ scheme in statistical literature. This has the effect of

reducing (shrinking) the infinite dimensional solution space of the

multivariate likelihood equations toward the unique nearest point

of b̂b(0) as demonstrated in Figure 1. Here, a = 0 stands for the

maximal shrinkage and a = 1 for no shrinkage.

Choosing the Shrinkage Parameter by Cross Validation
The shrinkage parameter a in equation (6) should be chosen so

that the predictive power of b̂b(a)’x is maximized. For this purpose,

we adopt a cross-validation criterion based on partial likelihood

[20]. To perform a K-fold cross validation, we first divide n
individuals into K groups of about equal sample sizes, and label

them as =k for k~1, :::,K . The maximizer of equation (6) based

on all individuals not in =k is calculated and denoted by b̂b({k)(a).

Repeat this process for k~1, :::,K , and the cross-validation

criterion is

CV (a) ~
XK

k~1

f‘1
n(b̂b({k)(a)) { ‘1

n, ({k)(b̂b({k)(a))g, ð7Þ

where ‘1
n, ({k)(b) is the log-partial likelihood based on all

individuals not in =k. Finally, we find âa that maximizes equation

(7). The numbers K~5 or K~10 are used commonly when n or p

is large [16,17,24]. Since the resultant estimators âa and b̂b(âa) are

fairly robust against the choice of K in our simulations, we

recommend K~5 for computational simplicity.

Numerical Results

Evaluation Criteria
We first revisit the three measures for prediction accuracy

proposed by Bovelstad et al. [17]. Let f (ti, di, xi); i~1, . . . , n g
be a training dataset and b̂b an estimator obtained from the training

dataset, and let f (t�i , d�i , x�i ); i~1, . . . , n g be a test dataset.

1) Log-rank test (LR-test): Subject i in the test dataset is categorized

in the good (poor) prognosis group if b̂b’x�i is below (above) the

median of f b̂b’x�i ; i~1, . . . , n g. The P-value for a log-rank test

performed in the test dataset for comparing survival times in the

two groups represents prediction performance. Smaller P-value

corresponds to better prediction ability.

2) Cox regression test (Cox-test): By treating g�i ~b̂b’x�i as a covariate,

the Cox model h(tDg�i )~h0(t) exp (ag�i ) is fitted to

f (t�i , d�i , g�i ); i~1, . . . , n g. The P-value for testing the hypoth-

esis H0 : a~0 represents a measure of prediction ability. Smaller

P-value corresponds to better prediction ability.

3) Deviance (Devi): Let ‘�n(b) be the log-partial likelihood function

calculated from the test dataset. The deviance {2f ‘�n(b̂b){‘�n(0) g
measures how the model with b~b̂b improves the null model with

b~0 in terms of goodness-of-fit in the test dataset. Smaller

deviance corresponds to better prediction ability.

We further consider the c-index proposed by Harrell et al.

[25,26], which is a widely used measure for predictive accuracy for

censored survival data:

c{index~P
ivj

f I( t�i vt�j )I( b̂b0x
�
i wb̂b0x

�
j )dizI( t�j vt�i )I( b̂b0x

�
j wb̂b0x

�
i )dj gP

ivj

f I( t�i vt�j )dizI( t�j vt�i )dj g
,

Larger c-index corresponds to better prediction and c-

index = 0.5 means no prediction ability. The c-index is a less

subjective measure than the LR-test and Cox-test; it requires no

choice of a cut-off point for categorizing PI as in the LR-test, and

requires no model-fitting as in the Cox-test. The c-index is

Figure 1. The proposed shrinkage scheme applied for the
compound covariate method.
doi:10.1371/journal.pone.0047627.g001
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implemented in R (survConcordance routine in ‘‘survival’’

package) and other software [26].

Simulation Set-up
The objective is to compare the prediction ability of the

compound covariate method, the compound shrinkage method,

and other existing methods. Comparative studies of Bovelstad et

al. [17], van Wieringen et al. [18] and Bovelstad and Borgan [19]

all demonstrated that ridge regression has the overall best

predictive performance among many well-known survival predic-

tion methods, including the univariate selection, forward selection,

Lasso, principal components, supervised principal components,

partial least squares, random forests, etc. On the other hand, Gui

and Li [11], Segal [12] and Bovelstad and Borgan [19] still report

some cases in which the Lasso-type methods perform better.

Hence, we focus on the two benchmark methods of ridge

regression and Lasso as representatives of existing methods.

We set the p-dimensional regression parameter

b’~( b1, :::, bq, bqz1, :::, bp ) in the Cox model (1) with p = 100.

Note that we also considered p = 50 and 200 but obtained similar

results as reported in tables S1–1 , S1–4 in Supporting

Information S1. Consider a case, in which some of covariates

are related to survival time; the coefficients of the first q covariates

are nonzero and those of the remaining p - q covariates are zero.

We examined (I) sparse cases (q = 2, 4, 5 or 10) and (II) less sparse

cases (q = 10, 15, 20 or 30). Note that both the sparse and non-

sparse settings are plausible in biological problems [27]. For the

covariates x’~( x1, :::, xq, xqz1, :::, xp ), we adopt the following

random effects models to introduce correlations among the

covariates with a correlation coefficient equal to 0.5:

Scenario 1 (tag genes): Each of the q covariates is positively

correlated to s covariates that have zero coefficients. Specifically,

we set

xj~

Ajzuj

Akzuj

Uj

8><
>:

if

if

if

jƒ q ;

j~qz(k{1)sz1, :::, qzks, k~1, :::, q ;

j§qzqsz1

where Aj~U({0:75, 0:75), uj~U({0:75, 0:75),
Uj~U({1:5, 1:5), and they are independent of one another. This

scenario represents the setting that q independent sets of genes are

associated with survival; the (s +1) genes in each set are correlated,

and after accounting for one ‘‘tag gene’’ in each set of genes, the

other genes have no net effects on survival.

Scenario 2 (gene pathway): The q significant covariates are

positively correlated. We set

xj~
A1zuj

Uj

if

if

1ƒjƒq ;

qvjƒp ,

�

or

xj~

A1zuj

A2zuj

Uj

if

if

if

1ƒjƒq=2 ;

q=2vjƒq ;

qvjƒp ,

8><
>:

where Aj~U({0:75, 0:75), uj~U({0:75, 0:75),
Uj~U({1:5, 1:5), and they are independent of one another.

The former represents the setting that there exists a ‘‘gene

pathway’’ of q correlated genes that jointly affect survival, and the

latter does for two gene pathways of q/2 correlated genes. Hence,

scenario 2 represents a setting where the genes informative for

survival are correlated while scenario 1 represents a setting where

the informative genes are independent of each other.

For both scenarios, the covariates are standardized so that they

have standard deviation 1. The Cox model in (1) with h0(u)~1 is

chosen to generate survival times. Censoring times are generated

from U(0, 1), which yields moderate censoring (54,63%). We

first generate a training dataset of n~100 individuals, and

calculate b̂b, where b̂b is the compound covariate, compound

shrinkage, ridge regression or Lasso estimator. K~5 cross-

validation is used to obtain the shrinkage parameters a for the

compound shrinkage estimator and l for ridge regression and

Lasso estimators. Ridge regression and Lasso analyses are

implemented through the R package ‘‘penalized’’ [21]. Then,

we generate the test dataset of size n~100, independently of the

training dataset, to calculate the prediction measures of LR-test,

Cox-test, Devi, and c-index.

In the subsequent simulations, we follow Bovelstad et al. [17] to

compare the values from the LR-test, Cox-test, Devi and c-index

by their median among 50 replications of training/test datasets.

Simulation results
The results for the sparse cases (q = 2, 4, 5 or 10) are given in

Table 1. The Lasso generally works best in all prediction

measures. This pattern is only violated for the relatively large

number of significant covariates (q = 10) where the compound

covariate or compound shrinkage method achieves better perfor-

mance in terms of the LR-test, Cox-test and c-index. Ridge

regression usually performs worst in terms of the LR-test, Cox-test,

and c-index. The compound shrinkage method is quite compa-

rable in the LR-test, Cox-test, and c-index to the compound

covariate method in all cases.

The four methods: CC = compound covariate, CS =

compound shrinkage, Ridge = ridge regression, and Lasso =

Lasso analyses are compared. The median values among the 50

replications for the LR-test (log10 P-value), Cox-test (log10 P-value),

Devi, c-index, and tuning parameters âa or l̂l are reported.

The results for the less sparse cases (q = 10, 15, 20 or 30) are

given in Table 2. Unlike the sparse cases, the Lasso usually

performs worst in terms of the LR-test, Cox-test, and c-index,

especially in scenario 1 where the Lasso estimates often result in

the null model that has no prediction power (Devi = 0.000, c-

index = 0.501, 0.538). Overall, the comparative performance of

the compound covariate, compound shrinkage, and ridge regres-

sion methods are similar, but in scenario 2, the compound

covariate and compound shrinkage methods perform better than

the Lasso and ridge regression methods.

The four methods: CC = compound covariate, CS =

compound shrinkage, Ridge = ridge regression, and Lasso =

Lasso analyses are compared. The median values among the 50

replications for the LR-test (log10 P-value), Cox-test (log10 P-value),

Devi, c-index, and tuning parameters âa or l̂l are reported.

In terms of the Devi, ridge regression and Lasso methods have

much better performance than both the compound covariate and

compound shrinkage methods. In fact, the Devi may be unfair to

the proposed approach; the Devi measures a distance of b̂b from the

benchmark value of b~0, and the majority of regression

coefficients obtained by ridge and Lasso are very close to or

exactly 0 by construction. In contrast, the compound covariate

and compound shrinkage methods have poorer performance in

the Devi because they are not shrunk to 0. However, poorer
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performance in the Devi is not carried over to other measures

based on association between the prognostic index and the survival

time, i.e., the LR-test, Cox-test, and c-index.

To see the robustness of the proposed method to the cross-

validation scheme, we perform the same set of simulations using

K~10 cross-validation in place of K~5. The results (not shown)

are virtually identical to these in Tables 1 and 2. Hence, the

performance of the compound shrinkage method is less affected by

the number of folds used in the cross-validation.

Although we found no single best method across all cases, the

comparative performance of the compound covariate and

compound shrinkage methods with other methods is remarkable.

Unlike ridge and Lasso analyses that may exhibit poor perfor-

mance in certain specific cases, the compound covariate and

compound shrinkage methods provide more stable performance

across different settings with sparse/non-sparse, independent/

correlated informative genes. This robustness property is desirable

in practical applications.

We perform similar simulations by increasing the magnitude of

non-zero coefficients. As reported in tables S1–5 and S1–6 in

Supporting Information S1, prediction performance improved for

all four methods, but the relative performances among them are

similar to those seen in Tables 1 and 2.

The Primary Biliary Cirrhosis Data Analysis
The primary biliary cirrhosis (PBC) data used in Tibshirani [10]

contains 276 patients with 17 covariates. Among them, 111

patients died while others were censored. The covariates consist of

a treatment indicator, age, sex, 5 categorical variables (ascites,

hepatomegaly, spider, edema, and stage of disease) and 9

continuous variables (bilirubin, cholesterol, albumin, urine copper,

alkarine, SGOT, triglycerides, platelet count, and prothrombine).

We use log-transformed continuous covariates to get stable results.

We compare the prediction performance over 50 random 2:1 splits

with 184 patients in the training set and 92 patients in the testing

set.

Table 3 reports the results for comparing the compound

covariate, compound shrinkage, multivariate Cox regression, ridge

regression and Lasso analyses. Multivariate Cox regression

analysis exhibits the worst performance, possibly due to a large

number of covariates. The other four methods that adapt to high-

dimensionality exhibit higher prediction power. Of these methods,

the compound covariate method performs best in terms of the LR-

test, Cox-test and c-index. This implies that the compound

covariate has the highest ability to discriminate between the poor

and good prognostic patients in the testing set. Notice that the

Table 1. Simulation results under sparse cases with p = 100 and n = 100 based on 50 replications.

b ~ (1:5, 1:5, 0, :::, 0|fflfflffl{zfflfflffl}
|98

), q = 2 b ~ (1, 1, {1, {1, 0, :::, 0|fflfflffl{zfflfflffl}
|96

), q = 4

CC CS Ridge Lasso CC CS Ridge Lasso

Scenario1, s = 4 LR-test 25.89 25.88 24.99 210.59 24.71 24.55 24.75 28.76

Cox-test 28.41 28.26 27.32 213.80 26.76 27.06 26.95 211.73

Devi 66.63 45.62 229.48 276.92 75.34 56.30 225.75 260.50

c-index 0.772 0.768 0.752 0.859 0.750 0.751 0.750 0.825

âa, l̂l / 0.25 74.54 7.06 / 0.28 68.81 6.59

Scenario2 LR-test 28.88 29.35 27.01 212.39 26.38 26.74 26.30 211.40

Cox-test 212.16 212.35 29.64 214.51 29.27 29.94 28.77 214.21

Devi 217.25 226.02 243.04 295.39 24.63 211.32 236.79 284.14

c-index 0.828 0.833 0.790 0.879 0.785 0.790 0.770 0.864

âa, l̂l / 0.30 37.88 6.90 / 0.30 50.91 6.17

b ~ ( 0:8, :::, 0:8|fflfflfflfflfflffl{zfflfflfflfflfflffl}
|5

, 0, :::, 0|fflfflffl{zfflfflffl}
|95

), q = 5 b ~ ( 0:4, :::, 0:4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
|5

, {0:4, ::: , { 0:4|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
|5

, 0, :::, 0|fflfflffl{zfflfflffl}
|90

), q = 10

CC CS Ridge Lasso CC CS Ridge Lasso

Scenario1, s = 4 LR-test 23.88 24.31 24.21 26.64 22.28 22.45 22.40 21.90

Cox-test 26.18 26.19 26.04 29.47 23.03 23.03 23.01 22.86

Devi 80.59 56.87 221.44 243.22 145.95 97.88 29.28 27.85

c-index 0.725 0.722 0.722 0.790 0.659 0.656 0.652 0.649

âa, l̂l / 0.28 79.85 6.89 / 0.275 101.77 8.44

Scenario2 LR-test 213.71 213.69 211.38 214.52 29.67 29.34 28.86 29.65

Cox-test 215.18 215.22 214.04 215.48 212.68 212.65 211.34 212.24

Devi 223.91 234.13 277.63 2107.14 8.563 20.559 255.62 267.93

c-index 0.886 0.885 0.862 0.889 0.843 0.835 0.822 0.838

âa, l̂l / 0.33 33.34 6.66 / 0.29 47.22 6.86

NOTE: For Scenario 1, each informative covariate is correlated with s non-informative covariates. For Scenario 2, the covariates for the right panel have two gene
pathways and those for the left panel have one gene pathway. In each setting, q is the number of informative covariates (covariates with non-zero coefficients).
doi:10.1371/journal.pone.0047627.t001
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poor Devi value of the compound covariate method does not affect

its prediction power for patients’ prognosis.

NOTE: The median among the 50 replications for the LR-test

(log10 P-value), Cox-test (log10 P-value), Deviance, c-index, and

tuning parameters âa or l̂l are reported. Smaller values of the LR-

test, Cox-test and Deviance, and larger values of the c-index

correspond to more accurate prediction performance.

The five methods: CC = compound covariate, CS =

compound shrinkage, MultiCox = multivariate Cox regression,

Ridge = ridge regression, and Lasso = Lasso analyses are

compared.

The Lung Cancer Data Analysis
The non-small-cell lung cancer data of Chen et al. [6] is

available from http://www.ncbi.nlm.nih.gov/projects/geo/, with

accession number GSE4882. The data contains 672 gene profiles

for 125 lung cancer patients. Among them, 38 patients died while

others were censored. We use a subset consisting of 485 genes

whose coefficient of variation in expression values is greater than

3%. We divide the patients into 63:62 training/test datasets as in

Chen et al. [6]. Univariate Cox regression analysis based on the

training set identifies 16 genes that are significantly related to

survival (P-value ,0.05). Chen et al. [6] used the 16 regression

coefficients to classify the patients of the test dataset into good or

poor status. This 16-gene method is a compound covariate

analysis applied to the selected set of genes, though the compound

covariate method is applicable for the full sets of 485 genes. To

illustrate the compound covariate and the compound shrinkage

methods with high-dimensional covariates, we select p = 97 genes

whose P-values of the univariate analysis are less than 0.20 in the

training dataset of n = 63, and set the coefficients of remaining

genes to zero.

Table 2. Simulation results under less sparse cases with p = 100 and n = 100 based on 50 replications.

b ~ ( 0:4, :::, 0:4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
|10

, 0, :::, 0|fflfflffl{zfflfflffl}
|90

), q = 10 b ~ ( 0:2, :::, 0:2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
|10

, {0:2, :::, {0:2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
|10

, 0, :::, 0|fflfflffl{zfflfflffl}
|80

), q = 20

CC CS Ridge Lasso CC CS Ridge Lasso

Scenario1, s = 2 LR-test 21.99 21.83 21.88 21.41 21.22 21.28 21.29 20.39

Cox-test 23.34 23.34 23.32 22.22 21.68 21.69 21.70 20.45

Devi 75.15 62.99 210.09 25.65 100.77 88.78 23.79 0.000

c-index 0.655 0.657 0.659 0.628 0.595 0.591 0.596 0.538

âa, l̂l / 0.20 125.01 10.39 / 0.225 173.64 12.03

Scenario2 LR-test 215.80 214.84 213.71 214.80 210.35 29.49 29.33 29.11

Cox-test 215.35 215.30 215.05 215.57 213.23 212.98 212.30 212.01

Devi 59.54 48.07 292.79 2103.80 114.48 75.17 263.92 260.30

c-index 0.898 0.895 0.875 0.890 0.852 0.843 0.839 0.832

âa, l̂l / 0.35 39.56 7.07 / 0.41 53.37 7.42

b~( 0:2, :::, 0:2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
|15

, 0, :::, 0|fflfflffl{zfflfflffl}
|85

), q = 15 b~( 0:1, :::, 0:1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
|15

, {0:1, ::: ,{0:1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
|15

, 0, :::, 0|fflfflffl{zfflfflffl}
|70

), q = 30

CC CS Ridge Lasso CC CS Ridge Lasso

Scenario1, s = 2 LR-test 21.10 21.02 20.95 20.55 20.55 20.61 20.61 20.40

Cox-test 21.35 21.27 21.43 20.42 20.68 20.66 20.62 20.22

Devi 73.02 71.99 21.20 0.000 96.21 89.26 20.01 0.000

c-index 0.601 0.598 0.605 0.529 0.552 0.548 0.559 0.501

âa, l̂l / 0.15 263.23 12.54 / 0.14 346.62 13.07

Scenario2 LR-test 212.27 211.84 211.40 211.41 27.93 26.80 26.67 26.05

Cox-test 212.87 212.82 212.77 212.73 210.55 29.83 29.65 28.79

Devi 291.82 177.76 274.42 271.46 326.63 141.46 246.02 238.22

c-index 0.873 0.865 0.854 0.850 0.810 0.790 0.794 0.778

âa, l̂l / 0.45 60.36 8.33 / 0.53 84.43 8.42

NOTE: For Scenario 1, each informative covariate is correlated with s non-informative covariates. For Scenario 2, the covariates for the right panel have two gene
pathways and those for the left panel have one gene pathway. In each setting, q is the number of informative covariates (covariates with non-zero coefficients).
doi:10.1371/journal.pone.0047627.t002

Table 3. Performance of the five methods based on the
primary biliary cirrhosis of the liver data.

CC CS MultiCox Ridge Lasso

LR-test (log10 P-value) 27.95 27.00 26.35 26.98 27.11

Cox-test (log10 P-value) 212.49 211.18 210.71 210.89 210.71

c-index 0.846 0.829 0.825 0.843 0.834

Deviance 101.8 239.9 239.2 249.4 245.9

âa (CS), l̂l (Ridge/Lasso) / 0.875 / 22.75 7.32

doi:10.1371/journal.pone.0047627.t003
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We compare the compound covariate, compound shrinkage,

ridge regression, and Lasso methods as well as the 16-gene

compound covariate method of Chen et al. [6]. The results are

summarized in Table 4. In terms of the LR-test, the compound

covariate method performs best, while, in terms of the Cox-test

and c-index, the compound shrinkage method performs best.

Figure 2 shows that the two survival curves for the good and poor

prognosis groups are best separated by the compound covariate

method. However, Figure 3 shows that the Kaplan-Meier curves

for the good, medium and poor prognosis groups cross one

another and are less distinguishable by the compound covariate

method. Here the good, medium, and poor groups are determined

by the tertiles of the PI’s in the test datasets. On the other hand,

the three Kaplan-Meier curves are well-distinguished in the

compound shrinkage method, as implied by its best performance

in the Cox-test and c-index (Figure 3; Table 4). This analysis

suggests that, compared to the compound covariate method, the

compound shrinkage method may provide more accurate ranking

of patients’ risks with respect to their survival status. Although

ridge regression and Lasso has much smaller deviance, it has

poorer performance in the LR-test, Cox-test and c-index.

To see the robustness of the conclusion, comparison of the

methods is made under various different numbers of genes,

including p~124 genes whose P-values of the univariate analysis

are less than 0.25. As seen from the Supporting Information S2,

the compound covariate method still performs best in terms of the

LR-test. However, the compound shrinkage method still has the

best performance in the Cox-test and c-index, and it provides the

best separation among the survival curves for the good, medium,

and poor prognosis groups. In fact, the compound shrinkage

method almost always has the best c-index values under varying

number of genes passing a univariate pre-filter for inclusion in the

PI (Figure 4). Hence, the conclusion is unchanged.

We also compared the computation time of the four methods in

Table 4. The compound covariate method achieves the fastest

computation time since it merely repeats p = 97 univariate Cox

regressions using the R ‘‘coxph’’ routine. Ridge regression requires

about 5 times and Lasso has about 7 times longer computation

time than the compound covariate method. The compound

shrinkage is decidedly the slowest, due to the cost of finding high-

dimensional maxima b̂b(âa) and b̂b({k)(a).

Analytical Results

Large Sample Results for the Shrinkage Method
The first analytical result of the compound shrinkage method is

the large sample consistency of the survival prediction. That is, as

n?? with fixed p, the estimated shrinkage parameter âa tends to 1

and the compound shrinkage estimator b̂b(âa) tends to the true

parameter value b0. The second and more practically important

result is a formula for the standard deviation of b̂b(âa) that may be

useful for calculating P-values for each covariate.

To describe the analytical properties of âa and b̂b(âa), define, for

k~0, 1, 2,

S(k)(b; t)~
Xn

i~1

Yi(t)x
k
i exp (b’xi), s(k)(b; t)~Ef S(k)(b; t)=n g,

where x0
i :1, x1

i :xi, x2
i :xix’i and Yi(t)~I(ti§t) with I(:)

being an indicator function, and for j~1, :::, p,

S
(k)
j (bj ; t)~

Xn

i~1

Yi(t)x
k
ij exp (bjxij), s

(k)
j (bj ; t)~Ef S

(k)
j (bj ; t)=n g,

E(b; t)~S(1)(b; t)=S(0)(b; t), e(b; t)~s(1)(b; t)=s(0)(b; t),

Ej(bj ; t)~S
(1)
j (bj ; t)=S

(0)
j (bj ; t), ej(bj ; t)~s

(1)
j (bj ; t)=s

(0)
j (bj ; t),

V(b; t)~S(2)(b; t)=S(0)(b; t){E(b; t)E(b; t)’,

Vj(bj ; t)~S
(2)
j (bj ; t)=S

(0)
j (bj ; t){Ej(bj ; t)2:

The score function defined as the derivative of ‘a
n(b) with respect

to b is given by

Ua
n(b)~

Xn

i~1

dif xi{aE(b; ti){(1{a)( E1(b1; ti), :::,Ep(bp; ti) )’g:

The observed Fisher information matrix, the negative of the

Hessian of ‘a
n(b), is

Va
n(b)~

Xn

i~1

dif aV(b; ti)z(1{a)diag(V1(b1; ti), :::, Vp(bp; ti) )g,

where diag( V1(b1; ti), :::, Vp(bp; ti) ) is the diagonal matrix

with the diagonal element ( V1(b1; ti), :::, Vp(bp; ti) ). It is easy

to verify that Va
n(b) is positive semi-definite and hence ‘a

n(b) is

Table 4. Performance of the five methods based on the non-
small-cell lung cancer data of Chen et al. [6].

97 genes 16 genes

CC CS Ridge Lasso CC

LR-test (log10

P-value)
21.12 20.75 20.04 20.15 20.84*

Cox-test (log10

P-value)
20.19 20.78 20.03 20.12 20.16

c-index 0.581 0.606 0.535 0.544 0.584

Deviance 1520.3 68.4 15.2 15.8 439.5

âa (CS), l̂l (Ridge/Lasso) / 0.70 11.58 2.66 /

Computation time
(sec)

0.41 895.9 2.12 3.05 0.06

NOTE: Smaller values of the LR-test (log10 P-value), Cox-test (log10 P-value) and
Deviance, and larger values of the c-index correspond to more accurate
prediction performance.
*If good and poor groups are separated by the median PI in the training set, the
LR-test has P-value = 0.034 (log10 P-value = 21.47) with n = 28 in the good and
n = 34 in the poor groups (the same result as Figure 1C of Chen et al. [6]).
The methods: CC = compound covariate (using 97 or 16 genes), CS =
compound shrinkage, Ridge = ridge regression, and Lasso = Lasso analyses
are compared.
doi:10.1371/journal.pone.0047627.t004
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concave for a given a[½0, 1�. For a[½0, 1), Va
n(b) is typically

positive definite and ‘a
n(b) is strictly concave, which implies that

b̂b(a) is unique even when pwn.

Now we state the large sample results as n?? with fixed p; the

proofs are given in Supporting Information S3. Assume that

f (ti, di, xi); i~1, . . . , n g are independently and identically

distributed under the model (1) with b~b0, and a[½0, 1� is a fixed

constant. Applying martingale calculus and the concave property

of ‘a
n(b) under mild regularity conditions (e.g. p.497–498 of [28]),

we verify that b̂b(a) converges in probability to b�(a), a solution to a

h(a, b)~0 for a given a[½0, 1� where

h(a, b) ~

ð?
0

s(1)(b0; u)h0(u)du {

ð?
0

ea(b; u) s(0)(b0; u)h0(u)du, ð8Þ

where ea(b; u)~ae(b; u)z(1{a)( e1(b1; u), :::, ep(bp; u) )’:

Note that, for a~0, equation (8) is a multivariate generalization

of equation (2–5) of Struthers and Kalbfleish [29] in the context of

the misspecified Cox regression analysis. For a~1, the solution to

h(1, b)~0 is b0, and hence b�(1)~b0.

Proposition 1 (Consistency): As n??, âa converges in probability to

1. Also, b̂b(âa) converges in probability to b0.

Proposition 2 (Asymptotic normality): As n??,
ffiffiffi
n
p

( âa{1 )
converges weakly to a mean zero normal distribution with

variance vCV (b0). Also,
ffiffiffi
n
p

( b̂b(âa){b0 ) converges weakly to a

mean zero normal distribution with covariance matrix S(b0).
Explicit formulas for vCV (b0) and S(b0) are derived in Supporting

Information S3.

Remark I. We allow âaw1 when CV (a) is maximized at aw1.

Remark II. The asymptotic variance S( b0 ) can be consistently

estimated by Sâa
n( b̂b(âa) ), where

Figure 2. Kaplan-Meier curves for the 62 patients in the lung cancer data of Chen et al. [6]. Good (blue) and poor (red) groups are
determined by the median of the PI’s in the test dataset.
doi:10.1371/journal.pone.0047627.g002
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Sa
n( b )~Aa

n( b )
Va

n( b )

n

� �{1

Aa
n( b )’,

Aa
n( b )~

Va
n( b ){1 _hhn( b ) _hhn( b )’

{d2CV (a)=da2
zIp,

_hhn( b )~
LUa

n( b )

La

~
Xn

i~1

dif{E(b; ti)z( E1(b1; ti), :::, Ep(bp; ti) )0 g,

where Ip is the unit matrix of size p. The estimator Sâa
n( b̂b(âa) )

gives reasonable approximation to the variance of b̂b(âa) even when

p is large (see simulations for p = 100 and n = 100 in Supporting

Information S3). The variance estimate facilitates the Wald-type

test for significance of the regression coefficients.

Analytical Comparison with the Lasso and Ridge
Regression

Unlike the Lasso and ridge regression in equations (3) and (4),

which shrink the regression coefficients toward 0~( 0, :::, 0 )’, the

compound shrinkage estimator is obtained by shrinking the

coefficients toward the compound covariate estimator

b̂b(0)~( b̂b1(0), :::, b̂bp(0) )’.
We apply a statistical large sample theory on the misspecified

Cox regression analysis [29,30] to demonstrate that shrinking the

regression coefficients toward the compound covariate estimator

may be more informative than shrinking toward 0 when covariates

are independent. When n goes to infinity, the compound covariate

estimator b̂b(0) converges in probability to a vector

b�(0)~( b�1(0), :::, b�p(0) )’, a solution to h(0, b)~0 that is defined

in equation (8). In general, b�(0)=b0, where b0~( b01, :::, b0p )’ is

the true parameter value in equation (1). Nevertheless, b�(0)
contains information about b0. Without loss of generality, we will

describe the properties of the first component b�1(0) of b�(0), where

Figure 3. Kaplan-Meier curves for the 62 patients in the lung cancer data of Chen et al. [6]. Good (blue), medium (black), and poor (red)
groups are determined by the tertile of the PI’s in the test dataset.
doi:10.1371/journal.pone.0047627.g003
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the censoring is assumed independent of survival time and

covariates.

(P1) If b02~ � � �~b0p~0, then b�1(0)~b01.

(P2) Suppose that xi1 and (xi2, :::, xip) are independent for all

i (~1, . . . , n). If b01~0, then b�1(0)~0. If b01=0, then

0vb�1(0)vb01 when 0vb01, or b01vb�1(0)v0 when b01v0.

The property (P1) is due to the fact that the univariate Cox

estimate b̂b1(0) is obtained under the assumption that the hazard

given xi1 is of the form h01(t) exp (b1xi1), which is true when

b02~ � � �~b0p~0 under equation (1). An important implication

from the property (P1) is that, if b0~0, then b�(0)~0 as well. The

property (P2) is deduced from some known results of misspecified

Cox regression analysis [29,30]. The property (P2) implies that, if

all the covariates are independent, the sign of each component of

b�(0) agrees with that of b0, and b�(0) is closer to b0 than 0. From

the above properties, it is then expected that shrinking the

regression coefficients toward b�(0) may be more informative than

shrinking them toward 0. This gives an analytical reason justifying

the proposed shrinkage method. The justification in the presence

of correlations among covariates is analytically intractable, and

hence is done by simulations and real data analysis as presented

above.

The proposed shrinkage method has a natural interpretation

under a setting of linear regression. Let y~( y1, :::, yn )’ be the

response vector and X’~( x1, :::, xn ) be the design matrix, where

xi~( xi1, :::, xip )’ is the covariate for individual i. In the ordinary

least square regression, we minimize the objective functionPn
i~1 ( yi{b’xi )2. If pwn, it does not have a unique minimizer

since the design matrix X’X is singular. The proposed shrinkage

scheme leads to minimizing.

a
Xn

i~1

( yi{b’xi )2z(1{a)
Xn

i~1

Xp

j~1

( yi{bjxij )2,

for some a[½0, 1). The minimizer of the above function is

unique and written as

b̂bShrink(a)~ aX’Xz(1{a )diag(X’X)½ �{1
X’y

where diag(X’X) is a diagonal matrix with the same diagonal

elements as in X’X. The singularity of X’X is thus resolved by

reducing the off-diagonal values by a multiplicative factor a. This is

in contrast to ridge regression [13] where the diagonal values are

increased by an additive factor lw0, that is,

b̂bRidge(l)~½ X’Xzl Ip �{1
X’y:

Figure 4. The c-index assessments of the four methods under varying number of top genes (p = 16 , 124 ) in the lung cancer data of
Chen et al. [6], where ‘‘top genes’’ refer to most strongly associated genes passing a univariate pre-filter for inclusion in the linear
predictor (PI).
doi:10.1371/journal.pone.0047627.g004
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With complete shrinkage, the difference between the two

estimators becomes evident since b̂bShrink(0)~f diag(X’X) g{1
X’y

while b̂bRidge(?)~0.

Computing Algorithms
Numerical maximization of ‘a

n(b) in equation (6) can be done

through quasi-Newton type algorithms. For instance, the R ‘‘nlm’’

is a reliable routine to find the minimum of {‘a
n(b) with a large p.

Numerical maximization of CV (a) in equation (7) can be

obtained by a grid search on finely selected values of a as

commonly done in cross-validation [17,24]. In our numerical

studies we observe that the graph of CV (a) is always unimodal,

and calculating CV (a) with smaller a is always faster than with

larger a. Utilizing these properties, we suggest the following

computation algorithm, which is more efficient in computation

than the ‘‘exhaustive search’’ procedure:

Step 1: Set a~0 and a positive number Da (e.g., Da~0:025),

and calculate CV (0).
Step 2: Set a�~azDa. If a�§1, then go to Step 3. If

CV (a�)ƒCV (a), then go to Step 3. If CV (a�)wCV (a), then

set a~a� and return to Step 2.

Step 3: Stop the algorithm and set âa~a.

Conclusions
We have revisited a compound covariate prediction method for

predicting survival outcomes with a large number of covariates.

This method is popularly employed in medical studies, but its

statistical performance has been less studied in the literature. We

investigate the prediction power of the method by comparison

with the well-known methods of ridge regression and Lasso, both

of which adapt to a large number of covariates. The simulations

demonstrate that the compound covariate method has better

predictive power than ridge regression when only a few among a

large number of covariates associate with the survival (i.e., sparse

cases), and that it performs better than the Lasso when many of a

large number of covariates simultaneously affect the survival (i.e.,

less sparse cases). The compound covariate method exhibits best

predictive power among all the competitors in the primary biliary

cirrhosis dataset, including the multivariate Cox regression, ridge

regression and Lasso. In the even much higher dimensional lung

cancer microarray data, where the multivariate Cox regression no

longer applies, the compound covariate method similarly outper-

forms ridge regression and Lasso. Hence, the compound covariate

method is a computationally attractive and powerful technique for

survival prediction with a moderate or large number of covariates.

To further improve the prediction power of the compound

covariate prediction, we propose a novel shrinkage type estimator

for survival prediction with a large number of covariates. The new

shrinkage scheme refines the compound covariate method by

incorporating the multivariate likelihood information into the

compound covariate predictor. Our simulation studies demon-

strate that, in the sparse signal setting, the Lasso strongly

outperforms the ‘‘non-sparse’’ methods, including ridge regression,

compound covariate and compound shrinkage methods. On the

other hand, in settings with less sparse signals, the compound

covariate and compound shrinkage methods perform comparably

to ridge regression, and all these methods outperform the Lasso

method. Given that the non-sparse setting is not uncommon [27],

and ridge regression shows best overall performance in several

comparative prediction studies [17,18,19], the compound covar-

iate and compound shrinkage methods have the potential to be

useful alternatives. Our proposal also provides a novel framework

of shrinkage estimation that encompasses the simple but effective

compound covariate method as a special case. In the lung cancer

data analysis we find that, the major advantage of the proposed

compound shrinkage method over the compound covariate

method is in its more accurate prediction of patient’s survival

status. We also establish statistical large sample theories, including

consistency and standard error estimation of the parameter

estimator, for the proposed shrinkage method. Given these

numerical and theoretical evidences, the proposed prediction

scheme seems to be a method that can be reliably applied for

survival prediction. The method is implemented by an R package

‘‘compound.Cox’’ available in CRAN at http://cran.r-project.

org/.

A potential extension of the proposed shrinkage method is the

development of covariate selection. This is clearly an important

issue in microarrays in which the focus is to select genes that

achieve good predictive power. If the gene selection is the main

focus, we find the Lasso method offers an elegant solution since it

gives an automatic way of selecting genes. In fact, the Lasso shows

excellent performance when the signal is sparse, as shown in our

simulation studies (Table 1). However, in the presence of a large

number of informative genes (less sparse cases), the performance of

the Lasso is less reliable since it tends to select only a few genes

among them and often results in the null model with no prediction

power (Table 2). A large number of informative genes are also

encountered in the lymphoma data reported in Matsui [16], where

the number of genes in the optimal set is t = 75 or 85. Matusi [16]

suggests a gene filtering procedure that chooses the top t genes in

terms of univariate Cox analyses, where t is the threshold that

leads to the best predictive power in cross validation. Although this

methodology is computationally simple, the top t genes are based

on univariate significance only. Hence, it is interesting to extend

the gene filtering approach to take into account the combined,

multivariate predictive information of genes using the proposed

shrinkage method. We will leave this problem to a future research

topic.
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