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Abstract

Background: Utilizing highly precise spatial resolutions within disease outbreak detection, such as the patients’ address, is
most desirable as this provides the actual residential location of the infected individual(s). However, this level of precision is
not always readily available or only available for purchase, and when utilized, increases the risk of exposing protected health
information. Aggregating data to less precise scales (e.g., ZIP code or county centroids) may mitigate this risk but at the
expense of potentially masking smaller isolated high risk areas.

Methods: To experimentally examine the effect of spatial data resolution on space-time cluster detection, we extracted
administrative medical claims data for 122500 viral lung episodes occurring during 2007–2010 in Tennessee. We generated
10000 spatial datasets with varying cluster location, size and intensity at the address-level. To represent spatial data
aggregation (i.e., reduced resolution), we then created 10000 corresponding datasets both at the ZIP code and county level
for a total of 30000 datasets. Using the space-time permutation scan statistic and the SaTScanTM cluster software, we
evaluated statistical power, sensitivity and positive predictive values of outbreak detection when using exact address
locations compared to ZIP code and county level aggregations.

Results: The power to detect disease outbreaks did not largely diminish when using spatially aggregated data compared to
more precise address information. However, aggregations negatively impacted the ability to more accurately determine the
exact spatial location of the outbreak, particularly in smaller clusters (,800 km2).

Conclusions: Spatial aggregations do not necessitate a loss of power or sensitivity; rather, the relationship is more complex
and involves simultaneously considering relative risk within the cluster and cluster size. The likelihood of spatially over-
estimating outbreaks by including geographical areas outside the actual disease cluster increases with aggregated data.
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Introduction

Complete and timely reporting of infectious diseases is

important for effective outbreak detection, which is in part based

on statistically analyzing a study area for unexpected spatial and/

or temporal clusters of cases. In the United States, case

information used in surveillance efforts may come from various

sources of administrative data, including health insurance plans,

hospitals, emergency rooms, or physician offices, and can include

identifiable patient information and clinical diagnostic detail.

Studying disease clusters at the most precise level of spatial

resolution, such as the patients’ address, is most desirable as this

provides the actual residential location of the infected individual.

However, this level of data precision is not always readily available

or only available for purchase, and when utilized, it increases the

risk of exposing protected health information (PHI) perhaps

without the patient’s knowledge or consent. Also, added costs may

be incurred when geocoding the relatively larger number of

address-level cases, either monetary costs and/or resource costs

due to extended processing time. Aggregating case data to less

precise geographic scales may mitigate this risk and resource

expenditure but at the expense of potentially masking smaller

isolated high risk areas [1–6].

Underreporting of infectious diseases is a well-known issue that

can also influence disease surveillance efforts. Health insurance

plans could play a major role in the reporting of infectious

diseases through submission of electronic administrative medical

claims data to supplement passive physician reporting. These

data are relatively easy and inexpensive to work with, and

represent a volume rich source of persons diagnosed with

infectious diseases [7–16]. Routinely collected electronic clinical

data from the Harvard Pilgrim Health Care health maintenance

organization (MCO) proved valuable in providing timely data for

rapid disease surveillance, particularly for rare events and those
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without etiologic agent information [9,11]. The Centers for

Disease Control and Prevention (CDC) in collaboration with

Harvard Medical School, Harvard Pilgrim Health Care and

other nationwide health plans and their respective local health

departments have incorporated electronic data from multiple

administrative sources to detect localized outbreaks and facilitate

rapid public health investigations [12]. When compared to state

reported data, results suggest combining health plan data with

the state could provide a more comprehensive view of certain

infectious zoonotic disease clusters [13,14]. Expanding data

sharing efforts to include all communicable or infectious diseases

for surveillance efforts would be ideal from a public health

standpoint considering more than 250 million Americans have

health insurance. Section 164.512(b) of the federal Health

Information Portability Accountability Act (HIPAA) establishes

safeguards allowing the disclosure of PHI without individual

authorization for reporting of disease and vital events, and

conducting public health surveillance, investigations and inter-

ventions. Depending on the exact intention of data sharing, other

provisions could require signed agreements and legal review if

being used for ‘‘health oversight’’ (section 164.512d), or

independent review board approval may be required for research

purposes (164.512i). While these provisions may ultimately

permit the transfer of residential level case data, the inherent

risks of such exchanges could be minimized if a less precise

spatial resolution (e.g., ZIP code, county) provided similar

outbreak detection results.

Collecting case information at the residential street address

level from administrative medical claims data is possible;

however, if a less identifiable spatial resolution could successfully

be used to estimate disease clusters, this would allow researchers

to properly identify potential outbreaks while also masking the

location identity of cases and thus protecting patient privacy.

One approach to protecting patient privacy in spatial epidemi-

ological research is geographical masking, which adds stochastic

or deterministic noise to the original data matrix through

modifying the geographic coordinates of the data points [1,15].

However, a significant tradeoff may exist because increasing

accuracy of results necessarily requires a mask with less

introduced error, thereby directly increasing risk of patient

exposure [16]. Another approach to protecting patient privacy is

spatially aggregating data to a higher resolution (e.g., from

address to ZIP or county level). In general, the overwhelming

majority of evidence purports the ability to detect outbreaks

declines as spatial resolution declines, thereby providing

researchers with objective evidence of weighing statistical

precision against patient privacy concerns [4,5,6].

This study proposes to experimentally examine how spatio-

temporal clusters of viral lung infections vary in statistical power

and spatial precision as a function of spatial resolution. We focused

on localized hot spot cluster detection via the Kulldorff scan

statistic rather than global detection methods (e.g., Tango’s

MEET). The scan statistic is commonly used in disease

surveillance (e.g., http://www.satscan.org/references.html) and

has proven to have good statistical power for outbreak detection

[17,18]. Our works extends previous spatial-only efforts by

utilizing the space-time scan statistic, simultaneously considering

the variability in both cluster size and underlying relative risk using

actual disease case information, and incorporates pragmatic spatial

aggregations. Viral lung infections were chosen because a

preliminary analysis indicated high case volume, a high degree

of spatial and temporal variability across the study area and

certain localized cluster spreading, thus making it a good

candidate for experimental study. Additionally, respiratory

infections are often utilized in syndromic surveillance research

because they characterize many conditions of public health

interest [4].

Methods

2.1 Study Population
Administrative medical claims data were obtained retrospec-

tively from commercial and government insured members of

BlueCross BlueShield of Tennessee (BCBST), a large southeast-

ern managed care organization. BCBST insures approximately

50% of the entire state’s 6Million+ population and adequately

represents age, gender, income, and geographic distributions

relative to the rest of the state. Ninety-three (93) percent of the

state population lived in the same residence or same county as

they did one year prior [19]. The study area consisted of the

boundary of the state of Tennessee, USA and its surrounding

counties.

2.2 Disease Episode Data
Within the health plan, all service claims (medical and

pharmacy) are submitted to clinical grouper software which

organizes the data into episode treatment groups (ETGs). An

ETG is a basic illness classification methodology that provides a

medically meaningful statistical unit representing a complete

episode of care. Using the ETG methodology, baseline data

consisted of viral lung infection episodes with and without

comorbidities occurring from January 1, 2007–December 31,

2010 within the proposed study area collected from electronic

administrative claims data. This produced 144042 unique viral

lung infection episodes. International Classification of Diseases,

Ninth Revision (ICD-9) diagnosis code 487.1 – influenza with

other respiratory manifestations – occurred in an overwhelming

majority (82.5%) of the viral lung ETGs. In addition to episode

criteria, patient level information including a unique patient

identifier code, residential street address, and episode start date

(month/year) were also extracted.

Using a geographic information system (GIS) (Caliper Mapti-

tude v5.0), all case records were geocoded to the street address

level to obtain a geographical coordinate location (latitude,

longitude). Approximately 85% (n = 122500) of the episodes had

a valid geocoded location to their place of residence and were

retained for further analysis. Of the 21542 non-geocoded cases,

39% were post-office box addresses, 5% had non-numerical street

numbering, and the remaining 56% were unmappable due to

other reasons (e.g., street not found in GIS geocoder, symbolic

characters in data).

We consulted with the BCBST internal IRB to determine if

approval was needed for the use of the electronic data. This work

did not disclose any PHI and had no human interaction; therefore,

formal ethical approval from the IRB approval was not needed.

Under HIPAA privacy section 164.512, no authorization from

covered entities was required under the premise that this work is

related to public health surveillance and thus obtaining consent

was waived by the IRB as it was not applicable.

2.3 Space-time Permutation Scan Statistic
The space-time permutation scan statistic is described in detail

elsewhere [17]. Briefly, a scan statistic is created by moving a

cylindrical window over each county centroid, where the circular

base represents a geographical area around a centroid and the

cylinder height represents a time period. The cylinder is variable

in both spatial size and temporal length. The method evaluates

thousands of closely overlapping cylinders, each being a possible
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candidate for a disease cluster. Within each cylinder, the actual

and expected number of disease cases, along with a Poisson

generalized likelihood ratio (GLR) is calculated. Using Monte

Carlo hypothesis testing [20], the maximum GLR from the actual

data is compared to the maximum GLRs from each of 999

random simulated data sets generated under the null hypothesis.

Relative risk (RR) for a significant cluster is calculated as the

observed number of cases divided by the expected number of

cases. For clusters where RR.1, this indicates the observed

number of diseases cases is greater than expectation. Statistical

significance is defined in terms of a p-value, and is computed as

p = R/(S+1), where R is the rank of the GLR for the actual

observation and S is the number of simulated data sets.

Irrespective of the actual P value (i.e., does not have to be below

0.05), the cluster with the highest P value is considered the primary

cluster and all subsequent clusters in P value rank order are

considered secondary. This analysis adjusts for any potential

purely spatial and/or temporal variation, does not require a

control comparison, and is most appropriate when interest is in

space-time interaction, caused by for example a localized disease

outbreak. It is not suitable for the detection of geographical

clusters that are persistent over time, since those are adjusted away

[17].

2.4 Simulated Data
We designed a simulation study to compare the ability to detect

disease clusters at three levels of spatial resolution, the patient’s

exact residential address location, versus the corresponding ZIP

code and county centroids. Using address-level data, we created

10000 simulated datasets and inserted an artificial cluster into each

one while varying cluster location, intensity (i.e., relative risk) and

cluster size across the datasets (Note: hereafter for clarity, any

reference to a ‘‘simulated dataset’’ is to the creation of these

artificially created cluster datasets, and does not pertain the 999

Monte Carlo simulations within the scan statistic methodology

discussed below). A priori we determined each simulated dataset

would contain a total of 1000 observations, which included both

randomized observations (control cases) and the artificially created

cluster of observations (treatment cases) discussed in detail below.

The artificial cluster space was defined using a geometric square

[5,6] having an inscribed circle of radius r, therefore our term

‘‘radius’’ hereafter is for referential convenience. Simulation,

rather than simply using the actual dataset one time, was necessary

because multiple data runs are needed to generate a distribution of

outcomes. Further, the simulation and insertion of artificial

clusters provides a known outcome upon which detection rates

are measured.

The following methods relate to creating SaTScanTM [21] case

and geography files at the residential address level using a modified

version of the macro accessory presented elsewhere [22]. We

expand on previous work by determining the observation count

within the artificial cluster as a function of cluster size and relative

risk (RR) based on the underlying at-risk population, rather than

using a fixed observation count and relative risk. To do so for each

simulated dataset, we randomly selected the size of the cluster area

by using a random number generator to select radius r between 1.6

and 48 km. The upper limit was chosen based on the size of the

largest ZIP code and county within Tennessee, such that the

largest possible artificial cluster could approximately overlap it

completely in both latitudinal and longitudinal directions. We

randomly placed the artificial cluster square within the study area

and calculate C, the proportion of the at-risk population inside the

area:

C~
# cases located inside the cluster area

total #cases in the study population

The value of C represents the baseline likelihood of a case being

located inside the cluster area. A random relative risk (RR) value

ranging from 1 to 10 was then derived and we simulated a space-

time cluster by altering this likelihood based on increasing RR. We

calculated p, the increase in probability of being inside the cluster

given C and RR as:

p~
C(RR{1)

1zC(RR{1)

and q, the probability of being located outside the cluster given p

as:

q~1{p

Thus, when RR = 1, p = 0 which intuitively indicates there is no

increased risk of being located inside the cluster relative to outside

the cluster. We derived Nt, the number of treatment cases needed

inside the artificial cluster given C, RR, and p, using the random

variate value from a binomial distribution [Note: using SASH v9.2,

this was coded as RANBIN(0,1000, p)]. Last, we derived Nc, the

number of control cases needed outside of the cluster as:

Nc~1000{Nt

We randomly selected Nc control cases from the underlying

study population keeping their true geographical location, but for

each one, we replaced the actual episode year-month date with a

random year-month date within the 4-year study period drawing

from the distribution of all cases. This data fulfills the null when

the space-time permutation scan statistic is used, as it has no space-

time interaction clusters. We randomly distributed Nt treatment

cases within the artificial cluster area using a random number

generator applied to the bounding coordinates of the artificial

cluster, replacing the actual date with a randomly assigned date

within a 3-month period. This artificial cluster data fulfills the

alternative when using the space-time permutation scan statistic

(Figure 1).

Note: We use the common ‘‘treatment-control’’ terminology

here to represent typical experimental design comparisons.

Simulations are created by applying a ‘‘treatment’’ to the cases

by artificially placing them inside a block of space and time. This

treatment effect is our ‘‘known’’ cases. The ‘‘control’’ cases are

randomly dispersed and serve to fulfill the null hypothesis of the

scan statistic, because it is known that no space-time interaction

clusters will exist. In summary, ‘‘treatment’’ cases are inside the

artificial cluster and ‘‘control’’ cases are outside the artificial

cluster.

2.5 Spatial Resolution
To simulate spatial aggregation, we replaced the specific

geocoded address location with the latitude/longitude of the

corresponding ZIP code and county centroid for each observation

from the 10000 address level simulated datasets. This produced a

total of 30000 simulated datasets: 10000 at the address level,
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10000 at the ZIP code level and 10000 at the county level. We

chose county and ZIP code level aggregations because these

represent the commonly acquired and utilized areal units in

disease surveillance activity.

2.6 Statistical Analysis
The free SaTScanTM software v9.1.1 [21] was used for all

cluster detection analyses. Specific software settings included a

retrospective space-time permutation probability model scanning

for areas of high disease incidence, time aggregation of 1 month, a

maximum spatial cluster size equal to 50% of the at-risk

population, maximum temporal cluster size equal to 50% of the

study period, a maximum of 999 Monte Carlo replications, and

secondary clusters could not overlap other previously reported

clusters. Statistical significance of spatial clusters is determined

using a#0.05.

For each spatial resolution level, we created 30 mutually

exclusive groups based on each unique combination of 10 RR

values (1–10) and 3 cluster radius size combinations (0–16 km, 17–

32 km, 33–48 km). For interpretation ease, we hereafter refer to

these geographical cluster sizes as small, intermediate, and large,

respectively. We calculated four separate metrics to examine how

spatial resolution of case information influences the ability to

detect a disease outbreak across the gradient of RR values and

cluster size. These four metrics included one measure of statistical

power to detect a cluster irrespective of location, and three

measures of spatial precision.

Statistical Power - The proportion of simulated datasets, under

each RR||cluster size combination, for which a significant cluster

was detected irrespective of it being the artificial cluster or not,

represented as:

1

s

Xs

s~1

# of simulations containing a significant cluster

#of simulations (S)

Power with Spatial Precision (PSP) – Similar to power, except the

detected cluster must be sufficiently close in space to the artificial

cluster. That is, the detected cluster was only recorded as

successful if the distance between the detected cluster center was

within one cluster radius of the true cluster center, represented as:

1

s

Xs

s~1

# of simulations containing a significant cluster sufficiently close in space to the true cluster

# of simulations (S)

This means the detected cluster contains the center of the true

cluster. Note that this metric is termed ‘‘power’’ by Ozonoff et al

2007 [5].

Observation-level sensitivity (sensitivity) – The proportion of the

individual observations from the true cluster captured by the

significant clusters, represented as:

Figure 1. Example of a simulated dataset containing an artificially created infectious disease cluster. Example of a simulated dataset
with an artificial cluster area (box) containing Nt treatment cases (black dots) and surrounding Nc control cases (grey dots) at the address level. Black
squares with inscribed dots indicate ZIP code centroids to which address level cases would be spatially aggregated. Note: Nc cases drawn from
underlying population of cases to retain actual spatial location and event date is randomized. Nt cases are randomly located within the cluster box
area and event date is forced into a 3-month time period. Number of Nt cases is calculated as a function of the underlying at-risk population within
the cluster box area and randomly chosen relative risk value.
doi:10.1371/journal.pone.0048036.g001
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1

s

Xs

s~1

# of observations in the intersection oftrue and significant clusters in the sth simulation

#of simulations (S)

Observation-level positive predictive (PPV) value – The proportion of

individual observations in the significant clusters belonging to the

true clusters, represented as:

1

s

Xs

s~1

# of observations in the intersection of true and significant clusters in the sth simulation

#of observations in the significant clusters in the sth simulation

where S denotes the total number of simulated datasets (10000 for

each spatial resolution in our case).

Sensitivity and PPV calculations follow that of others [23]. Note

that under the null hypothesis when RR = 1, statistical power is the

only metric that will have any measurable values because no

spatial location requirements exist. A power equal to 5% is then

expected.

Results

The primary comparisons of interest were power to detect and

spatial accuracy of the detected disease clusters measured as a

function of spatial resolution, underlying relative risk and artificial

cluster size. There were 617 different areal ZIP codes and 95

counties within Tennessee, with an overall average size of 107 km2

(sd = 98.2) and 709.8 km2 (sd = 239.7), respectively. A total of

10000 simulated runs were completed for each spatial resolution

for a total of 30000 SaTScanTM runs (300000 case observations)

generated from the 122500 actual viral lung infection cases

containing valid geocoded locations. As relative risk increased,

power to detect significant clusters also increased irrespective of

artificial cluster size or spatial resolution (Figure 2). Power

increased linearly as RR increased for small and intermediate

sized clusters (Figure 2A, 2B), and increased rather exponentially

for large clusters (Figure 2C). Power remained low for small

clusters and never exceeded 26%. Overall, power declined

approximately 1.4% and 2.0% on average when aggregating data

to the ZIP code and county levels, respectively.

Power with spatial precision (PSP) followed a similar pattern as

power. Here, ZIP code level values were only slightly lower than

address level measures, though county level aggregations deviated

comparatively more (Figure 3). Overall, PSP declined approxi-

mately 1.8% and 7.1%, on average, when aggregating data to the

ZIP code and county level, respectively.

In general, sensitivity was comparatively higher when case

observations were recorded at the ZIP and county levels compared

to the address across most RR and cluster size values. One obvious

and notable deviation from this however was when clusters were

large (32+ km radius) and RR.5 (Figure 4). Overall, sensitivity

improved approximately 18.8% and 19.1% on average when

aggregating data to the ZIP code and county levels, respectively.

However, the opposite was observed for PPV; here, PPV was

comparatively lower for spatially aggregated data and declined

25.8% and 37.3% on average for ZIP code and county level

aggregations, respectively (Figure 5).

Discussion

This study adds to the body of work examining the influence

that spatial data aggregations have on detecting space-time clusters

and accurately locating disease outbreaks. Our study is noteworthy

because we derive observation counts within simulated clusters by

incorporating relative risk calculations, versus a fixed observation

Figure 2. Effect of spatial resolution on power to detect
significant space-time clusters. Effect of spatial resolution on power
to detect significant space-time clusters at significance level a= 0.05 for
varying sizes of cluster radii of 0–16 km (A), 17–32 km (B) and 33–48 km
(C). Each line represents disease case data aggregated to different
spatial resolutions – the address level (solid line with solid squares), the
ZIP code level (dashed line with open squares) and county level (dotted
line with triangles). Relative risk (abscissa x-axis) describes the intensity
of the artificially created clusters, where RR = 1 indicates the risk of a
disease case occurring inside the cluster area is equivalent to that of
occurring outside the cluster area (see Fig. 1). RR = 10 indicates risk is 10
times higher inside the cluster area relative to outside the area.
doi:10.1371/journal.pone.0048036.g002
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Figure 3. Effect of spatial resolution on power to detect
significant space-time clusters accounting for spatial precision.
Effect of spatial resolution on power to detect significant space-time
clusters accounting for spatial precision for varying sizes of cluster radii
of 0–16 km (A), 17–32 km (B) and 33–48 km (C). Each line represents
disease case data aggregated to different spatial resolutions – the
address level (solid line with solid squares), the ZIP code level (dashed
line with open squares) and county level (dotted line with triangles).
Relative risk (abscissa x-axis) describes the intensity of the artificially
created clusters, where RR = 1 indicates the risk of a disease case
occurring inside the cluster area is equivalent to that of occurring
outside the cluster area (see Fig. 1). RR = 10 indicates risk is 10 times
higher inside the cluster area relative to outside the area.
doi:10.1371/journal.pone.0048036.g003

Figure 4. Effect of spatial resolution on sensitivity. Effect of
spatial resolution on sensitivity, defined as the proportion of artificial
observations included within the detected significant clusters for
varying sizes of cluster radii of 0–16 km (A), 17–32 km (B) and 33–
48 km (C). Each line represents disease case data aggregated to
different spatial resolutions – the address level (solid line with solid
squares), the ZIP code level (dashed line with open squares) and county
level (dotted line with triangles). Relative risk (abscissa x-axis) describes
the intensity of the artificially created clusters, where RR = 1 indicates
the risk of a disease case occurring inside the cluster area is equivalent
to that of occurring outside the cluster area (see Fig. 1). RR = 10
indicates risk is 10 times higher inside the cluster area relative to
outside the area.
doi:10.1371/journal.pone.0048036.g004
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count and risk level. We also vary artificial cluster sizes, use the

actual underlying spatial distribution of cases within our simula-

tion runs, and use pragmatic aggregation levels to further our

effort of producing results that would more closely represent

reality. This better allows for future research to benchmark against

our findings, both in future simulation studies and real-world

comparisons of actual observational findings. Finally, to the

authors’ knowledge, all prior published studies in this area have

involved spatial-only models, whereas we invoked a space-time

permutation statistic to better simulate the true efforts of outbreak

detection which involve both space and time determinations.

For the purposes of this paper, our discussion centers mostly on

the comparisons of power and spatial accuracy as a function of

spatial resolution versus the actual values independent of this scale

comparison. The most noteworthy finding in our study is power to

detect disease clusters does not diminish an appreciable amount

when aggregating data to the less precise ZIP code level, though

county level aggregations deviated most when clusters and RR

were large. These relationships exist also when we require the

detected cluster to be sufficiently close to the artificial cluster

(Figure 3), though county level deviations were more evident here

than in power calculations. More recent findings do however

support our conclusion that spatial aggregations do not necessitate

a loss of power [6,24]; rather, the relationship is more complex as

it involves simultaneously considering relative risk within the

cluster and cluster size. This complexity is more prevalent in our

sensitivity and PPV results discussed below.

Higher sensitivity values were recorded with aggregated data,

irrespective of RR when cluster radius was less than 32 km, or

when RR,5 for large clusters. Higher sensitivity was achieved,

however at the expense of spatial precision, where PPV was lower

for aggregated data irrespective of cluster size or relative risk. This

trade-off between sensitivity and PPV commonly occurs in

statistical comparisons because as the identifiable target area

increases and captures more potential case observations (increased

sensitivity), precision is inherently lost because more non-cases are

also included (decreased PPV). For example, to identify all ZIP

codes in the US with at least one case of Babesiosis (a very rare

infectious tick-borne disease), simply include all ZIP codes in a list

of potential sites to obtain 100% sensitivity. However, the level of

precision would be much lower because many included ZIP codes

do not contain the disease. The deviations in sensitivity and PPV

were much more pronounced within small clusters and particu-

larly more evident in county level aggregations. PPV remained

very low (under 5%) for county level aggregations when cluster

sizes were small and never exceeded 45% for the largest clusters.

Spatial aggregations appear to cause an over-estimation of the

actual cluster area when relative risks are lower, particularly within

smaller clusters, as noted by sensitivity and PPV outcomes.

Intuitively, over-estimation can be expected when data are

aggregated to coarser scales because there is a greater likelihood

to encapsulate points that do not belong to the actual cluster. This

happens because the growing scan statistic circle must travel a

greater distance, relative to address data, to cover the respective

ZIP/county centroids containing the cluster observations. Al-

though there is a relatively short displacement distance incurred

when ‘‘moving’’ a patient from their address to the ZIP code

centroid in the study area [25], as the scan statistic circle grows, it

will logically encapsulate more address observations not part of the

original significant cluster area in order to reach the relatively

more spatial disparate ZIP/county centroids. Thus, it could be

expected that the actual radii of clusters from aggregated data will

be larger compared to address level clusters. In fact, we observed

this to be true where the average radii for ZIP and county level

Figure 5. Effect of spatial resolution on positive predictive
value (PPV). Effect of spatial resolution on positive predictive value
(PPV), defined as the proportion of observations in the detected
significant clusters and of the artificial cluster for varying sizes of cluster
radii of 0–16 km (A), 17–32 km (B) and 33–48 km (C). Each line
represents disease case data aggregated to different spatial resolutions
– the address level (solid line with solid squares), the ZIP code level
(dashed line with open squares) and county level (dotted line with
triangles). Relative risk (abscissa x-axis) describes the intensity of the
artificially created clusters, where RR = 1 indicates the risk of a disease
case occurring inside the cluster area is equivalent to that of occurring
outside the cluster area (see Fig. 1). RR = 10 indicates risk is 10 times
higher inside the cluster area relative to outside the area.
doi:10.1371/journal.pone.0048036.g005
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clusters were approximately 20% larger compared to address level.

As the scan statistic grows to capture cluster observations,

sensitivity increases but positive predictive values decreases. Thus,

the ability to locate a larger number of observations contained in

the outbreak improves using spatially aggregated data, but the

locational certainty of the cluster diminishes. In practical terms,

this means on-the-ground resources will be more likely to identify

an outbreak if one occurs, though less likely to isolate it.

Our results are in direct contrast to others’ earlier findings [5],

which report degradation in power and sensitivity when aggre-

gating data to a more coarse scale. However, their study design

was considerably different in that each simulated dataset contained

100 total observations with exactly 10 artificially embedded disease

cluster points, having a rather fixed relative risk.10. Additionally,

they utilized a spatial-only model with uniformed spatial

distribution of points upon which to aggregate the data to simulate

a reduction in spatial resolution. Therefore, it is expected that our

findings which suggest a complex interaction between RR and

cluster size would vary from the Ozonoff et al findings [5].

Our study is not without limitations. Artificial clusters arranged

in squares do not necessarily represent the true spatial distribution

of true outbreaks; however, this removes some of the potentially

confounding interactions between cluster shape and outbreak

detection methodologies. Further, the true disease cluster is not

required to be circular to obtain good power [26]. Although we

use a space-time permutation model, we did not vary the temporal

length of the artificial cluster in this study due to the increasing

level of permutations upon which to report on, and therefore this

remains as an area needing further attention. We only report

results for significant clusters defined using p#0.05 and results

could vary using other values; however, this is the most commonly

used Type I error rate.

Conclusions
When using the space-time permutation scan statistic, the ability

to detect the presence of a significant disease outbreak does not

largely diminish when using spatially aggregated data (i.e., ZIP or

county level) compared to more precise address information.

However, this data aggregation negatively impacts the ability to

more accurately determine the exact spatial location of the

outbreak. There is a greater likelihood of spatially over-estimating

the outbreak and thereby including geographical areas that are not

part of the actual disease cluster. The intent of disease surveillance

and available/deployable resources for outbreak investigation will

dictate whether this interchange between sensitivity and accuracy

is appreciably large.
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