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Abstract Cell polarization is an important part of the response of eukaryotic cells
to stimuli, and forms a primary step in cell motility, differentiation, and many cel-
lular functions. Among the important biochemical players implicated in the onset
of intracellular asymmetries that constitute the early phases of polarization are the
Rho GTPases, such as Cdc42, Rac, and Rho, which present high active concentration
levels in a spatially localized manner. Rho GTPases exhibit positive feedback-driven
interconversion between distinct active and inactive forms, the former residing on the
cell membrane, and the latter predominantly in the cytosol. A deterministic model
of the dynamics of a single Rho GTPase described earlier by Mori et al. exhibits
sustained polarization by a wave-pinning mechanism. It remained, however, unclear
how such polarization behaves at typically low cellular concentrations, as stochastic-
ity could significantly affect the dynamics. We therefore study the low copy number
dynamics of this model, using a stochastic kinetics framework based on the Gillespie
algorithm, and propose statistical and analytic techniques which help us analyse the
equilibrium behaviour of our stochastic system. We use local perturbation analysis to
predict parameter regimes for initiation of polarity and wave-pinning in our determin-
istic system, and compare these predictions with deterministic and stochastic spatial
simulations. Comparing the behaviour of the stochastic with the deterministic system,
we determine the threshold number of molecules required for robust polarization in a
given effective reaction volume. We show that when the molecule number is lowered
wave-pinning behaviour is lost due to an increasingly large transition zone as well
as increasing fluctuations in the pinning position, due to which a broadness can be
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reached that is unsustainable, causing the collapse of the wave, while the variations
in the high and low equilibrium levels are much less affected.

Keywords Rho GTPase · Polarization · Wave-pinning · Stochastic model · Local
perturbation analysis

1 Introduction

Many eukaryotic cell types undergo directed movement in a variety of scenarios.
Such motility is important in embryogenesis (Charest and Firtel 2007), wound heal-
ing, immune surveillance (Ridley et al. 2003), and cancer metastasis (Ridley et al.
2003). As a first step in this process, cells polarise, forming a distinct front and rear
distinguished by biochemical profiles of signalling molecules that regulate lamellipo-
dial extension (Ridley 2006). An important part of that internal polarizing biochem-
istry is based on the activity and distribution of Rho GTPases. These switch-like
signalling proteins exhibit a distinct active (GTP, membrane-bound) form and an in-
active (GDP) form that is largely cytosolic. Only the active, GTP-form is able to
interact with downstream effectors to exert its biological function. Interchange be-
tween these two forms is mediated by GTPase-activating proteins (GAPs), which
augment inactivation, and guanine nucleotide exchange factors (GEFs), which facil-
itate activation. It has been established that the active form increases its own rate
of activation via various self-recruitment mechanisms (Raftopoulou and Hall 2004;
Li et al. 2003). While the active form binds the plasma membrane, the inactive form
can be both in the membrane or released to the cytoplasm, a process which is posi-
tively regulated by binding to guanine nucleotide dissociation inhibitors (GDIs).

When a cell is stimulated, some Rho GTPase activity (notably, Cdc42 and Rac1) is
focused at the leading edge (Ridley et al. 2003), inducing localized actin polymeriza-
tion that generates protrusive forces propelling the cell (Raftopoulou and Hall 2004).
Here, we are concerned about the onset of polarity and its maintenance, thus focusing
only on the polarization of the Rho pattern, and not on the downstream remodelling
of the cytoskeleton (or possible feedbacks that this might generate).

Based on general interactions between Cdc42, Rac, and Rho, and taking into ac-
count known parameters for the kinetics and diffusion of the active and inactive
forms, we have shown earlier that sustained polarization within a cell is possible,
even when the well-mixed system has only one equilibrium, and in the spatial setting
this equilibrium is stable against both homogeneous and small non-homogeneous
perturbations (Marée et al. 2006; Jilkine et al. 2007). Later, we determined the math-
ematical essence of the mechanism by studying a reduced deterministic model of
cell polarization, coining it “wave-pinning” (Mori et al. 2008). It remains, however,
unclear to what extent stochasticity at low molecule numbers can influence the po-
tential of the mechanism to initiate and sustain polarity within the cell. We therefore
compare and contrast the deterministic and the stochastic version of the core model
for wave-pinning. A simple 1D geometry in which this generic Rho GTPase can be
studied is shown in Fig. 1, where the organelles and nucleus are omitted, L is a cell
diameter, and the chemical system is modelled by a two-component reaction with dis-
tinct rates of diffusion Da � Db across L, since proteins diffuse much more slowly
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in the lipid membrane than in the cytosol. Here, A is the active and B the inactive
small GTPase (with concentrations a(x, t) and b(x, t)). The height H and width W

of the compartment are assumed to be reasonably small, so gradients are described
in the x direction for x ∈ [0,L], t ≥ 0. The system of reaction-diffusion equations of
the deterministic GTPase model in Mori et al. (2008) is

∂a

∂t
= Da

∂2a

∂x2
+ f (a, b), (1a)

∂b

∂t
= Db

∂2b

∂x2
− f (a, b). (1b)

Here, f (a, b) is the rate of GTPase interconversion. Equations (1a), (1b) are taken
with no-flux boundary conditions: ax(0) = ax(L) = 0, bx(0) = bx(L) = 0 and the
inter-conversion rate is modelled to include auto-activation of A (through a positive
feedback of A onto its own production):

f (a, b) = k0b + γ a2

K2 + a2
b − δa, (2)

where k0 and δ denote the basal rates of activation and inactivation of A, respectively,
γ is the rate of maximal feedback strength, and K is the concentration of A leading
to a half-maximal feedback level.

We first briefly describe the deterministic aspects of this model, and build on the
previous analysis by introducing a local perturbation analysis that leads to insights on
how the initiation of polarisation depends on the parameters and on the total amount
of molecules. We then explore how the polarisation mechanism reacts when only a
limited number of molecules is available and stochasticity starts to impact on the
polarisation state of the cell. To do so, we describe and analyse an analogous stochas-
tic version (low copy number regime) of the same model. We confirm our stochas-
tic implementation by showing that simulating large molecule and lattice numbers
approaches the thermodynamic limit. To analyse the equilibrium behaviour of the
stochastic system, we introduce statistical tools which provide us with intriguing in-
sights regarding the dynamics in the low copy number regime, namely it being dom-
inated by spatial fluctuations of the transition zone rather than temporal fluctuations
in the activity level, and loss of polarity due to the region of high activity, through
stochastic fluctuations, reaching a broadness that is unsustainable, causing the sudden
collapse of the whole wave. Bifurcation analysis of a simplified model of a pinned
wave provides us with a straightforward rationale for the behaviour of the stochastic
system close to the point where the wave is lost due to stochastic fluctuations.

2 Deterministic Behaviour

2.1 Wave-Pinning

Given appropriate conditions, within model (1a), (1b) a stimulus-pulse of GTPase
located within an otherwise homogeneous domain, for example at one end of the
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cell, leads to the formation of a travelling wave of activation that slows down and
stalls, delimiting a spatial region of activation, i.e. creating a robustly polarised cell
(Mori et al. 2008). In our simulations, this initial pulse is captured by a first-order
reaction converting b to a within a small domain of the cell. This is done through
the term ksb(x, t), which is both added to Eq. (1a) and subtracted from Eq. (1b). The
wave-pinning regime depends on the relative rates of diffusion and the total amount
T = ∫ L

0 a(x, t) + b(x, t) dx in the system. The mechanism of wave-pinning can be
attributed to the following: relatively rapid diffusion of b (Db � Da) leads to a more-
or-less constant level of b over the cell, while the existence of three roots of f (a, b)

for the fixed well-mixed equilibrium b level allows for a sufficiently large local per-
turbation in a to locally reach a distinct activity level (a process that we have coined
“Δ-perturbability”, see below). Mass conservation ensures that, while this peak of
increased a levels expands its domain over the cell with its front propagating like
a wave, the more-or-less homogeneous level of b drops. This global decrease of b

slows down and eventually limits the spatial propagation of the wave, pinning it at
an equilibrium position (Mori et al. 2008). Even though wave-pinning requires the
existence of three roots of f (a, b) for fixed b level, it is important to realize that it
is not a consequence of bi-stability and subsequent front propagation between two
stable states. (Note that in reaction-diffusion systems, the terminology bi-stability
is used to denote cases in which the corresponding well-mixed system has two dis-
tinct stable steady states.) The well-mixed ODE system has only one equilibrium,
and in the PDE this equilibrium is stable against both homogeneous and small non-
homogeneous perturbations. Nevertheless, in the spatial setting a sufficiently large
local perturbation can trigger the travelling wave, which subsequently stalls, giving
rise to sustained polarity.

2.2 Wave-Pinning Versus Propagation Failure

Because we compartmentalize space in this study to perform stochastic simulations,
it is relevant to introduce yet another mechanism, coined propagation failure (Brit-
ton 1985; Keener 1987). As a possible source of confusion, propagation failure has
previously also been referred to as “pinning of waves” (Fáth 1998), thus evoking the
need to emphasize its clear distinction from “wave-pinning” as defined in Mori et al.
(2008).

Propagation failure describes a specific phenomenon that can be observed in
bistable systems in which travelling waves fail to propagate when space is dis-
crete. This may occur when both the wave velocity is low and the discretisa-
tion of the space is coarse (relative to the diffusion coefficient) (Keener 1987;
Fáth 1998). Under such conditions, propagation failure can manifest itself if, at the
location of the wave front, the diffusive flux from one sub-domain into the next be-
comes insufficient to bring the levels of that sub-domain above the threshold required
for the amplification and subsequent propagation of the wave. In contrast, the phe-
nomenon of wave-pinning does not require a discretised space. Instead, when the
triggered wave spreads over the domain, the velocity of the wave decreases, because
of the drop in the available inactive form that is used up by being converted into the
active form. Nevertheless, we here find that both phenomena become coupled to one



2574 G.R. Walther et al.

another when space is discretised. Due to the slowing down of the wave during the
wave-pinning process, inevitably the velocity of the wave eventually becomes suf-
ficiently low that propagation failure will occur within coarse grids. Consequently,
when we discretise space in this study, which we do in both numerical PDE simu-
lations and in Gillespie simulations, propagation failure occurs for large sub-domain
sizes as well as low diffusion rates.

Given that the sub-division into compartments is a computational method, but does
not represent a biological property of the cell, we will ensure below that propagation
failure does not play a role in the dynamics presented in this paper nor influences the
biological insights we derive here. This brings us to the next issue, which is how to
distinguish propagation failure from wave-pinning, given that in both cases the wave
stalls.

2.3 Analysis of Polarity Initiation

The full bifurcation analysis of any system of partial differential equations (PDEs) is
a challenging undertaking. While Mori et al. (2011) focused on the requirements of
the travelling wave to stop, we will here discuss an analysis regarding the potential
to initiate polarity and a travelling wave, in which we probe the homogeneous state
of the cell with a local perturbation. In short, we ask what happens if a local pertur-
bation is introduced to a resting cell (being at a uniform steady state), by observing
whether such a perturbation will diverge to a distinct local equilibrium (eventually
causing polarisation through wave-pinning), or alternatively dampen out, returning
to the rest state corresponding to the global state of the cell. This analysis provides
a straightforward test whether a (sufficiently large) perturbation can “invade” the ini-
tially uniform steady state solution. We refer to this reduced model as the “local
perturbation analysis” (LPA) model, or system, as it allows us to study invasion crite-
ria for a local perturbation of any given amplitude. (Note that such Δ-perturbability
does not directly imply sustained polarisation through wave-pinning, see below.)

To address the onset of polarisation without having to deal with the full complex-
ity of the PDEs, we break down the spatial system into two effective compartments,
one corresponding to the levels of the active and inactive form at the site of the local
perturbation, and another corresponding to the global values over the rest of the cell.
The simplified representation of the deterministic system is given in Eqs. (4a), (4b),
used to predict the total amount of small GTPase T for which to expect initiation of
polarisation and wave-pinning. This analysis allows us to compare results from the
deterministic and the stochastic version of the model later on. For the local pertur-
bation analysis, we make the following assumptions and approximations to the PDE
model:

• We ask whether the value of A at a site of the localized pulse aL(0) will diverge
from the uniform global concentration of active GTPase aG(t). Since this active
form has a very low rate of diffusion, we consider the limit Da ≈ 0 and treat aL(t)

as a purely local variable, that can vary independently from aG(t). This is equiva-
lent to assuming that any perturbation in A will be spatially confined to the site of
the perturbation and will initially evolve independently of the rest of the domain.
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Fig. 1 The modelled cell. (Top):
Schematic diagrams of a cell
showing the “slab” of length L,
height H , and width W in a
top–down view and two
side-views. The model
distinguishes membranous (A,
solid circles) and cytoplasmic
(B , open circles) proteins only
by their distinct rates of
diffusion. A typical
“polarisation” state is shown in
grey/white in the top–down
view. (Bottom): In the
deterministic polarisation model
(1a), (1b) proposed by Mori et
al. (2008), a small stimulus
(dashed line, not to scale)
produces a pinned wave (solid
black line). The notations x/µm
and a/µM along the graph axes
indicate that the x- and y-axis
variable carry units of µm and
µM, respectively. Same
notations have been used
throughout the paper

• Since the inactive GTPase B has a relatively fast rate of diffusion, we take the
limit at which Db ≈ ∞ and consider b(t) to be a purely global variable (bL(0) =
bG(t) ≡ b(t)). Restated, any local perturbation in B caused by the local pertur-
bation in A will be instantly adjusted to the global, homogeneous concentration
profile. This leads to the following LPA model:

daL

dt
= f (aL, b),

daG

dt
= f (aG,b),

db

dt
= −f (aG,b). (3)

Furthermore, given that we consider only a narrow initial pulse of activation
that hardly affects the overall cell levels, it is reasonable to approximate T (t) ≈∫ L

0 aG(t) + b(t) dx ≈ constant, so b(t) ≈ (T /L) − aG(t). Eliminating b(t) by con-
servation leads to a system of two ODEs:

daL

dt
= f

(
aL, (T /L) − aG(t)

)
, (4a)

daG

dt
= f

(
aG, (T /L) − aG(t)

)
. (4b)

The approximations required for the polarity-invasion analysis are depicted in
Fig. 2. Note that since the activating pulse is confined to a sufficiently small sub-
section of the domain its variation will not affect the total amount of inactive form
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Fig. 2 Local perturbation analysis. Schematic representation of the deterministic local pulse analysis
(LPA). In our reduction, we introduce a local perturbation Δa, and consider the evolution of the local
variable aL , the inactive protein (represented by the dotted lines, evolves to the straight black line, such
that bL = bG = b), and the active protein in the rest of the cell, aG

and, therefore, the dynamics of B solely depends on the global level of A in the ex-
tended domain. We can use such approximations to address the following questions:
under what circumstances would a localized pulse of activation grow in magnitude
compared to the surrounding levels? How large should the amplitude of the stimu-
lus be to trigger a new state (e.g. depicting an initial polarisation)? And, if a new,
bounded state exists, what values do we expect it to have? These answers depend on
the parameters and on the total number of molecules (i.e. amount of small GTPase)
in the system. Note that we do not restrict attention to small amplitude perturbations
(as is common in linear stability analysis, e.g. of reaction-diffusion equations).

The LPA system (4a), (4b) can be studied in several ways, e.g. via the aGaL phase
plane and ODE bifurcation analysis. Performing such analysis reveals five qualita-
tively distinct regions of polarity behaviour, depicted in Fig. 3. The behaviour in each
region can be captured with a sequence of corresponding aGaL-phase plane diagrams.
On the bifurcation diagram, we plot the steady state value aL versus the bifurcation
parameter T , representing the total amount of the small G-protein. The five distinct
regimes of behaviour (labelled I–V) are separated by two saddle-node and two trans-
critical bifurcations. The shape of the curve traversing the diagram from lower left to
upper right is shared with the bifurcation curve that would be obtained when the PDE
system is taken to be well mixed (Da = Db = ∞). It represents a steady state where
aG = aL (unpolarised cell, “rest state”). The two actually coincide, meaning that the
equilibrium level in the local patch is neither lower nor higher than the uniform global
background level of aG. Note that for any equilibrium found in the well-mixed case,
there should exist a corresponding equilibrium aG = aL in the LPA model. The sta-
bility of the equilibrium, however, can change (from stable to unstable). For example,
while the equilibrium in the well-mixed case is always stable, the portion of that curve
in Region III of the LPA model is unstable. We indicate the line aG = aL in the aGaL

planes, using a dashed grey line, representing the absence of any local perturbation.
We now explain how to interpret the diagram and its implications for polarity

behaviour. (I) In region I the total amount of molecules is low (T < 19.09) and a
regime is found in which only one steady state value aL = aG < 0.2 exists. That state
of low activation is unresponsive to stimuli, and no pulse can “invade”. The time-
space plot of a(x, t) stays at, or rapidly returns to, a low uniform level (solid curve)
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Fig. 3 Regions of polarisation behaviour in the deterministic model. Middle graph: Bifurcation diagram
of the reduced deterministic model system, Eqs. (4a), (4b), showing steady-state local activated form, aL ,
versus the total amount of material in the domain (T ). Five distinct regimes of behaviour are found, as
explained in the text. Top row: colour plots of the solutions of the PDEs, starting close to the uniform
steady state in the given region. In these space-time plots, time axis is horizontal and space axis is vertical.
Activity level is depicted using a colour gradient, with red indicating the highest and blue the lowest
activity levels. Middle row: phase plane behaviour in the aGaL planes, showing the number and stability
of steady states of the reduced system in each of the regions. In regions I and V, only a uniform level of
global activity is stable, and no pulse or stimulus can grow. In the intermediate regions, only a sufficiently
large pulse (II), or a sufficiently low dip (IV) can grow. In region III, the homogeneous state is unstable
to any perturbation, and a variety of patterns can form, depending on initial conditions. Bottom graph:
Wave-pinning position as a function of T . In regions i and iii no sustained polarised state is possible,
while in region ii wave-pinning occurs, with the position of pinning, L0

∗ monotonically increasing with T

(Color figure online)
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no matter how large the amplitude of an applied stimulating pulse. That is, a cell will
not polarise when stimulated, it remains unpolarised, in a rest state. (II) This is the
region corresponding to the deterministic regime of cell polarisation (wave-pinning).
Here, for an intermediate level of substance 19.09 < T < 23.0, there are three co-
existing equilibria of Eqs. (4a), (4b), the outer two of which are stable. A value of
aG corresponding to the lower branch can be “invaded” by a local pulse, provided its
amplitude is large enough to surpass a threshold depicted by dashed curve in region II.
The lower branch corresponds to the aG = aL equilibrium, i.e. to a cell that is in a
homogeneous rest state. Thus, the rest state is stable against small perturbations, but
sufficiently large perturbations can polarise the cell. Note that as the total amount
increases, the required amplitude to trigger polarisation decreases sharply, so that
close to but just short of T = 23.0 a pulse of very small size can lead to polarisation.
We see that the full PDE solutions (top panels in Fig. 3) show the invasion of such
a pulse in this regime, which becomes established at a finite amplitude over some
fraction of the domain. (III) Other patterned states (e.g. with one or more patches of
active GTPase) occur in this region. For 23.0 < T < 25.99, the global steady state
aG = aL is un-stable to any perturbation. Here, small amplitude noise or a pulse of
small magnitude will disrupt the global state leading to other patterned states. This
kind of behaviour is typical of a Turing instability. Indeed, the full PDE solution (with
random noise initial conditions such that the total amount falls in this range) produces
patterns with multiple peaks. (IV) For even higher values, 25.99 < T < 35.58, the
total amount of GTPase is so high that the global level of activation is at an elevated
steady state level (highest solid branch of the diagram). Here, an invading “pulse”
has to locally deactivate a region in order to “invade” (i.e. the pulse is a dip below the
uniform global level). The amplitude of that “dip” must cross the threshold (dashed
portion of curve) to trigger the polarisation, as otherwise it decays back to the uniform
activation level. As shown in the solution of the PDEs, a dip of sufficiently large
amplitude leads to a stable local patch of depressed activity in an otherwise high
global level of activity. (V) Finally, above T > 35.58 the potential of polarisation is
lost again. That is, no pulse or dip can invade, and the uniform global state is one of
high activity everywhere in the domain.

The LPA does not address the question at which position the wave will be pinned,
but rather if a wave can be triggered and how high it will become. The next question
therefore is at which position along the cell length the wave stalls. We indicate the
wave position by L0, and the equilibrium value of L0 at which the wave stalls L0

∗. In
Mori et al. (2008), the wave-pinning position has been derived mathematically for the
limiting case of an infinite difference in diffusion rate between the active and inactive
form (i.e. using a sharp front approximation). In the bottom panel of Fig. 3, we show
the steady state value L0

∗ as a function of T . Regarding the wave-pinning itself, three
regions of qualitatively different behaviour can be discriminated. In regions i and iii,
no stable polarity can be found, because any wave would completely retract or expand
over the whole domain, respectively. In contrast, in region ii we find the possibility of
a stable co-existence of a high and a low state is found. Note that the pinning position
L0

∗ depends on the value of T . Importantly, the figure shows that the interval of
sustained polarity is smaller than the interval of regions II–IV. It illustrates that even
when a wave can be triggered, it does not always follow that it can also be sustained.
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Fig. 4 Spatial set-up of the stochastic simulations. The membrane is divided into N equally wide
well-mixed sub-domains. Diffusion within the membrane is modelled as first-order reactions while we
assume that B diffuses fast enough to warrant modelling it as occupying a well-mixed cytoplasmic pool.
Dimensions H and W associated with the domain of length L are necessary for conversion of concentra-
tions to numbers of molecules but do not play any other role: all stochastic simulations are one-dimensional

Note that both the results of the LPA and of the wave-pinning position act as an
approximation to the actual PDE behaviour, where actual rates of diffusion are fi-
nite and initial conditions can affect whether initially a single peak or several peaks
emerge. However, it correctly captures the basic boundaries that determine its poten-
tial to polarise, the minimum perturbation amplitude required to do so, the expected
values to be reached at the local perturbation, and the position at which the wave
pins. We will show how this brings valuable insights when interpreting the role of
stochasticity in cell polarisation by wave-pinning.

3 Stochastic Version

Next, we ask how the same polarisation mechanism would behave in the low copy
number regime. We ask under what conditions a stochastic equivalent of the de-
terministic model still presents wave-pinning, i.e. after triggering the formation of
sustained regions within the cell with respectively low and high levels of the ac-
tive form, and if our approach predicts biologically relevant conditions under which
wave-pinning may be unsustainable in live, noisy cells.

For stochastic simulations of our system, we resort to the stochastic formulation
of chemical kinetics (McQuarrie 1967), and use the stochastic simulation algorithm
(SSA) due to Gillespie (1976) for our stochastic simulations of Eqs. (1a), (1b). For
the discrete nature of stochastic simulations, we sub-divide the domain of length L

into N compartments of equal width h = L/N ; see Fig. 4.
In the deterministic case, we choose experimentally-supported (Postma and van

Haastert 2001; Postma et al. 2004) relative diffusion values Db = 100Da that effec-
tively render B homogeneous. In our stochastic simulations, we approximate B as a
homogeneous cytoplasmic pool (Db → ∞) to reduce the computational cost, while
maintaining a full computation for the heterogeneous A distribution. Diffusion of A

in the membrane is treated as a series of first order reactions (spatial SSA (Erban et
al. 2007)), each with propensity

Da

h2
Ai, i = 1, . . . ,N,
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where Ai denotes the current number of molecules of A in membrane lattice point i.
The above propensity equals zero for diffusion to the left when i = 1, and diffusion
to the right when i = N , respectively (no-flux boundary conditions). Similarly, we
choose the remaining propensities according to Gillespie (1976):

Background activation into membrane lattice point i: k0
B

N
,

auto-activation of A in membrane lattice point i:
γA2

i

K2
N + A2

i

B

N
,

background inactivation out of membrane lattice point i: δAi,

pulse activation into membrane lattice point i: ks

B

N
.

We note that B , the current number of molecules of the inactive species in the
well-mixed cytoplasmic pool, is rescaled with 1/N because each membrane lattice
point only senses this fraction of the available total number of molecules of B . For
each propensity p, the probability that the corresponding event occurs within the next
dt units of time equals p · dt + o(dt), where o(·) denotes terms that converge to zero
quicker than its argument (little o notation, limdt↓0

o(dt)
dt

= 0).
In the above propensity expressions, most kinetic constants are equal to those used

in the deterministic system, Eqs. (1a), (1b), since they are independent of the units of
a(x, t) and b(x, t), or Ai and B , correspondingly. However, the Michaelis–Menten
constant K of Eq. (2) has the same units as a(x, t) and needs to be rescaled for our
stochastic simulations:

KN = 10−21NAVaK,

where NA is Avogadro’s constant, Va denotes the volume associated with each mem-
brane lattice point, Va = L

N
W H

2 , and the factor 10−21 is required to re-scale units
(Va has units of µm3, and K units of µM). Homogeneous initial concentrations of A

and B , a(x,0) = a0 and b(x,0) = b0, are rescaled to numbers of molecules equiva-
lently:

Ai(t = 0) = 10−21NAVaa0,

B(t = 0) = 10−21NAVbb0,

where Vb = LW H
2 .

Note that in our stochastic simulations we need to associate volumes with each
lattice point (both for the membrane and for the cytoplasm), since it reformulates a
concentration-based model, Eqs. (1a), (1b), as a molecule-based stochastic model.
The natural choice for conversion between the two is through proportionality to the
dimensions (volume) of the system. Even though we specify a volume for each lattice
point in this conversion, the stochastic simulations are effectively one-dimensional, as
are our deterministic simulations. That is, in both the deterministic and the stochastic
system, we focus on radial polarisation along the diameter of a cell.
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Table 1 Summary of the parameter values used in our simulations

Da 0.1 µm2/s diffusion of the active form A in the membrane

Db 10 µm2/s diffusion of the inactive form B in the cytoplasm
(deterministic system only)

k0 0.067 s−1 rate of background activation

γ 1 s−1 maximal rate of auto-activation of A

δ 1 s−1 rate of background inactivation

K 1 µM concentration of A resulting in half-maximal rate of
auto-activation (deterministic system)

KN · · · as constant K but rescaled depending on current volume of
the system (KN ∝ NAHLW · K , where NA is Avogadro’s
number)

ks 10 s−1 rate of activation due to transient pulse

L 10 µm length of the domain

N 50 number of membrane lattice points

4 Results

For our simulations and comparison between the stochastic and deterministic case,
we use parameter values based upon Mori et al. (2008), and summarized in Ta-
ble 1: k0 = 0.067 s−1, γ = 1 s−1, K = 1 µM, δ = 1 s−1, and diffusion coefficients
Da = 0.1 µm2/s, Db = 10 µm2/s (the latter in the deterministic case only). For the
initial stimulus, we choose ks = 10 s−1 for 50 s ≤ t ≤ 70 s and 0 µm ≤ x ≤ 0.4 µm,
and ks = 0 otherwise. For biologically reasonable concentrations (Marée et al. 2006),
we set b(x,0) = b0 = 2 µM and use a(x,0) = a0 such that f (a0, b0) = 0 and (a0, b0)

is linearly stable (a0 = 0.2683 µM). We fix the slab height H = 0.2 µm and length
L = 10 µm (see Fig. 1) and simulate our stochastic system for varying numbers of
molecules by varying the width W of our cell slab. Varying the width W (Fig. 4)
allows us to change the number of molecules without changing the initial concentra-
tions of A and B .

5 Propagation Failure Does Not Affect the Deterministic Simulations

We first determined that the discretisation of space utilized does not cause propaga-
tion failure around the parameter values used for our analysis on stochasticity. To
do so, we make use of the fact that the initial perturbation that triggers a wave does
not necessarily have to be small in width. A wide (but not too wide) perturbation of
sufficient amplitude can also trigger a wave. Perturbations that are wider than the fi-
nal pinning position, however, trigger waves with a negative velocity, i.e. waves that
retract until they come to halt at the pinning position. If indeed propagation failure
plays a role, both the extending and the retracting wave are expected to halt before
their velocities would have become zero in the continuous case. Thus, propagation
failure would cause both waves to a halt at distinct positions.

We therefore devised the following numerical experiment: We use a total amount
of T = 22.68, our default value, from Mori et al. (2008), and within the wave-pinning
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Fig. 5 Propagation failure in the deterministic system as a function of grid coarseness and diffusion coef-
ficient of the active form. For each column a different number of compartments, N , has been used, and for
each row a different diffusion coefficient, Da . The values of both are indicated in the figure, with diffusion
coefficient Da in units µm2/s. Dashed lines denote initial conditions, solid lines are equilibrium profiles
(at t = 20,000 s), thick red lines denote narrow, high initial waves, thin blue lines denote broad, shallow
initial waves. Discrepancies between the red and blue equilibrium profiles for slow diffusion coefficients
and coarse grids can be attributed to propagation failure. At our default setting of Da = 0.1 µm2/s and
N = 50, propagation failure is not observed (Color figure online)

regime, in which a Δ-perturbation is required to trigger a wave that gives rise to
sustained polarity; see the black arrow in Fig. 3. We then start simulations, for varying
values of the active form diffusion coefficient Da and number of lattice sites N , with
two different wave-shaped initial conditions (see Fig. 5): one narrower and higher,
one broader and lower, both indicated by dashed lines in the figure, where the former
lies to the left and the latter to the right of the equilibrium wave-pinning position.

Figure 5 shows the equilibrium wave profiles for the narrowly initiated waves
(thick red lines) and broadly initiated waves (thin blue lines). Indeed, sufficiently
large box sizes (low N ) and sufficiently low diffusion coefficients show a discrep-
ancy in the final position of the pinned wave between the retracting and the ex-
tending waves, illustrating how too slow diffusion combined with too coarse sub-
compartmentalization leads to propagation failure. For the default values used in this
study (N = 50; Da = 10−1 µm2/s), however, no propagation failure can be observed.
A 10-fold coarser grid or 100-fold slower diffusion would be needed for propagation
failure to occur.

6 Equilibrium Behaviour of the Stochastic System

Individual SSA runs (Fig. 6, top) resemble the deterministic behaviour for suffi-
ciently large numbers of molecules (≈6800), and the averaged concentration profile
clearly shows wave-pinning after a stimulus is applied (Fig. 6, bottom). With fewer
molecules (≈700), individual SSA runs become more erratic and the averaged profile
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Fig. 6 Stochasticity in wave-pinning. (Top) Black solid lines: ten individual runs of the stochastic model
using the SSA at t = 200 s. Vertical and horizontal noise of the jagged lines are indicated by the cor-
responding arrows. Gray line: behaviour of the deterministic system. (Parameter values k0 = 0.067 s−1,
γ = 1 s−1, K = 1 µM, δ = 1 s−1, Da = 0.1 µm2/s, Db = 10 µm2/s; diffusion of B in deterministic model
only). Total amount T = 22.68. W = 2.5 µm, number of molecules equals 6,820. (Insets) Histograms of
observed pinning positions when number of molecules is 6,820 and 34,150, respectively. Concentration
profiles of 100 simulation runs between 150 and 200 s were fitted to symmetric Richards model and inflec-
tion point used as pinning position. (Bottom) Black solid line: observed mean of the stochastic system over
100 runs, shown together with a grey line representing the deterministic system. Black dashed lines enclose
the 95 % c.i. of the sample mean. (Bottom inset) Lines as in bottom image, and parameters as in top image
except for width, W = 0.25 µm, resulting in a reduction of the number of molecules to 702. The top image
shows that individual SSA runs closely reproduce the deterministic behaviour for appropriate parameters.
The corresponding mean behaviour in the bottom image confirms this. The bottom inset depicts loss of
wave-pinning from the mean behaviour when too few molecules are present in the system

is homogeneous across the domain, resulting in loss of wave-pinning (Fig. 6, bottom,
inset). As we increase the numbers of molecules by increasing W , we observe con-
vergence of the stochastic system to the deterministic one, indicated by a decreasing
observed variance and smoothing of the black solid curve. To study the distribution
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of pinning positions, we fit, well after wave-pinning, the concentration profile of the
active species to the symmetric Richards model (Richards 1959), which very well
captures sigmoidal profiles and contains a parameter, c, that defines the position of
the inflection point, which we consider to be the pinning position of the wave:

afit(x) = M

(

1 − 1

1 + exp(−(x − c)/h)

)

+ m,

where M and m are the concentrations at the high and low plateau, respectively, h de-
termines the slope at the inflection point, and c is the position of the inflection point.
The insets in Fig. 6, top, show the distribution in pinning position for the indicated
number of molecules, based upon concentration profiles from 100 simulation runs
collected between 150 s and 200 s and recorded every 0.1 s (i.e. based upon 50,
100 concentration profiles). We fit it to a normal distribution, indicated by the black
line. At high molecule numbers, the distribution closely follows a Gaussian distri-
bution, with the mean corresponding to the predicted value from the PDE analysis
(indicated by the dashed line). At low molecule numbers, however, we find that the
distribution becomes leptokurtic, illustrating that the wave is more confined to its
pinning position than is to be expected from the level of variation observed. Also, at
small molecule numbers, the pinning position becomes slightly biased to smaller L0

∗
(i.e. to the left), due to the fact that stochasticity also creates an effectively lower level
of auto-activation; see the discussion below. At a high molecule number, fluctuations
in the pinning position become small and closely spaced around the position within
the deterministic model (indicated by the dashed line). At lower molecule numbers,
the profile broadens.

To quantify convergence of the stochastic case, Ai(t), to the deterministic case,
ai(t), at time t and lattice point i, we use the normalized Euclidean distance

d(t) =
√√
√
√

N∑

i=1

[
Ai(t) − ai(t)

]2
/

√√
√
√

N∑

i=1

ai(t)2. (5)

We compute this distance for J = 100 SSA runs, d(t)(j) (j = 1, . . . , J ), and report
mean observed distances d(t) = (1/J )

∑J
j=1 d(t)(j).

The observed mean Euclidean distance in Fig. 7 shows the expected convergence
of the stochastic case to the deterministic case for increasing copy number. In Fig. 7,
disappearance of the wave profile becomes apparent by the increasing value of d(200)

for fewer molecules. These results show the stochastic limit to the deterministic be-
haviour, confirming the qualitative intuition of a stochastic lower limit to the wave
pinning mechanism. What is not clear a priori, however, is the dynamics by which
wave-pinning is lost at low molecule numbers and how this is affected by other pa-
rameter changes.

7 Stochastic Simulations Are Not Affected by Propagation Failure

Before we discuss in detail the loss of wave-pinning at low molecule numbers, we
revisit the phenomenon of propagation failure. We repeated the procedure described
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Fig. 7 Convergence of
stochastic to deterministic
system. Mean Euclidean
distance over J = 100 SSA
runs, d(200) at time t=200 s,
after the stimulus. Simulation
parameters as in Fig. 6, except
for W . (W is varied to obtain
different total copy numbers.)
This plot shows convergence of
the stochastic system to
macroscopic predictions as we
increase the number of
molecules

above to determine potential propagation failure within the stochastic description,
but now for varying molecule numbers rather than diffusion rates (Fig. 8). Indeed,
as before, when the grid becomes rougher, secondary effects of propagation failure
manifest themselves and affect the pinning positions through this independent mech-
anism. Again however, as we showed before in Fig. 5, those effects are not noticeable
in the simulation regimes we focused on, and only to a very small extent under ex-
treme conditions of a very coarse grid.

We then studied how stochasticity influenced this relationship. We found that
stochasticity reduces rather than increases the parameter regime for which prop-
agation failure can be observed (compare the column corresponding to N = 5 in
Fig. 8 with the upper left graph in Fig. 5). This can be understood by realizing that
stochasticity can help overcome the threshold to propagate the wave. This means that
for coarse grids and low diffusion rates the stochasticity at low molecule numbers
can even increase the precision of the pinned wave. Besides deviations at low box
numbers, we also observe deviations from the stationary solution of the determin-
istic model (as indicated in each frame with a black line) for a combination of low
molecule and high box numbers (see lower right graph in Fig. 8). This is an artefact
attributed to an effective change in the auto-activation function when the number of
molecules in a box becomes very small, which will be discussed further below.

8 Comparison of Deterministic and Stochastic Predictions

We test our predictions from the LPA system, Eqs. (4a), (4b), by classifying individ-
ual SSA runs (using the same parameter values as in Fig. 6) as either homogeneous
in A (i.e. uniform in A well after the stimulus, e.g. at t = 200 s) or inhomogeneous
in A (i.e. where a local pulse invaded the global concentration profile of A, creating
at least one high plateau or peak in A).

Comparing the predictions of the deterministic version of the model with the SSA
simulations we find interesting differences. With parameter values as in Fig. 6, specif-
ically with Da = 0.1 µm2/s (central inverted cup in Fig. 9), we observe a somewhat
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Fig. 8 Propagation failure within stochastic simulations as a function of grid coarseness and molecule
number. Dashed profiles indicate initial conditions, correspondingly coloured solid lines depict mean equi-
librium profiles at t = 200 s, averaged over 100 runs. Confidence intervals are omitted for reasons of
clarity, but standard errors of mean are similar to Fig. 6. Da = 0.1 µm2/s; the number of compartments
and molecules are indicated in the figure. Propagation failure does not affect 50 lattice point simulations.
At small molecule numbers, however, larger numbers of lattice points present deviations that are unlike
propagation failure (Color figure online)

more stringent condition in the stochastic wave-pinning regime, 22 ≤ T ≤ 27, than
predicted by Fig. 3 (arrow indicates default value T = 22.68). This discrepancy may
be explained by the relatively fast diffusion of A, compared with the limiting rates
used in the theoretical treatment, which destabilizes local perturbations in A (through
high curvature in the concentration profile of A), making it harder for perturbations to
stabilize and invade the remaining profile of A. Indeed, as we decrease Da by orders
of magnitude (Fig. 9, broadening inverted cups), increasingly wider ranges of T allow
for stabilization of perturbations in A and their invasion of the global homogeneous
A level. Our observations for decreasing Da , and certainly for Da = 0 µm2/s (Fig. 9,
dashed line), indicate increasing agreement between our stochastic simulations and
the predicted wave-pinning criteria.

9 Loss of Wave-Pinning in Small Number Regimes

Loss of wave-pinning for fewer molecules may either result from increased random-
ness along the concentration axis (vertical noise, Fig. 6), or greater random fluctua-
tions in the pinning position of a travelling wave (horizontal noise, Fig. 6): With a
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Fig. 9 Dependence of wave-pinning stability on diffusion and total amount. Fraction of SSA runs (out of
100 runs) observed at t = 200 s to be stably inhomogeneous (wave-pinned, or with multiple peaks in A).
System parameters as in Fig. 6 with varying Da . Each inverted-cup-shaped curve corresponds to a differ-

ent Da value, decreasing from Da=0.1 µm2/s to Da = 10−5 µm2/s from the innermost to the outermost
cup, using order of magnitude changes in the parameter value (as indicated by the arrows). Dashed line:
Da = 0 µm2/s. This plot shows for what parameter values (changing total amounts T and diffusion con-
stant Da ) the stochastic system shows stabilization of perturbations in the uniform concentration profile
of A (high fraction of inhomogeneous runs). Stabilization of perturbations is difficult for high diffusivity
of A (Da = 0.1 µm2/s innermost, narrowest cup) since spikes in the concentration profile of A are more
readily smoothed out before they grow to sufficiently high levels. For decreasing values of Da , our ob-
servations match progressively better with the predictions made using the LPA in the main text. That is
because the LPA assumes zero diffusivity for A and, therefore, ignores any effects due to the diffusion of
the active form

low copy number, individual runs may show wave-pinning but the steepest point of
the concentration profile (pinning position) may fluctuate along the horizontal axis
due to inherent stochasticity.

To distinguish the effects caused by these distinct types of noise, we quantify
the horizontal noise at lattice point i, using a sample of J = 100 SSA runs, with a
function similar to auto-correlation, here denoted “spatial auto-correlation”:

RSk(i) = E[(Ai(t) − E[A(t)])(Ai(t + k) − E[A(t + k)])]
Var[Ai]

, (6)

where k is the time lag, E[A(t)] is the spatial mean of A at time t , and Var[Ai] is a
spatial variance. (We use bars to denote statistics related to spatial auto-correlation.)
Statistic E[A(t)] measures the average concentration of A at time t across the domain,
and the spatial variance, Var[Ai], gauges the spread of the concentration of A at
lattice point i, Ai(t), about the spatial mean. Observing the concentration of A in
M equidistant time points (Ai(m), m = 1, . . . ,M), we estimate these statistics as
follows:

E
[
A(m)

] ≈ μ̂(m) = 1

N

N∑

i=1

Ai(m), (7a)
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Var[Ai] ≈ σ̂ i
2 = 1

M − 1

M∑

m=1

(
Ai(m) − μ̂(m)

)2
. (7b)

Our estimator of spatial auto-correlation then becomes:

R̂Sk(i) =
1

M−k

∑M−k
m=1 [Ai(m) − μ̂(m)][Ai(m + k) − μ̂(m + k)]

σ̂ i
2

. (8)

This function centres observations Ai(m) about the spatial mean and gauges the cor-
relation between observations k time steps apart. We also normalize our estimator
(R̂Sk(i) ∈ (−1,1)) by dividing by the observed variance about the spatial mean.
A high-value R̂Sk(i) denotes a lattice point i where Ai is stably far away from the
spatial mean, while a low value suggests that Ai repeatedly comes near the spatial
mean.

We report estimates of auto-correlation (spatial, and temporal further on) as sam-

ple means R̂Sk(i) = (1/J )
∑J

j=1 R̂Sk(i)
(j) of the corresponding estimates for J SSA

runs, R̂Sk(i)
(j). We further compute these estimates in time periods when we expect

our system to be stable, long after the application of a stimulus and wave-pinning
(stimulus applied between 50 s and 70 s and observations between 500 s and 1500 s
used for computations).

In a regime where the mean behaviour presents wave-pinning, we observe a dip in
spatial auto-correlation in a section of the domain that includes the pinning position
(Fig. 10, top). The width of this dip (shaded area in Fig. 10, top) increases with
decreasing numbers of molecules in the system (Fig. 10, bottom), and spans the entire
domain (10 µm) when wave-pinning is lost.

For quantifying vertical noise, we use an auto-correlation function denoted “tem-
poral auto-correlation” for clarity:

RTk(i) = E[(Ai(t) − E[Ai])(Ai(t + k) − E[Ai])]
Var[Ai]2

, (9)

where E[Ai] is the expected value and Var[Ai]2 is the variance of concentration Ai .
We use the common sample mean and sample variance as estimators of these statis-
tics:

E[Ai] ≈ μ̂i = 1

M

M∑

m=1

Ai(m), (10a)

Var[Ai]2 ≈ σ̂ 2
i = 1

M − 1

M∑

m=1

(
Ai(m) − μ̂i

)2
. (10b)

Using these, our estimator of temporal auto-correlation becomes

R̂Tk(i) =
1

M−k

∑M−k
m=1 [Ai(m) − μ̂i][Ai(m + k) − μ̂i]

σ̂ 2
i

. (11)
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Fig. 10 Noisy transition zone.
(Top) Averaged spatial
auto-correlation estimate,
Eq. (8), lag k = 1 s, with
deterministic solution as in
Fig. 6 for reference. Bold
circles: delimiters of
auto-correlation dip, highlighted
by shaded area. This figure
shows correspondence of a dip
in spatial auto-correlation with
the transition zone of the pinned
wave. (Bottom) As in top figure,
mean auto-correlation dip width
(width of grey rectangle in top
figure) over 100 SSA runs, as a
function of total number of
molecules. When the dip width
approaches the length of the
domain of the cell (10 µm), the
pinning position stops
conferring information that can
be used by the cell. We note a
sudden and drastic increase in
width at approximately 2,000
molecules. Simulation
parameters as in Fig. 6, except
for W which is varied

Temporal auto-correlation measures the randomness of the time evolution of A,
which is governed by a continuous-time Markov process. (If we know the distri-
bution of A(t) at present, the future distribution of A(s), s > t , only depends on A(t)

and is independent of observations of A before t .) Given the Markovian character
of A(t), we expect the temporal auto-correlation to be greatly dependent on the lag k:
a small lag (k = 1 s) results in relatively high temporal auto-correlation (black area,
Fig. 11 top right and bottom right), while a bigger k = 20 s yields small temporal
auto-correlation (light grey area, Fig. 11 top right and bottom right). We also observe
that the Markovian character of A(t) is comparable for small and large numbers of
molecules since the magnitude of temporal auto-correlation does not change signifi-
cantly when altering the number of molecules (Fig. 11 right panels). This means that
in both small and large copy regimes, temporal auto-correlation decreases compara-
bly fast.

While the vertical noise does not seem to decrease when increasing the number of
molecules, wave-pinning still shows up as a marked peak in temporal auto-correlation
in the transition zone of the wave (Fig. 11, bottom right). Since overall vertical noise
is relatively constant, this peak seems to be caused by the wave fluctuating about its
pinning position: concentration Ai(t) in the transition zone fluctuates between high
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Fig. 11 Fluctuations in space and time. Spatial/temporal auto-correlation sample mean (over J = 100
SSA runs) with lag k = 1 s (dark grey), k = 10 s (grey), and k = 20 s (light grey). (Top row) 702 molecules
(W = 0.25 µm). (Top left) Spatial auto-correlation. (Top right) Temporal auto-correlation. (Bottom row)
6,820 molecules (W = 2.5 µm). (Bottom left) Spatial auto-correlation. (Bottom right) Temporal auto–
correlation. The plots in the top row show that for sufficiently few molecules both spatial and temporal
autocorrelation are almost uniform and show no pattern for the equilibrium state (pinning position). In
the bottom row and for a sufficiently high number of molecules, spatial auto-correlation reveals a clear
pattern in the equilibrium state with the dip in autocorrelation robust across different lags k. In the same
copy-number regime, temporal auto-correlation shows a pattern for small lags k which, however, vanishes
for increasing values of k. Simulation parameters as in Fig. 6, except for W

and low values (high and low plateau of wave) causing Ai(t) to be far away from its
average repeatedly (high temporal auto-correlation).

We find spatial auto-correlation to behave markedly different from temporal auto-
correlation for increasing numbers of molecules (Fig. 11, left panels). While spatial
auto-correlation is comparable in magnitude to temporal auto-correlation in a small
copy number regime (Fig. 11 top panels), we observe much greater spatial auto-
correlation than temporal auto-correlation for various lag k values in a large copy
number regime (Fig. 11 right panels). The stably high spatial auto-correlation, even
for large lags k, far away from the pinning position suggests that the high and low
plateau of the wave are persistent in wave-pinning regimes (Fig. 11 bottom right).
The random fluctuation of the pinning position is highlighted by the decreasing spa-
tial auto-correlation for increasing lags k (dark to light grey area in Fig. 11 bottom
left) in this part of the domain.
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To elucidate the source of the horizontal noise and the impact it has on the sustain-
ability of a polarised cell, we make use of another spatially simplified representation
of the deterministic system. Without loss of generality, once a wave has been formed,
the concentration profile of a can be split into a plateau of length L0 and approximate
concentration aL on the left, and a plateau of length L − L0 and approximate level
aR on the right (Fig. 12 left) where

a(0 ≤ x < L0,0) = aL(0) = a1, a(L0 ≤ x ≤ L,0) = aR(0) = a2.

Here, a1 > a2 are two roots of f (a, bwp) = 0, where bwp is the uniform concen-
tration of b for this wave-shaped profile, while it is assumed that Db = ∞ and
Da = 0. Then the total amount T of protein in the domain can be approximated as
Twp = Lbwp +L0a1 + (L−L0)a2. In the limit Da→0 (no direct communication be-
tween plateaus), aL(t) and aR(t) evolve independently. Eliminating b(t) using mass
conservation leads to:

daL

dt
= f (aL, b),

daR

dt
= f (aR, b),

b(t) = (Twp/L) − aL(t)(L0/L) − aR(t)(L − L0)/L,

(12)

which also implies that the position of the wavefront is

L0 = Twp − L[b(t) + aR(t)]
aL(t) − aR(t)

. (13)

System (12) is a second deterministic reduction that leads to a way of comparing the
stochastic and deterministic model versions. In the deterministic case, we expect that
the wave-pinned configuration, Fig. 12, left panel, is stable over time when L0 = L0

∗
(pinning position). As Eq. (13) indicates, noise in the concentration variables will
propagate to the width of the high plateau of the pinned wave. We expect that this
propagation of noise is qualitatively the same in the full spatial system and conjec-
ture that noise in the pinning position (horizontal noise) is the result of noise in the
concentration levels (vertical noise).

Given that the total amount is fixed at Twp , aL and aR adjust to varying widths
of L0: increasing L0 will typically decrease aL and increase aR accordingly, and vice
versa. For system (12), we plot the steady-state concentration of aL as a function
of L0 (Fig. 12, right panel) and observe two critical values for L0, L

(1)
0 < L

(2)
0 , at

which saddle-node bifurcations occur. The bifurcation plot in Fig. 12 shows that if
we initialize our simplified system in a wave-pinned configuration (high plateau on
left, low plateau on right, as in Fig. 12, left panel, with L0 = L0

∗ < L
(2)
0 ), sufficiently

large horizontal noise may drive the effective plateau width, L0, away from L0
∗ and

past the critical point (L0 > L
(2)
0 ) which would then cause the wave to collapse. Due

to hysteresis in the bifurcation plot, L0 may fluctuate back to the left of L
(2)
0 after

collapse of the wave without triggering a restoration of the wave.
We expect that the saddle-node bifurcation at L

(2)
0 and hysteresis explain the sharp

increase in dip width (Fig. 10, bottom) observed in the full spatial system: decreas-
ing the number of molecules in the system increases vertical noise which propagates
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Fig. 12 Polarised cell state analysis. Schematic of the simplified deterministic wave-shaped state, consist-
ing of a high plateau aL of length L0 on the left, and a low plateau aR of length L−L0 on the right. (Right)
Bifurcation plot of steady-state concentrations of aL as a function of L0, with parameters as in Fig. 6 and

with total amount T = 22.68. Two saddle-node bifurcations occur at critical values L
(1)
0 = 3.25 µm and

L
(2)
0 = 6.75 µm. The corresponding bifurcation plot of aR is symmetric to this one of aL . In our stochas-

tic simulations, for equivalent parameter values and number of molecules = 6,820, we did not observe
pinning positions greater than 6 µm (top inset, Fig. 6), as is predicted by this analysis

into horizontal noise. As horizontal noise increases, the likelihood that the pinning
position randomly overshoots the critical value increases and we are more likely to
observe wave collapse (dip width approaching 10 µm, Fig. 10, bottom). This predic-
tion is further supported by our observation that under conditions equivalent to those
of Fig. 12, and with 6,820 molecules, we do not observe any pinning positions greater
than 6 µm (Fig. 6, top inset).

Figure 12 is closely linked to Fig. 3. While the latter shows the impact of a Δ-
perturbation of infinitesimally small width, corresponding to an L0 = 0 µm, as a
function of T , the former shows the impact of perturbations of varying width, for
a fixed value of T . The link between the analysis on the loss of wave-pinning with
system (12) and the analysis on polarity initiation (LPA, system (4a), (4b)) is very
direct. By allowing L0 ↓ 0, system 12 becomes equivalent to system (4a), (4b): aL

in Eq. (12) describes the active level on a vanishingly small domain and, therefore,
ceases to affect the inactive species b (i.e. aL—active left—becomes the local per-
turbation aL—active local—in Eqs. (4a), (4b)), while aR starts occupying the entire
domain of length L and, therefore, only the presence of aR affects b (i.e. aR—active
right—becomes the global active form aG—active global—in Eqs. (4a), (4b)). Fig-
ure 13 brings both pieces of information together, showing a two-parameter bifurca-
tion plot, with L0 along the x-axis, and T along the y-axis. The right panel of Fig. 12
corresponds to a horizontal cross-section at T = 22.68 (Fig. 13, zone VI), while the
bifurcation diagram of Fig. 3 corresponds to a vertical cross-section through this bi-
furcation diagram at L0 = 0, along which line we have indicated the two fold bifur-
cations (FB) and two transcritical bifurcations (TB) that can be seen in Fig. 3, indeed
reproduced at exactly the same parameter values.

Increasing L0 away from zero, the critical total amounts of both fold bifurca-
tions in Fig. 3 change while the critical values of the transcritical bifurcations are
unaffected (solid grey lines in Fig. 13). It implies that at levels of T that are less
favourable for sustained polarity, narrow Δ-perturbations are still able to trigger a
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Fig. 13 Two-parameter bifurcation plot of system (12). This figure shows the connection between the LPA
(Fig. 3) and the loss-of-wave-pinning analysis (Fig. 12). It also presents the requirements on both height
and breadth of an initial Δ-perturbation to trigger cell polarity. (Top right) Two-parameter bifurcation
plot, with total amount T along y-axis and wave position L0 along x-axis. Grey lines starting at FB:
fold bifurcation lines; grey lines starting at TB: transcritical bifurcation lines; CP: cusp bifurcation; FT:
Collision of fold and transcritical bifurcation. (Surrounding sub-figures) When varying T , seven distinct
zones of qualitatively different behaviour are found, labelled I–VII. To understand the behaviour in each
zone, bifurcation diagrams are plotted of the equilibrium value aL (Eq. (12)) as a function of L0 for a fixed
value of T within that zone

wave, while broad ones can not do that any more. Moreover, it illustrates that when
the well-mixed equilibrium is unstable against spatially inhomogeneous bifurcations
(zones III–V), the width of the perturbation becomes irrelevant. We also observe
four cusp bifurcation points (CP), describing where two fold bifurcation lines merge.
These points imply the possible coexistence of waves with different amplitudes. Fi-
nally, there are two bifurcations where a fold bifurcation and a transcritical bifurca-
tion collide (FT). They are linked to the symmetry of the two-parameter bifurcation
plot about L0 = 5 µm, which is due to the lack of inherent bias for either a left-
oriented or a right-oriented polarisation in system (12): when L0 < 5 µm, the pinned
wave has its high plateau on the left, while for L0 > 5 µm the high plateau is on the
right. Due to this symmetry, we for example observe a bifurcation plot equivalent to
Fig. 3 when plotting aR and setting L0 = 10 µm (data not shown), confirming that
initiation of a wave from the left is equivalent to initiation from the right. Together,
Fig. 13 reveals that there are seven qualitatively different zones of levels of T , each
presenting diverse requirements on wave initiation and maintenance. It allows us to
predict the potential to trigger (or sustain, when L0 = L0

∗) a wave through a pertur-
bation of any possible width and height, as well as the expected height that such a
wave will reach while it travels, stalls, or stochastically fluctuates. Specifically, it sets
the boundaries for horizontal fluctuations to trigger a collapse of the polarised cell
state.
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10 Validity of Stochastic Model at Large Compartment Numbers

Sub-dividing the domain into N compartments is a computational method which
should not influence the biological insights derived here. Above we discussed that
the coarseness of the lattice could introduce artefacts due to propagation failure, but
that the simulations in this study are sufficiently fine-grained. Figure 8, however, also
presented deviations from the expected wave profile when N was large. When test-
ing the behaviour of the stochastic model as N → ∞, we realized that this is due to
the fact that the effective auto-activation function starts to change as the number of
molecules in a box becomes very small. Given that at high N only small variations
between the mean values of neighbouring boxes are expected (as the flux between
boxes goes to infinity), we tested if the change in auto-activation could be due to the
expected stochastic variations within each box, assuming a Poisson distribution for
the number of active molecules within each box. We therefore calculated the pre-
dicted mean activation rate as a function of the concentration a for different box
sizes, by taking the kernel of the Poisson distribution with the auto-activation func-
tion itself. The insets of Fig. 14 show the resulting auto-activation rates for different

box sizes, to which subsequently the auto-activation function γ a2

K2+a2 was fitted, with
both K and γ as the fitting parameters. The figure shows that when the number of
active molecules becomes small the functional response effectively shifts to the right
(i.e. the fitted value of K becomes larger), while the plateau hardly changes (i.e. γ

remains more or less 1.0). This phenomenon is due to the plateau in the sigmoidal
activation function: while the high spectrum of the Poisson distribution cannot further
increase the activation rate, as it is capped, the low spectrum decreases it. Figure 14
repeats the analysis of Fig. 12 for the estimated effective values of K . It shows that
consequently at lower molecule numbers the wave becomes lower and is lost more
easily due to horizontal fluctuations until, at very low molecule numbers per box, the
wave cannot be sustained any longer. Also, the lower critical value of L0, L

(2)
0 , shifts

to lower values (i.e. to the left). This shift to lower L0 and drop in height of the wave
closely corresponds to the observed changes in the stochastic simulations as can be
seen in Fig. 8, suggesting that the side-effects observed when increasing N are due to
this modification of the auto-activation function only. This reduction in the number
of molecules per box when increasing N can be overcome in our modelling set-up by
increasing W . Thus, N can be made arbitrarily large, as long as, through modifica-
tions of W , the number of molecules per box is maintained above around 14 (below
which value the effective K becomes too large to warrant sustainable wave-pinning).

11 Discussion

In this paper, we compared deterministic and stochastic aspects of a model for cell
polarisation of the wave-pinning class (Mori et al. 2008). This work was motivated
by recent interest in the influence of stochastic noise in biological systems. In con-
sidering stochastic noise, we account for possible effects due to low-copy numbers of
signalling proteins, as has been done for instance by Isaacson et al. (2011).
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Fig. 14 Predicted effect of stochasticity on the auto-activation term and its consequences for wave-pin-
ning. Bifurcation diagrams to analyse the polarised cell state, as in Fig. 12, for four different box volumes
Va (top left: 0.001 µm3; top right: 0.01 µm3; bottom left: 0.1 µm3; bottom right: 1.0 µm3). The different
bifurcation diagrams are made by varying the parameter values γ and K of the Hill-type auto-activation
γ a2/(K2 + a2). The effective parameter values γ and K for small box sizes are determined as follows:
For the mean number of molecules of active A being equal to 0,1,2, . . . molecules per box (indicated by
the black dots in the insets), a Poisson distribution for that number of molecules is assumed in order to
calculate an expected rate of auto-activation. These observed values are then fitted to the auto-activation
term itself using a least-squares fit. The fitted auto-activation functions are shown as grey lines in the insets,
together with the residual sums of squares, R2. We observe that while the fitted γ hardly differs from the
originally used value (γ ≈ 1), the fitted K increases as box volume decreases. The bifurcation diagrams
show that this change in effective auto-activation lowers the higher plateau and narrows the range of per-
missible L0 values. Note that the difference between the lower panels is virtually undetectable. Indeed,
both are almost equivalent to the bifurcation diagram for the deterministic system, which was shown in
Fig. 12. It illustrates that a volume of Va = 0.1 µm3 (bottom left) forms the upper bound for observing
this stochastic effect. This corresponds to 137 molecules per box, given that the total concentration is
2.268 µM. The lower bound for wave-pinning to occur is reached when the effective K becomes 1.07, at a
box size of Va = 0.009 µm3, corresponding to 14 molecules per box

Recent studies indicate that noise can have either constructive or detrimental
effects in biological systems. For example, noting beneficial effects, Paulsson et
al. (2000) observed that stochastic focusing increased sensitivity of cascades, Rao
et al. (2002) found that noise-induced population heterogeneity improves fitness,
Howard and Rutenberg (2003) argued that biologically relevant oscillations in a two-
component dynamical system are more robust in the stochastic case than the deter-
ministic one, and Gamba et al. (2005) showed that stochasticity could play a role
in chemotactic responses to shallow gradients. On the other hand, detrimental ef-
fects were noted by, for example, McAdams and Arkin (1997) who showed that gene
expression in a noisy regime resulted in bursts, rather than constant levels of gene
expression. For our stochastic model of cell polarisation, we observe that at critically
low molecule numbers stochastic noise has an impact on the behaviour of the system
in a detrimental manner, eventually destroying polarisation.
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As shown in Fig. 6, we verify correctness of our stochastic implementation by
comparing our stochastic simulation results in large copy number regimes with
the deterministic system (approaching the macroscopic limit). The compartmental-
ized spatial Gillespie model used here, however, does present deviations when the
lattice number N becomes very small or very large. Alternatively, an off-lattice
Brownian dynamics model could have been developed (Andrews and Bray 2004;
van Zon 2005), to independently confirm the results based upon space discretisation
presented here, given that both approaches present their own limitations (Erban and
Chapman 2007, 2009). However, to re-formulate the auto-activation in terms of mass-
action kinetics only, which is required to use off-lattice alternatives, would require a
replacement of the current parsimonious non-linear term by, for example specific en-
zyme kinetics. Such a description would involve the introduction of new variables
and new assumptions as well as relatively ad hoc choices regarding their reactions
and behaviour, obfuscating the comparison between the PDE model and the stochas-
tic model.

Here, we studied wave-pinning in a one-dimensional slab of cell material repre-
senting radial positional information available to a single cell. Our results suggest
that for small copy numbers, radial information within a cell regarding its front and
back that is available through the wave-pinning process decreases in quality because
of fluctuations of the wave around its pinning position. If we extrapolate our results to
a spherical 15 µm-diameter cell and assuming micro-molar small G-protein concen-
tration (corresponding to 106 molecules), stable polarisation should typically be ob-
served. However, in vivo effective reaction compartment size is often restricted due to
macro-molecular crowding and resulting volume exclusion (Schnell and Turner 2004;
Grima 2010): the volume encompassed by a cell is generally occupied by a range
of macro-molecules which do not participate in any of the relevant chemical reac-
tions. As these macro-molecules span the cell in a mesh-like fashion, individual ef-
fective reaction compartments may emerge which have a potentially small volume.
Our results indicate that sufficiently small effective reaction compartments (those
that hold 103 molecules, bottom Fig. 10), will produce inaccurate positional infor-
mation (fluctuation of the pinning position). Hence, a cell subject to great amounts
of macro-molecular crowding may integrate inaccurate positional information from
its individual effective reaction compartments and, therefore, lose a global sense of
directionality.

Instead of a gradual loss of wave-pinning, we observe a threshold number of
molecules (between 2,000 and 3,000 molecules) below which the wave is suddenly
lost. Analysis of a limiting deterministic case shows that sudden loss of wave-pinning
is due to saddle-node bifurcations with hysteresis. We conjecture that this also ex-
plains sudden loss of polarisation in our spatial stochastic system.

Altschuler et al. (2008) studied a related positive feedback model of Cdc42 with
a homogeneous cytoplasmic pool of the inactive form. Their model includes self-
recruitment of the active form, but the conditions for polarisation and wave-pinning
as defined through the LPA method described in this paper are not fulfilled, hence
no stable polarisation can be observed. Nevertheless, by defining polarisation as a
transient situation where 10 % of the domain holds more than 50 % of the molecules,
they were able to show that within their model decreasing the numbers of molecules,
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which increases the random fluctuations, could trigger polarisation. This is oppo-
site to what has been shown in our study, in which increasing fluctuations shuts off
the polarity. For a fixed positive feedback strength, they found that 1,000 molecules
yields the maximum probability (fraction of simulation runs) for polarisation. For
3,000 molecules or more, they observed that fewer than 50 % of the runs would po-
larise. In contrast, our model predicts that polarisation fails below 2,000 molecules
(Fig. 10, bottom panel). Moreover, in our model, the behaviour of the stochastic sys-
tem more closely resembles that of the deterministic system when the molecule num-
ber increases (bottom panel of Fig. 6), i.e. unlike Altschuler et al. (2008) with more
molecules the polarity becomes increasingly more robust.

Khain et al. (2011) recently discussed stochastic travelling waves in a spatial one-
dimensional model of spruce budworm populations, in which the high plateau of the
wave corresponded to parts of the environment with a great number of budworms
(outbreak state) and the low plateau denoted few budworms (refuge state). Note that
in their model wave-pinning does not occur. Nevertheless, they compared a deter-
ministic version (thermodynamic limit) of their model with a stochastic version of
it and observed differences in wave propagation velocity. They explained that these
differences are caused by random jumps, possible within the stochastic system, from
the high plateau to the low plateau and vice versa, similar to our explanation for the
fluctuations observed in the pinning position. In their case, however, the stochasticity
affects the velocity of the travelling wave, while in our study it affects the pinning
position.

In future efforts, it would be interesting to study the stochastic model for cell
polarisation in higher dimensions, where effects of geometry are non-trivial (e.g. see
Strychalski et al. 2010), as well as in off-lattice Brownian dynamics models.

Finally, studies such as this one can be extended to tackle the intriguing question of
how cells communicate polarisation within a wider tissue context, which is a subject
of ongoing work. We envision that stochasticity within the coupling of cell polarities
between cells could play an important role.

Numerical Methods Plots in Figs. 5 and 8, histograms and fits in inset of Fig. 6,
and least-squares fitting and plots of insets of Fig. 14 were done with Mathematica
(Version 8.0, Wolfram Research, Inc., Champaign, IL, USA). Stochastic and deter-
ministic simulations and plots of Figs. 1, 6, 7, 9, 10, and 11 were done with MATLAB
(2010a, The MathWorks, Natick, MA, USA). The two-parameter plot of Fig. 13 was
done with MATLAB and matcont (Dhooge et al. 2003). Simulations and bifurcation
plots of top two rows in Fig. 3, and bifurcation plots of Fig. 12, insets of Fig. 13, and
Fig. 14 were done with XPP-AUTO (G.B. Ermentrout, University of Pittsburgh).
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