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Abstract
In this paper we present development and testing results for a novel colonic polyp classification
method for use as part of a computed tomographic colonography (CTC) computer-aided detection
(CAD) system. Inspired by the interpretative methodology of radiologists using 3D fly-through
mode in CTC reading, we have developed an algorithm which utilizes sequences of images
(referred to here as videos) for classification of CAD marks. For each CAD mark, we created a
video composed of a series of intraluminal, volume-rendered images visualizing the detection
from multiple viewpoints. We then framed the video classification question as a multiple-instance
learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances,
which in our case depends on the viewing angles and camera distance to the target, we developed
a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem
by maximizing a L2-norm soft margin using semidefinite programming, which can optimize
relevant parameters automatically. We tested our method by analyzing a CTC data set obtained
from 50 patients from three medical centers. Our proposed method showed significantly better
performance compared with several traditional MIL methods.
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I. Introduction
Colon cancer is the second leading cause of cancer-related death in the United States [1].
Computed tomographic colonography (CTC), also known as virtual colonoscopy when a
fly-through viewing mode is used, provides a less invasive alternative to optical
colonoscopy in screening patients for colonic polyps. Computer-aided polyp detection
software has improved rapidly and is accurate [2–16].

In clinical practice, when a suspicious lesion (polyp candidate) is found on CTC, a
radiologist will observe it from different viewing angles and distances with the help of the
CTC visualization software before making a final diagnostic assessment. Different viewing
angles and varying distances reveal various diagnostic characteristics of the polyp candidate,
and each may incrementally increase diagnostic confidence. We hypothesized that
combining these viewpoints into a visualization set for CAD classification could lead to
higher sensitivity and a lower false positive rate. By analyzing and modeling the
interpretative methodology of radiologists, we have developed a novel algorithm for the
classification of colonic polyp candidates identified by a CAD system. For each polyp
candidate, our system creates a short video, illustrating the detection from various
viewpoints. We created a computer vision algorithm to analyze the captured multi-
perspective polyp candidate videos to classify these suspicious candidate locations following
a similar observational approach to that of an experienced radiologist. Given a training set of
captured polyp candidate videos and corresponding ground truth labels, the problem
becomes one of how the computer can learn from the training videos and make accurate
predictions for a set of test cases.

In this paper, we illustrate a solution to the video classification problem using multiple-
instance learning (MIL). MIL is currently a topic of great interest in the field of machine
learning [17–28]. As a variant of supervised learning, where individual instances are labeled
as positive or negative, MIL wraps instances (or samples) in “bags.” A bag is defined as an
ensemble of instances. The learner (computer learning algorithm) knows the labels of bags,
but cannot identify the labels of the individual instances within each bag. A bag is labeled
negative if all the instances in it are negative, and is labeled positive if it contains at least
one positive instance. Given training bags of instances and corresponding bag labels, MIL
methods can train a computerized learner to predict the labels of unknown test bags.

Multi-instance learning was first formulated by Dietterich et al. in the study of drug activity
prediction [17]. Dietterich’s approach seeks to define an axis-parallel hyper-rectangle (APR)
that would enclose at least one instance from each positive bag and exclude all instances
from negative bags. Maron and Lozano-Pérez proposed an alternative framework for MIL,
diverse density [19]. This algorithm searches for a concept point in feature space that is both
close to instances from many different positive bags and distant from instances in negative
bags. This approach was extended by introducing an expectation maximization algorithm for
estimating which instance(s) in a bag is responsible for the assigned class label [20]. Wang
and Zucker described a lazy MIL framework based on the classic k-nearest neighbor (k-NN)
classifier [21]. Their proposed method, citation-kNN, uses the Hausdorff distance to
measure the distance between bags and considers both ‘citers’ and ‘references’ to calculate
neighbors. Later, kernel methods for MIL were developed [22–24]. Andrews et al. extended
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the support vector machine (SVM) learning approach to MIL [22]. In their MISVM
formulation, they generalize the SVM notion of margin maximization to bags, training the
classifier using only the most positive instances from positive bags and the least negative
instances from negative bags. In their miSVM formulation, they treat instance labels as
unobserved integer variables constrained by the bag labels. This algorithm maximizes the
soft-margin jointly over the hidden label variables and a linear discriminant function. MIL
has also found application in medical CAD problems. Fung et al. developed a Convex Hull
based Fisher’s Discriminant MIL algorithm (CH-FD) to learn a convex hull representation
of multiple instances, and they applied their technique to the detection of pulmonary
embolism in computed tomography angiography and colonic polyps in CTC [25]. They
relaxed the MIL problem via convex hulls and solved it based on Fisher’s linear
discriminant criterion. Ensemble methods have also been developed for MIL [26–28].

A video is composed of a series of frames or images. In our case, each detection’s video is
treated as a bag, and each frame of the video is treated as a separate instance. A MIL model
is then constructed to solve the video classification problem. Bag labels are defined based on
histopathological findings, and the final evaluation is done on the bag level. Instances are
defined qualitatively. Positive instances are those frames that have visual features that
strongly resemble a true polyp. Negative instances do not visually resemble a true polyp. We
collect the frames from a video illustrating a true polyp into a positive bag and frames from
a video of a false positive detection into a negative bag. As each video only focuses on a
single point on the colonic surface, positive bags would ideally contain purely positive
instances. Similarly, negative bags should contain exclusively negative instances. However,
we observed that the visual information in the videos can belie these assumptions. It is true
that the video of a false positive detection will normally not contain a positive instance
(unless there is a different true polyp in the very close vicinity). However, due to the
complex nature of the colon surface, various viewing angles and camera distances used in
making the video may cause ambiguous visual information. The ambiguous visual
information in our application is highlighted in Fig. 1 which demonstrates how frames that
focus on true positive/false negative detections can be described as negative/positive
instances. Thus, traditional MIL methods, which rigidly assume that all instances in a
negative bag are negative samples, do not fit the constraints of our problem very well.
Relaxing this assumption and allowing positive instances in a negative bag may provide a
benefit in the classification problem. In this study, we developed a novel MIL learning
technique which allows both positive and negative instances to exist in either a positive or
negative bag.

The outline of the paper is as follows: in Section II we clarify our motivation for this
method; in Section III we introduce our video capture model and feature extraction module;
in Section IV, the new MIL method is proposed; in Section V we describe our dataset and
evaluation method; in Section VI, results of the novel MIL analysis are detailed, with
conclusions provided in Section VII.

II. Motivation
Our aim is to further improve CTC CAD systems to make them more valuable to physicians
in diagnosing patients. We want to identify those detections with high probabilities of being
true polyps. Further, we would like to identify viewpoints of those marks that may be
particularly revealing. We were inspired by the interpretative methodology of radiologists,
and we believe that a system that mimics their approach could prove beneficial. In
psychological research on object understanding, theories generally fall into one of two
classes: those that rely on 3D, object-centered representations or those that rely on 2D, view-
centered representations. Experiments have found viewpoint-dependent performance in
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object recognition tasks. This suggests that object recognition by humans may be better
described by a 2D, image-matching approach than a method relying on 3D models [29, 30].
While there is support for a 3D approach, which in theory would provide viewpoint-
invariant performance, these theories are subject to constraints – notably that the object must
decompose into the same set of 3D sub-structures regardless of viewpoint [31]. These
conditions may not be met in reading TMI-2011-0874 3 CTC studies, and a 2D model may
be more representative of the interpretative process. Thus, our method tries to mimic the
reading behavior of radiologists, who could experience 3D images as a series of projected
2D images. We received further motivation for this approach from results of a recent
observer performance study where naïve observers using only 2D information achieved a
performance level not significantly different from that of a CAD system relying on 3D
analysis [4]. Two-dimensional projection features also have been used to improve the
sensitivity of CAD systems for CTC [6]. We argue that analysis of 2D images by our
improved MIL method yields valid and useful information that is not immediately available
in a direct analysis of 3D images. For example, we can utilize structures in the colon that
appear nearby in the 2D images to assist in classification. A framework for using this
auxiliary information for 3D analysis is usually ignored due to computational issues. While
applying image analysis directly to 3D images is an important concept that has been a
popular focus of research, this paper approaches the classification problem in CTC from the
viewpoint of computer vision.

The MIL framework is uniquely structured to handle our problem. Traditional approaches
for video classification often focus on the temporal relationship between frames, and the
features and classifiers used to describe these videos usually reflect that temporal
dependence [32]. Our approach is viewpoint-based and our generated frames do not have
strong temporal correlations, so such temporally-dependent methods, such as hidden
Markov models, which are widely used for video classification, do not fit our problem. We
handle a video as a radiologist may, treating each frame as a separate but closely related
description of a detection. We observe that the visual information content from each frame
may be ambiguous; however, when a video is considered as a set, we hypothesize the
combined information from various viewpoints could lead to a strong classifier. The MIL
framework allows for such an approach. MIL can explicitly treat videos as groups, using
each viewpoint to incrementally improve diagnostic performance. This framework allows us
to incorporate additional information relative to traditional 3D CTC CAD, which only
analyzes voxels in the immediate vicinity of a detection. Our MIL approach can effectively
consider global, contextual information that could influence diagnosis.

III. Video capture and feature extraction for colonic polyp candidates in ctc
A. Image Generation

Volumetric ray-casting with perspective projection was used with a segmented, but
uncleansed CTC dataset, to generate the images [33]. A two dimensional opacity transfer
function was created for each polyp candidate (PC), which varied with CT intensity values
and gradient measures. Fluid subtraction was performed by a suitable selection of transfer
functions. Such an approach seeks to avoid the creation of polyp-like structures arising from
poor segmentation. A color transfer function was set in conjunction with the opacity transfer
function to better illustrate the three materials most often present: air (blue), tissue (red), and
contrast (green). The rendering pipeline was implemented with VTK [34], and the rendering
functions were inspired by those in [6].
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B. Viewpoint Selection
We used colonic segmentation results to generate multiple valid viewpoints for each PC. To
generate the viewpoints, we first aligned a sampled hemisphere (81 points) with the
measured surface normal of the PC. We sampled the hemisphere at specified spherical
coordinate intervals (every π/8 radians azimuth and every π/10 radians inclination). Using
each point in the hemisphere to define a direction, a camera was iteratively moved away
from the PC centroid in each direction. The camera movement was stopped when it either
hit tissue or exceeded a maximum distance from the centroid. Generating viewpoints in this
way ensured the visibility of the centroid, and larger distances allowed us to capture
contextual information of diagnostic importance. Fig. 2 illustrates the viewpoint generation
process.

To limit the dimensionality of our classification problem, we used an iterative ranking
scheme to select viewpoints. We initially used three criteria to rank the viewpoints:
alignment with the principal components of the PC, alignment with the fluid normal, and
distance from the PC centroid. As the ranked list became populated we penalized subsequent
viewpoints for sharing a similar alignment with a previously-selected viewpoint. In our
observations, these criteria produced a range of informative viewpoints.

The three principal components of the polyp candidate were extracted from the 3D
arrangement of the voxels marked as part of the detection using principal component
analysis. Assuming viewpoints on the same side as the polyp candidate normal are more
informative, the principal component vectors were aligned with the normal such that the
scalar product of each vector with the normal was positive. We also assumed viewpoints
situated at 45 degrees with respect to each principal component would be informative. Such
viewpoints were chosen to capture the shape of the detection.

A distance score which increased with distance from the detection centroid was assigned to
ensure the polyp candidate was not distorted in creating the image. Since we used
perspective projection to generate the images, a viewpoint very close to the polyp candidate
could distort the candidate. Farther viewpoints also allow for capture of structures of
possible diagnostic significance surrounding the detection.

Alignment with the fluid normal was considered to account for the presence of contrast in
the images. Volume averaging effects at air-fluid interfaces resulted in a thin film with
intensities comparable to tissue. While the gradient component of the transfer function was
designed to render the film transparent, a viewpoint that runs parallel to such a surface
would produce an occluded image of the polyp candidate. Rendering performance improves
as the viewpoint is increasingly orthogonal to the fluid’s surface. Viewpoints that penetrate
this air-fluid interface were assigned scores based on their alignment with the surface normal
of the fluid.

To ensure different viewpoints were selected, a given viewpoint was penalized for having a
similar alignment with previously selected viewpoints.

The viewing angle of the camera was set to ensure the entire PC would be visible. The PC’s
voxels were first projected onto the plane running through the PC centroid and orthogonal to
the viewing direction. The major principal component of the projection and the distance
from the centroid to the farthest voxel in that direction, R, were measured. The camera was
then aligned with this vector, and the viewing angle set using the geometric relationship
between the camera’s distance from the detection centroid and R. Multiple scales were
investigated by adding a multiplier, m, to the R measure and recalculating the angle. We
generated 400×400 pixel images at three scales (m = 1, 2, 3) for each viewpoint (3 images

Wang et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



per viewpoint). We conducted experiments to determine the optimal number of viewpoints
(instances) per detection (bag). In Fig. 3 we show some frames depicting the viewing angles
and scales used.

C. Feature Extraction
We implemented a set of low-level, statistical features to analyze each frame of our videos.
The selected features do not require a segmentation result making them particularly
applicable to our approach. Segmentation in these video sequences often proves difficult as
the object of interest often blends in with the surrounding structures. Features based on a
requisite segmentation also would lessen the utility of the approach, as local, segmentation-
based features exclude the detection’s relation to surrounding structure.

We included a subset of features from the MPEG-7 standard: color structure, scalable color,
dominant color, color layout, homogeneous texture, and edge histogram. The MPEG-7
standard, formally named Multimedia Content Description Interface, defines standard
methods to describe multimedia content to allow for searching of audio and visual content
[35, 36]. These features have been successfully employed in several video-based endoscopic
CAD systems. One such system uses MPEG-7 descriptors to detect events in capsule
endoscopy in the small bowel [37]. Another uses the descriptors to diagnose Crohn’s disease
in capsule endoscopy [38].

Inspired by other CAD systems designed to detect polyps in videos taken during traditional
colonoscopy, we used the grayscale wavelet cooccurence and color wavelet covariance
features (Wavelet) proposed in [39, 40]. As virtual colonoscopy mimics traditional
colonoscopy, we believe that these features would perform well in our application. We also
included the local binary pattern histogram Fourier features (LBP) proposed in [41]. This
feature has been applied successfully to texture recognition problems.

A histogram of oriented gradients (HOG), a feature set which has been proposed for use in
visual object recognition in 2D static color images [42], was generated for each frame in the
videos. This feature set provides a measure of the shapes and edges in the videos. In our
implementation, we calculated the vertical and horizontal gradients of our image and used
trigonometric relationships to define the gradient magnitude and direction at each pixel. We
then covered that gradient image with 9 overlapping blocks (200×200 pixels; block overlap
is fixed at half of the block size; block centers at (100,100), (200,100), (300,100), (100,200),
(200,200), (300,200), (100,300), (200,300), and (300,300) in pixel coordinates (origin at top
left of image)). For each block, we created a 9-channel histogram to capture both the
gradient magnitudes and orientations. Each channel represented a range of angles in [−π, π),
and we used the magnitude of the gradient at each point to weight that pixel’s contribution
to the histogram. We normalized each block’s histogram and concatenated histograms from
each block to generate the final feature vector. We selected these parameters based on
suggestions in the original paper. See Fig. 4 for an illustration of the HOG feature.

We adapted the shape context feature (SC) proposed in [43] for our application. We used a
Canny edge detector to extract the boundaries in each frame and translated the boundaries
into polar coordinates (r, θ). r is the distance from the center of the image, and r ≥0. θ falls
in (−π, π] and represents the counterclockwise angle from the vector running right from the
center of the image. A single log-polar histogram was used to collect these points. We used
the parameters suggested in the paper, with 5 bins for log r and 12 bins for θ. Similar to
HOG, this feature provides a description of the shapes and edges in the videos.

We also included a set of features derived from the projections used to find the viewing
angles (Projection). We used the shape context approach to collect the distribution of the
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projected voxels to further describe the detection’s shape. The principal components of the
projected voxels and the distances from the centroid to the farthest voxel in each of those
directions were recorded to indicate the orientation and size of the detection. Camera
parameters, such as viewing angle and distance to centroid also were used as features.

We calculated these features for every frame generated. To account for our multiscale
approach, we concatenated all features from frames taken from the same viewpoint at
different scales into a single vector. This resulted in a feature vector for each viewpoint
(instance) with 2367 descriptors as described in Table 1.

Although the particular choices we made in frame generation and feature extraction may
affect the classification performance, it is expected that the effects would not be strongly
algorithm-dependent, i.e., the ordering of algorithm performance is not expected to be
different for other choices for frame generation and feature extraction. For example, we
would expect our classification algorithm to achieve similar performance relative to other
MIL methods if we had used a different transfer function to generate the image or a different
set of features to describe each frame.

IV. A new multiple-instance learning paradigm using semidefinite
programming for L2-norm soft margin maximization

In MIL, data are collected and presented in a two-level (bag level and instance level)
hierarchal form. Each instance is associated with a bag and a bag contains one or more
instances. We only have labels for bags and do not have labels for instances. More formally,
let X ∈ ℝk be the input space of instances where k is the number of features and Y =
{−1,+1} be the set of class labels. Given a set of training bags {(B1,y1),…, (Bm,ym)}, where
Bi is the ith bag containing instances xj ∈ X, j = 1,2,…, ni, where ni is the number of
instances in the ith bag, yi ∈ Y is the ith bag’s label, and y=[y1,…,ym], the purpose of MIL
is to find a discriminant function f : X → ℝ which fits the training set under certain criteria
and generalizes well on new test bags. Note that the discriminant function f is applied to
instances, and that the label of each bag can be inferred from the classification results of
instances. Let the first mp bags in the training set be positive and the rest mn bags be
negative (mp + mn = m). Let np be the number of instances in all positive bags and nn be the
number of instances in all negative bags, such that n = np + nn is the total number of
instances in the training set.

As mentioned previously, video captured from a false detection (negative bag) may contain
frames which look like true polyps. These frames, representing data points very dissimilar
from other instances in their respective bags, arise from a variety of etiologies including
segmentation, contrast agent, viewing angle of the camera, and distance of the camera to the
PC. The traditional MIL will not fit within the constraints of our problem, as a negative bag
may also contain positive instances. Based on this assumption, the above settings, and using
the idea of maximum margin from SVM, our MIL problem can be formulated (following
[18]) as follows:

(1)

where w ∈ℝn and b correspond to the weight and bias of the linear classifier to be learned; η
= [ηp; ηn] is a weighting vector which ranks positive (negative) instances in a positive
(negative) bag (ηp = [η1, η2,…, ηnp] corresponds to np positive instances; ηn = [η1, η2,…,
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ηnn] corresponds to nn negative instances); 0 and 1 are each vectors with all 0’s or 1’s
respectively; C is a constant introduced to solve the imbalance problem in true instances and
false instances; ξ = [ξp; ξn] contains relaxation variables for non linear separable problems
in feature space (of instances) (ξp = [ξ1, ξ2,…, ξnp] corresponds to np positive instances; ξn
= [ξ1, ξ2,…, ξnn] corresponds to nn negative instances); yi = +1 if the corresponding
instance belongs to a positive bag and yi = −1 if the corresponding instance belongs to a
negative bag; e = {1}n denotes a vector with all 1 entries; T is a scalar threshold to control
the weighted instances in a bag; x1,…,xn are training instances from training bags; Φ = [φ
(x1),…, φ (xn)] are mappings of original instances in a high dimensional space. Each training
instance was a feature vector extracted from a frame of a video of polyp candidate. A is a m
x n binary matrix, and A(i,j) = 1 if instance j belongs to bag i. It corresponds to instance
selection in our CTC CAD problem. For inequalities involving vectors x ∈ ℝn and y ∈ ℝn,
the comparison is done element-wise, e.g., x < y, if xi < yi for i=1,2,…,n.

In the above formulation of the MIL problem, we used the L2-norm instead of the L1-norm
employed by [18]. The solution to the L1-norm MIL problem contains a bilinear term,
making it non-convex. Although the authors of [18] modified the solution to remove the
bilinear term, we found their solution led to an unbounded objective function in practice. In
addition, a previous study showed that the L2-norm is better than the L1-norm in video
classification when information from different sources are complementary [44]. In our
problem, frames from different viewpoints show different polyp candidate characteristics
which may complement each other in making a classification. In the following, we will
show solutions of the L2-norm MIL problem and how the bilinear problem can be avoided
naturally.

Proposition 1
By using the Lagrange multiplier optimization method, the above minimization problem (1)
can be formulated as the following dual problem:

(2)

where ∘ is an inner product, y = [y1,…,ym], K ∈ ℝnxn is the kernel matrix constructed from
all training instances which captures similarities between instances K(xi, xj)=〈φ (xi), φ(xj)〉,
and α ∈ ℝn is a dual variable (vector) introduced in the Lagragian multiplier optimization
method which determines support vectors. diag is the notation for a diagonal matrix.

In the following paragraph, we will show how to solve the above min-max optimization
problem using semidefinite programming (SDP).

Theorem 1
The min-max optimization problem in (2) is equivalent to the following semidefinite
programming problem:

(3)

where μ ∈ ℝn and ε ∈ ℝ are auxiliary variables introduced for the dual problem.
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Proof
(Extended from [18] to our new MIL paradigm and L2-norm soft margin) Let L(α,η,μ,ε) be
the Lagrangian of the maximization problem in (2):

(4)

Since L(α,η,μ,ε) is concave in α, the optimal α can be identified by setting:

(5)

Substituting (5) into Lagrangian (4), we will get

(6)

After solving the inner maximization problem in (2), we can convert it into the following
minimization optimization problem:

(7)

By using the Schur complement lemma, we get the semidefinite programming problem
shown in (3). (End of Proof)

Please note that the bilinear term seen in the L1-norm MIL solution in Theorem 1 of [18] is
eliminated in (3). The term was avoided naturally by using the L2-norm.

Let us consider optimization of threshold T in MIL with imbalanced data between positive
and negative bags. Here we impose different thresholds on the relaxation variables T for
positive and negative bags. We also used different cost coefficient C for positive and
negative bags.

(8)

where Cp and Cn are scalar constants introduced to solve imbalance problem in true
instances and false instances; Tp and Tn are scalar variables to be optimized which control
the selection of instances from bags. Ap is the first mp rows of A, and An is the last mn rows
of A. Cp and Cn will impose different weights on slack variables of positive and negative
bags, respectively. It is a typical strategy to deal with unbalanced datasets in large margin
based learning methods [45]. Tp and Tn were introduced to select most representative
instances from positive and negative bags, respectively.

Wang et al. Page 9

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



By fixing η and maximizing the inner optimization problem over α, we can convert the
above problem to the following SDP problem in Theorem 2.

Theorem 2
The MIL problem for unbalanced data and different bag thresholds shown in (8) is
equivalent to the following SDP problem (please see Appendix A for proof):

(9)

Based on the Lagrangian shown in (14) the Karush-Kuhn-Tucker (KKT) conditions for
optimal w and b are:

(10)

b can be solved using any support vector i:

(11)

In practice, we averaged b calculated from all support vectors to get a stable solution.

For a test bag, we feed each test instance (xt) inside it to the learned classifier to get
predicted label (yt):

(12)

where

(13)

With the predictions of all the instances of the test bag, there are different strategies we can
employ to estimate the bag label or prediction. We can rank all the instances first based on
their predictions, then determine the bag prediction using the maximum (which was adopted
by MISVM), minimum, or median instance prediction. Alternatively the prediction of the
test bag can be determined using the average of all predictions of instances inside the test
bag. In practice, we found that using the averaged instance predictions as the bag prediction
achieved the best performance.
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V. Data Set and Evaluation Method
Our evaluation data set consists of CTC examinations from 50 patients collected from three
medical centers from a database of patients originally accrued during the study described by
Pickhardt et al. [46]. Each patient was scanned in the supine and prone positions. Each scan
was performed with a single breathhold CT protocol, using a 4-channel or 8-channel CT
scanner. CT scanning parameters included 1.25- to 2.5-mm section collimation, 15 mm/s
table speed, 1-mm reconstruction interval, 100 mAs, and 120 kVp. Each patient had one or
more polyps ≥6mm confirmed by histopathological evaluation following optical
colonoscopy. This data set was analyzed with a pre-existing CAD system to generate the
initial list of polyp candidates, resulting in 91 true-positive locations of 53 polyps and 5233
false positive detections [5]. This system automatically segments the colon and identifies
polyp candidates using features based on colonic surface curvature. We created a video for
each of these detections, and we extracted 2367 features from each viewpoint as described in
Table 1. We performed feature selection and varied the number of instances used to
represent each CAD mark to see how those parameters impact performance.

To demonstrate the effectiveness of our proposed MIL method, we compared it with several
MIL methods implemented with MILL [47]: diverse density (DD), axis-parallel rectangle
(APR), citation-kNN (CKNN), mi-SVM, and MI-SVM. For DD, 10 random runs were
conducted and results were averaged to remove random factors due to initialization. For mi-
SVM and MI-SVM, we used the same radial base function kernel (RBF) and kernel
parameters as our proposed method. For citation-kNN, we include results using 20 citers and
20 references. We evaluated the classification performance of each algorithm using a leave-
one-patient-out test scheme. NIH Biowulf computer cluster (http://biowulf.nih.gov/) was
utilized for parallel computation. Each test patient used one node of the computer cluster.
We compare these methods using ROC analysis. ROC curves are compared using correlated
area test statistics calculated with ROCKIT [48].

VI. Experimental Results
There were 2367 statistical features extracted from each instance (viewpoint). Since we have
very high dimensional data, one natural question is that do we really need all these features.
To answer this question, we conducted experiments on feature selection using the minimum
redundancy and maximum relevance feature selection method (mRMR) [49]. mRMR is a
state-of-the-art feature selection method widely used in biomedical research. It selects good
features according to the maximal statistical dependency criterion based on mutual
information and minimizes the redundancy among features simultaneously. We show areas
under the ROC curves (AUC’s) of the proposed method with different number of features
selected by mRMR in Fig. 5. We found no very distinctive, discriminant, and independent
features. Further, we found that performance of the proposed method stabilizes with more
than 900 features, indicating that additional features are not very distinctive. We found no
statistical difference between performance when using 900 features and when using the full
2367 features (p = 0.9679).

In Fig. 5, we also show the effect of the Cp and Cn parameters. When using more than 900
features, performance increased as the Cp/Cn ratio increased. However, the effect was small
moving from Cp/Cn=2 to Cp/Cn=3. Because smaller ratios are more computationally
efficient, we set Cp=2 and Cn=1 for the remainder of our experiments.

We investigated the impact of the number of instances per bag on the performance of our
method. We found improvement as we increased the number of instances per bag from 1 to
10 (Fig. 6). However, we saw no difference in performance when adding additional
instances. The AUC’s when using 1, 5, 10 15, and 20 instances were 0.816 (±0.0273), 0.882
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(±0.0232), 0.912 (±0.0205), 0.891 (±0.0225), and 0.9083 (±0.0209). We found the
performance with 10 instances was significantly greater than the performance using either 1
or 5 instances (p-values < 0.01). We found no significant difference between using 10 and
20 instances (p=0.8250).

In Fig. 7, we compare the ROC curve of our proposed method with the five methods
described in Section V. We utilized all available features for training and testing in this
experiment because feature selection is computationally expensive. Our proposed method
demonstrates the best performance. For the proposed method, k = 2367, Cp = 2 and Cn = 1.
The optimal learned Tp and Tn were all 1. The AUC’s of our proposed method, miSVM,
MISVM, CKNN, DD, and APR were 0.911 (±0.0206), 0.802 (±0.0280), 0.795 (±0.0283),
0.769 (±0.0292), 0.523 (±0.0309), and 0.523 (±0.0309), respectively. Since the miSVM and
MISVM showed closest performance to our method, we computed correlated area test
statistics of those methods with our proposed method. We found a significant difference
between our method and the miSVM and MISVM approaches (p-values < 0.001). There was
no statistical difference between miSVM and MISVM (p=0.6176).

Optimization of η plays a key role in our MIL paradigm. The η values allow us to evaluate
the contribution of each frame in a bag. In Fig. 8 we show typical examples of instance
ranking. Each row corresponds to one CAD PC. The left and right columns show,
respectively, instances with the highest and lowest score based on the ranking η which
comes from the solution of the optimization problem (8) and (9). The ranking 1/η is
equivalent to the probability that the instance should be chosen for training of the classifier.
Instances that are highly ranked by 1/η correspond to support vectors near the decision
boundary in our large margin classification paradigm, i.e. these instances possess features
that are difficult to correctly classify. For a positive (negative) bag, the highest ranked
instance by η should resemble a typical true polyp (false positive) and the lowest ranked
instance should have characteristics of false positives (true polyps).

In Fig. 8a–8f we show typical examples of instance selection involving three true polyps. In
Fig. 8a, the image shows a growth coming off of a fold representative of a true polyp.
However, the fold obstructs this polyp in Fig. 8b, so the frame contains no polypoid features.
The detection in Fig. 8c–8d is the same detection seen in Fig. 1a–1b. In Fig. 8c the polyp
appears as a small circular shape, distinct from the background. However, when the
perspective changed, the same polyp is clouded by an imaging artifact (Fig. 8d). It is
interesting that the automatic selection is similar to the manual selection in Fig. 1. Please
note that we provide only 2D color images to our algorithm, and there is no depth
information which can be inferred from a single 2D image. Similarly, the polyp in Fig. 8e–
8f is more representative of a true polyp from the viewpoint in Fig. 8e than the viewpoint in
Fig. 8f.

In Fig. 8g–8l we show typical examples of instance selection involving three false positive
detections. Fig. 8g–8h shows a gas bubble. Both of these images have shapes suggestive of a
true polyp. However, the air within the bubble, rendered solid blue, is clearly visible at the
center of the image in Fig. 8g while it is obstructed in Fig. 8h. This color information clearly
distinguishes the detection as a false positive. In Fig. 8i–8j, we show a common false
positive, an ileocecal valve. The perspective on the detection in Fig. 8i lessens the polypoid
features of the detection. Similarly, the viewpoint in Fig. 8k gives that detection a less
polypoid shape than the viewpoint in Fig. 8l.

In Fig. 9, we show examples of our proposed method’s performance on flat polyps. These
flat polyps were identified in the database by a radiologist. Our algorithm showed poor
classification performance on the 6 mm polyps in Fig. 9a–9b and Fig. 9e–9f, ranking them
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in the bottom 20% of all true detections. Judging by the poor visual characteristics of the
highest-rated instance, our classifier was unable to find any instances in those bags that were
indicative of a polyp. However, the 8 mm flat polyp in Fig. 9c–9d was assigned a score in
the upper third of all true polyp detections. This detection had a pronounced shape more
indicative of a polyp.

VII. Discussion and Conclusion
In this paper we have described the development and testing of a novel method for colonic
polyp detection in CTC using video analysis and MIL techniques. For each CAD mark in
CTC, we created a video demonstrating the detection from multiple viewpoints.
Classification of the detections in these videos was formulated as a MIL problem. Here, as
opposed to traditional MIL theory, a negative bag may contain positive instances, depending
on the viewing angles and camera distance to the target. To accommodate for this variation
of standard MIL methodology, we developed a novel MIL paradigm maximizing a L2-norm
soft margin using semidefinite programming, which can automatically optimize the relevant
parameters (η, Tp and Tn). Comparison of results from analysis of a CTC testing set
demonstrated statistically higher polyp candidate classification accuracy with the proposed
method, compared with those of traditional MIL methods.

From the experimental results, we find that the traditional MIL methods, e.g. Citation KNN,
diversity density and axis-parallel rectangle, did not work well with our video classification
data set. The key reason is that our problem does not meet the assumptions in traditional
MIL paradigm that instances in a negative bag are all negative. The mixed positive and
negative instances in positive and negative bags make these traditional MIL methods
perform poorly. MISVM and miSVM are also based on the idea of margin maximization
making them somewhat more advanced than the traditional MIL methods. However, our
proposed method still showed better performance compared with MISVM and miSVM. We
attribute this to our use of ranking instances within bags (as our proposed method does) as
compared to simply identifying the most representative instance (MISVM), or guessing the
label of instances (miSVM). Rankings appear to maximize the information extracted from
the video sequences for our particular problem where positive and negative instances are
mixed within each bag type.

Regarding computational complexity, SVMs have the complexity of O(kn2) for radial basis
function (RBF) kernels and O(kn) for linear kernels, where n and k are number of samples
and features, respectively. For our proposed method, since we introduce ranking variable η
for each instance, computational complexity will be O(4kn2) and O(2kn) for RBF and linear
kernels, respectively. Here n is the total number of instances in the dataset for our MIL
problem. While our proposed method is more computationally complex than SVMs, the
complexity scales linearly with SVM methods. Since we see significantly higher
performance from our method, we feel that the increased complexity is acceptable. The
higher performing system may also allow us to loosen our constraints in our initial detection
scheme to increase the sensitivity of the CAD system.

The η rankings present an interesting new piece of data for clinicians. As our method seeks
to mimic radiologist interpretation, the learned rankings should represent the most
diagnostically-relevant viewpoints of a particular CAD mark. By immediately presenting the
clinician with the most relevant viewpoints, we could decrease the amount of time required
to fully investigate a CAD mark. The η values could also help to narrow the visual search
space for clinicians. As is shown in Fig. 8, the η values translate well into relevant visual
information. While the generation and analysis of the videos needed by our algorithm will
take time (a few minutes for each case), such computations can be done along with the
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initial processing of the CTC data. We believe that the time savings in identifying the most
relevant viewpoints could outweigh the modest increase in computational time.

In our current implementation we chose to only use 10 viewpoints to represent each polyp
candidate. This selection was based on our findings in Fig. 6. We noted using more than 10
instances per bag resulted in no improvement in performance, and the processing time scales
exponentially when using more instances. The processing time for the entire dataset using
10 instances was around 2.5 hours, while the processing time increased by a factor of 10 to
25 hours when 20 instances were used. Further work could be done to investigate the
optimal number of instances to use to represent each detection. Further work could also
investigate methods to include up to hundreds of video frames.

Flat polyps present a great challenge in CTC CAD due to their inconspicuitiveness in CT
images [50–52]. Usually flat polyps show plaque-like appearance and their heights are less
than 3 mm above the colonic mucosa [53]. Traditional 3D image analysis techniques such as
curvature analysis show low sensitivity in detection of flat polyps due to their small surface
curvature. For our method, flat polyps with small sizes (<=6mm) also prove difficult
because the difference between endoluminal renderings of small flat polyps and normal
colon inner wall are subtle. For larger flat polyps (>=10 mm), we expect to have higher
detection sensitivity since our method can extract texture and boundary shape information of
large flat polyps from different view angles and distances. We noted this trend in Fig. 9,
where our method did perform better on a larger flat polyp. However, our current dataset
only contains 3 flat polyps. In future studies, how to adapt our method to the detection of flat
polyps will be an interesting problem and research direction.

Compared with the CH-FD MIL method [25], o u r formulation has several significant
differences. First, CH-FD tries to optimize the classifier decision boundary using Fisher’s
linear discriminant criterion; whereas our proposed method is based on margin-
maximization criterion. Secondly, the definition of bags and instances are different. A
positive bag in CH-FD is a collection of candidates spatially close to a positive ground truth
mark. That method treats all candidates distant from a positive ground truth mark as
negative instances, and it does not formally group these negative instances into bags. In our
method, we define instances based on video frames and detections as bags. Lastly, CH-FD
utilizes traditional 3D features for medical image analysis while we developed video
generation techniques and extracted statistical 2D image features for classification. One
advantage of our proposed method is that we can provide radiologists the highest ranked or
most representative 3D rendered images for each PC which will aid them in CTC practice.
CH-FD and our proposed method work at different levels regarding definition of bags and
instances; the combination of the two methods to form a hierarchical MIL learning scheme
will be of interest.

In this paper, we computed several groups of features in the feature extraction process.
When we computed the kernel, we simply concatenated them into one large (high
dimensional) feature vector for the similarity computation. Since different groups of features
have different classification ability, it would be interesting in future work to weigh these
groups of features for classification by embedding multiple kernel learning into our MIL
scheme. The addition of multiple kernel learning would be expected to lead to further
improvements in the performance of our system.
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Appendix

A. Proof of Theorem 2
Let L(w,b,ξ,α,β) be the Lagrangian of the inner minimization problem in equation (8):

(14)

where α ∈ ℝn and β ∈ ℝn are auxiliary variables introduced for the dual problem. The dual
problem is:

(15)

So the problem shown in (8) can be converted to the following problem:

Wang et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cs.cmu.edu/~juny/MILL


(16)

The inner maximization problem shown above could be achieved at

(17)

where μ ∈ ℝn and ε ∈ ℝ are auxiliary variables introduced for the dual problem. By using
Schur complement lemma, we get following SDP problem:

(18)

B. Proof of Proposition 1
By using Lagrange multipliers optimization method, we transferred the constrained
optimization problem (1) into the following unconstrained primal Lagrange function:

(19)

The Karush-Kuhn-Tucker (KKT) conditions for optimal w, b and ξ are:

(20)

By using KKT conditions, we can remove primal variables and get dual representation of
optimization problem (1):

(21)
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Fig. 1.
Need for instance ranking. Images (a) and (b) are taken from a positive bag that illustrates a
6 mm sessile polyp, while images (c) and (d) are from a negative bag showing a false
positive at the base of a fold. Images (a) and (c) show instances of the detections that should
be preferred as they are more representative of their respective classes. Instances in (b) and
(d) appear misleading and could lead to incorrect classification.
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Fig. 2.
Illustration of viewpoint generation process. Cameras (represented by arrows) are moved
from the PC centroid in various directions until they hit tissue (e.g. colon wall or fold) or
reach a maximum distance from the PC centroid.
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Fig. 3.
Representative frames extracted from typical videos with different viewpoints and viewing
angles. Images (a)–(d) show true polyps. Image (a) shows a 6 mm sessile polyp, (b) a 1.1 cm
sessile polyp, (c) a 1.1 cm pedunculated polyp, and (d) a 6 mm sessile polyp. Images (e)–(h)
show common false positives. Image (e) shows a detection on a haustral fold, (f) an air
bubble false positive, (g) a detection arising from rough texture, and (h) a detection on a
taenia coli. The green color in (b), (f), and (g) demonstrates that the detection is covered in
iodinated endoluminal contrast material.
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Fig. 4.
Illustration of HOG. We show two sample detections with oriented gradients overlaid in
blue. Image (a) shows an 1.5 cm pedunculated polyp, and (b) shows the corresponding HOG
descriptor. (c) shows the HOG descriptor for the area denoted by the white box in (a). Image
(d) shows a fold (false positive), and (e) shows its HOG descriptor. (f) shows the HOG
descriptor the for the area denoted by the white box in (d). Note the round shape of the true
polyp in (a) translates to a histogram whose response is more distributed than the HOG of
(d), in which most of the gradients lie along the same direction.
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Fig. 5.
AUC’s of the proposed method when different numbers of features were selected by the
minimum redundancy and maximum relevance feature selection method.
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Fig. 6.
ROC curves when utilizing various number of instances (n) in each bag. We set k = 900, Cp
= 2, and Cn = 1 in constructing each of these curves.
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Fig. 7.
ROC comparisons of the methods. Our proposed method demonstrates the highest
performance among various MIL algorithms.

Wang et al. Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 October 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Result of instance ranking. Images (a)–(f) are differing perspective views of three true polyp
detections from testing video sequences, with images (g)–(l) demonstrating analogous
examples of false positive detections. The left column and right column show the highest-
and lowest-rated instance for each detection, respectively. The yi values show the bag labels
for the corresponding rows. η is a scalar weighting value assigned to each instance to rank
positive (negative) instances in a positive (negative) bag. (a)–(b) 7 mm pedunculated polyp,
(c)–(d) 6 mm sessile polyp (same polyp as in Fig. 1a–1b), (e)–(f) 8 mm sessile polyp, (g)–
(h) air bubble, (i)–(j) ileocecal valve, and (k)–(l) distorted fold.
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Fig. 9.
Ranked instances of flat polyps. The left column and right column show the highest- and
lowest-rated instance for each detection, respectively. (a)–(b) 6 mm flat polyp, (c)–(d) 8 mm
flat polyp, (e)–(f) 6 mm flat polyp. The polyps in (a)–(b) and (e)–(f) each had scores in the
bottom 20% of all true polyps. The polyp in (c)–(d) had a score in the upper third of all true
polyps.
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