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This work illustrates potential adverse effects linked with the
expression of proteinase inhibitor (PI) in plants used as a strategy to
enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi)
and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants
expressing the mustard trypsin PI 2 (MTI-2) at different levels were
obtained. First-instar larvae of the Egyptian cotton worm (Spodop-
tera littoralis Boisd.) were fed on detached leaves of these plants.
The high level of MTI-2 expression in leaves had deleterious effects
on larvae, causing mortality and decreasing mean larval weight, and
was correlated with a decrease in the leaf surface eaten. However,
larvae fed leaves from plants expressing MTI-2 at the low expression
level did not show increased mortality, but a net gain in weight and
a faster development compared with control larvae. The low MTI-2
expression level also resulted in increased leaf damage. These ob-
servations are correlated with the differential expression of diges-
tive proteinases in the larval gut; overexpression of existing protein-
ases on low-MTI-2-expression level plants and induction of new
proteinases on high-MTI-2-expression level plants. These results
emphasize the critical need for the development of a PI-based
defense strategy for plants obtaining the appropriate PI-expression
level relative to the pest’s sensitivity threshold to that PI.

PIs are widely spread throughout the plant kingdom.
They are known to be involved in several physiological
processes, such as reserve control and defense against
pathogens and pests (Koiwa et al., 1997). In the latter case,
PIs have been shown to be developmentally expressed in
seeds and reserve organs (Birk, 1994; Koiwa et al., 1997) or
induced by wounding in leaves (Schaller and Ryan, 1995).
The natural protective role of PIs against phytophageous
insects and the availability of PI-encoding sequences en-
couraged the development of pest-resistance programs
based on PI expression in transgenic plants (Ryan, 1990).

Despite several reports of successful protection of plants
and trees against phytophageous insects from several tax-
onomic orders, mainly Lepidoptera (Jongsma and Bolter,

1997; Gatehouse, 1998; Jouanin et al., 1998; Schuler et al.,
1998), defense strategies based on PI expression in plants
have not resulted in any commercial application so far.
This relates to two distinct problems: (a) the pests’ capacity
to react to PI consumption, and (b) the PI-expression levels
in transgenic plants.

The first point is exemplified by the fact that PIs shown
to be potent inhibitors of insect gut proteinases in in vitro
assays failed to produce any deleterious effect when fed to
larvae (Baker et al., 1984; Purcell et al., 1992). Recent data
provide some insights into the insect pests’ ability to over-
come the potential deleterious effects caused by PI con-
sumption. Several mechanisms were reported: the inacti-
vation of PI by insensitive proteinases (Jongsma and Bolter,
1997; Michaud, 1997) and the synthesis of novel protein-
ases insensitive to the PI ingested (Jongsma et al., 1996;
Jongsma and Bolter, 1997). To counter such resistance
mechanisms, several strategies have been proposed for the
design of more efficient pest-resistant transgenic plants: the
expression in the same plant of several genes encoding
entomopathogenic molecules (PI and other types of mole-
cules such as Bacillus thuringiensis toxins) and/or the use of
engineered inhibitors with increased specificity or a larger
spectrum (Jongsma et al., 1996; Jongsma and Bolter, 1997;
Michaud 1997; Reeck et al., 1997).

In comparison with the pests’ adaptation capacities, little
attention has been given to potential problems linked to the
level of expression of PI genes in transgenic plants. Reports
have shown that to cause deleterious effects on pests, PI-
expression levels have to be relatively high, on the order of
1% of total soluble protein, as previously shown in bioas-
says of artificial diets (Hilder et al., 1987; Leplé et al., 1995).
Nevertheless, to our knowledge, no attempt has been made
to estimate the possible occurrence of adverse effects
linked to inadequate PI-expression levels in transgenic
plants. In view of a possible field release of transgenic
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plants expressing PI, this point appears to be of crucial
importance.

To test the possibility of the occurrence of negative ef-
fects linked to PI-expression levels, tobacco (Nicotiana taba-
cum L. cv Xanthi) and Arabidopsis L. (Heynh.) ecotype
Wassilewskija transgenic plants constitutively expressing
MTI-2 were obtained. MTI-2 was isolated from seeds of
white mustard (Menegatti et al., 1992) and is related (70%
amino acid homology) to the rapeseed trypsin inhibitor
(Ceciliani et al., 1994). Both PIs have primary structure
characteristics that are uncommon to PI families described
so far (Reeck et al., 1997). In mustard, MTI-2 exhibits ex-
pression patterns (Ceci et al., 1995) similar to that of PIs
known to be part of plant-defense mechanisms in potato
(Suh et al., 1991) and tomato (Wingate and Ryan, 1991).
Therefore, MTI-2 is thought to be a good candidate for
enhancing pest resistance in plants. In this paper we report
the effect of consumption by larvae of a lepidopteran pest,
the Egyptian cotton worm (Spodoptera littoralis Boisd.), of
leaves of tobacco and Arabidopsis plants expressing both
low and high levels of MTI-2.

MATERIALS AND METHODS

Construction of Plasmid Vector pKY-MTI-2

The mti-2 cDNA (accession no. Y16190) was obtained by
PCR amplification of a full-length cDNA inserted in plas-
mid pUC19 (L.R. Ceci, unpublished data) by using the M13
forward oligonucleotide as an upstream primer and the
specific oligonucleotide 59-GGC AGC CTC TAG AAA CTC
AAA TGC CAC CTC TTA G-39 as a downstream primer.
This primer contains the UGA stop codon and an XbaI
restriction site. The fragment obtained by SacI-XbaI restric-
tion of the amplification product was inserted in the
pKYLX71–35S2 binary plasmid (Maiti et al., 1993), down-
stream of the 35S2 promoter. The resulting construct was
named pKY-MTI-2 (Fig. 1). It also carries a kanamycin-
resistance gene under the control of the nopaline synthase
promoter for selection of transformed plants.

Plant Transformation and Regeneration

pKY-MTI-2 and pKYLX71–35S2 were transferred to
Agrobacterium tumefaciens strain GV301(pMP90) by tripa-
rental mating (Van Haute et al., 1983) and used for tobacco
(Nicotiana tabacum L. cv Xanthi) and Arabidopsis L.
(Heynh.) ecotype Wassilewskija transformation. Transfor-
mation of tobacco plants was carried out according to the
leaf-disc method (Mathis and Hinchee, 1994), and trans-

genic Arabidopsis plants were obtained by infiltration
(Bechtold et al., 1993). The progeny of tobacco and Arabi-
dopsis transformed lines was obtained by self-pollination
of plants. The segregation of the introduced gene was
observed by selection on kanamycin-containing medium
(100 mg/L).

Plant Preparation

Plants used for biochemical tests and bioassays were
grown simultaneously in the greenhouse with the follow-
ing conditions: 13-h day/7-h night, 8000 lux of natural light
supplemented by sodium vapor lamps, maximum (day)/
minimum (night) temperature at 23°C/14°C. Ten and 20
plants per line were prepared, respectively, for tobacco and
Arabidopsis so that each plant was used only once for leaf
sampling, either for MTI-2-expression analysis or for insect
feeding, to avoid bias due to the systemic induction of
endogenous PIs.

MTI-2 Expression in Leaves of Transgenic Plants

The MTI-2-expression level was measured, in parallel
with the bioassay, in leaves of the same developmental
stage as those used for larvae feeding. Tests were per-
formed on extracts prepared as described by Leplé et al.
(1995), with the following changes: after the initial centrif-
ugation step the supernatant was not heated but was cen-
trifuged again (144,000g, 1 h, 4°C). The resulting superna-
tant was collected for tests. The MTI-2 expression in plant
leaves was monitored using two different protocols: gela-
tin/PAGE for rapid detection/plant comparison and azo-
casein tests for quantification. Gelatin/PAGE was con-
ducted essentially as described by Michaud et al. (1993) on
15% (w/v) acrylamide/0.6% (w/v) bis-acrylamide gels
containing 0.1% gelatin (porcine, type A). After the pro-
teins were renatured, the gel was incubated with trypsin
(0.5 mg/mL in 0.1 m Tris, pH 8.0) for 15 min at room
temperature and then for 4 h at 37°C. Staining was with
Coomassie brilliant blue. Azocasein tests used to quantify
the level of inhibition of b-bovine trypsin by leaf-soluble
protein extracts are based on the quantification of the pro-
teolysis products of azocasein. Protein extracts were incu-
bated for 2 h at 37°C in 0.02 m CaCl2, 0,01 m Tris-HCl, pH
7.5, 2.5 mg/mL trypsin, and 0.5% azocasein. Reactions
were stopped and readings made as described by Leplé et
al. (1995). The remaining trypsin activity was expressed as
a percentage of the control activity without extract.

Figure 1. Structure of the pKY-MTI-2 T-region. Pnos, Tnos, Nopaline synthase promoter and terminator, respectively. nptII,
Neomycin phosphotransferase-coding sequence; mti-2, MTI-2-coding sequence; P35S2, 35S RNA promoter with a doubled
enhancer; trbcS, pea Rubisco terminator; LB, RB, left and right border sequences, respectively. The arrows indicate the
direction of transcription of the mti-2 and nptII genes.
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Feeding Bioassays

Thirty late, first-instar (just before the change to second
instar) larvae of the Egyptian cotton worm (Spodoptera lit-
toralis) were placed in a box on detached tobacco leaves.
Boxes were kept at 22°C. Damp absorbing paper provided
sufficient humidity in the boxes. Leaves were replaced by
fresh ones every 2 d. The development of larvae was mon-
itored throughout the bioassay by noting the larval stage of
each insect every 2 d. At the end of the test, after 10 d,
insects were individually weighed and kept at 280°C until
needed or were immediately dissected.

Gut pH Determination

pH was measured using narrow-range (6.5–10.0) pH in-
dicator paper. Two measurements were obtained from
each of three independent homogenates. Each homogenate
was prepared from guts isolated from two larvae.

Proteinase Activity in S. littoralis

Gut extracts were prepared from larvae surviving the
10-d feeding bioassay. At least six extracts were made for
each condition tested. Each extract was prepared using the
guts of two medium-sized larvae. All insects used for gut
preparation were third-instar larvae. Larval gut extracts
and subsequent proteinase activity tests were performed
using azoalbumin as a substrate, as described by Leplé et
al. (1995). When used, PIs (0.1 mg/mL BBI, 0.1 mm E64)
were preincubated with proteinases for 5 min before the
addition of azoalbumin.

Detection of Digestive Proteinase in S. littoralis by
Two-Step Gelatin/PAGE

Proteins extracted from S. littoralis larval guts were re-
solved on SDS-PAGE and then transferred to a gelatin/
polyacrylamide gel, as described by Michaud (1998). Trans-
fer was carried out at 4°C for 40 min at 45 V. Renaturation
was achieved by incubating the gelatin/polyacrylamide
gel at 4°C for 30 min in a 2.5% Triton X-100 solution.
Subsequent gelatin digestion was carried out at 37°C for 2 h
by incubating the gelatin/polyacrylamide gel in a 10 mm
ethanolamine, 10 mm phosphate buffer (pH 11.0) contain-
ing 8% Triton X-100. Proteinases were visualized as clear
bands on a blue background after the gel was stained with
Coomassie blue. For inhibition studies, BBI (0.5 mg/mL) or
leaf-protein extracts (0.3 mg/mL) was added to the rena-
turing and reaction solutions.

Leaf-Surface Consumption Analysis

Leaves fed to the larvae during d 9 and 10 were collected.
The remaining leaf surface was measured by a computer-
aided image analyzer (Morphostar software, Imstar Co.,
Paris) and compared with a reconstruction of the intact
leaf.

Statistics

Mean weights of larvae were compared using a Student’s
t test modified for small samples. Mortality was compared
using a x2 test. For each test, the statistical significance is
given in parentheses.

RESULTS

Plant Transformation and in Vitro Analysis of
MTI-2 Expression

Transgenic tobacco and Arabidopsis plants bearing the
T-DNA from either pKY-MTI-2 (MTI-2-expressing plants)
or pKYLX71–35S2 (control plants) were obtained by A.
tumefaciens-mediated transformation. T-DNA integration
and copy number were determined by PCR and Southern-
blot hybridization (results not shown). Zygotic status and
T-DNA transmission to the progeny were checked by in
vitro segregation analysis on kanamycin-containing me-
dium (results not shown). Of the transformed lines ob-
tained, one homozygous line of each tobacco (F1) and Ara-
bidopsis (F3) control plant bearing one copy of the T-DNA
was chosen and named CT and CA, respectively. MTI-2
expression in plants bearing the pKY-MTI-2 T-DNA was
measured by in vitro inhibition of b-bovine trypsin by
leaf-soluble protein extracts, using azocasein as a substrate.
Two single-copy homozygous lines of transgenic tobacco
were chosen that exhibited either a high (line 2T) or low
(line 4T) MTI-2 level of expression in leaves (Table I).

By comparing on activity gels the trypsin inhibition by
leaf extracts of MTI-2-expressing plants with the trypsin
inhibition by soybean trypsin inhibitor, Kunitz type, we
estimated that the high-expression line (2T) expressed
MTI-2 at about 1.6% of leaf-soluble proteins, whereas in the
low-expression line (4T) MTI-2 accounted for 0.5% of the
soluble proteins. All Arabidopsis lines expressed MTI-2 at
a comparable level, similar to that observed in tobacco line
2T (Table I). Therefore, only one single-copy homozygous
line, noted 7A, was selected. In both tobacco and Arabi-
dopsis, northern-blot analysis gave results concurrent with
azocasein tests (results not shown). Figure 2 shows a com-
parison of b-bovine trypsin inhibitory activity of the se-
lected transgenic lines. In Arabidopsis, a weak trypsin
inhibition activity was observed in line CA, at a molecular
size similar to that of MTI-2. This may be related to the
presence in the Arabidopsis genome of a PI gene (accession
no. AC002355) with high sequence homology to MTI-2. All

Table I. Trypsin inhibition by leaf extracts from selected
transgenic lines

Line Trypsin Inhibition

mg/g soluble proteins

Tobacco (F1)
Control Not detected

2T 111.6
4T 37.2

Arabidopsis (F3)
Control 17
7A 122.5
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selected lines were subsequently used in S. littoralis larvae-
feeding bioassays.

Bioassays on S. littoralis Larvae

The effect of feeding on leaves from MTI-2-expressing
plants was tested on late first-instar larvae of S. littoralis.
Larvae were grown on detached leaves of tobacco and
Arabidopsis transgenic lines for 10 and 7 d, respectively.
The results obtained with tobacco are summarized in Table
II. Larvae fed on tobacco line 2T showed a significant
increase in mortality (27% versus 7% in control, P , 5%),
and surviving larvae were smaller after 10 d (24.5 mg
versus 40.6 mg, P , 1%) when compared with larvae fed on
control plants (Fig. 3C). Similar results were obtained with
Arabidopsis, with 23% mortality on line 7A (10% on con-
trol) and a mean weight reduction of 37% (4 mg instead of
6.4 mg), comparable to the 39% weight reduction observed
on tobacco line 2T. The damage observed on tobacco leaves
was reduced by 30% on the line expressing high levels of
MTI-2 (Table II). In contrast, larvae fed on the tobacco line
expressing low levels of MTI-2 showed no significant dif-
ference in mortality (0% versus 7%) and had an increased
mean weight (54.0 mg versus 40.6 mg, P , 5%) by the end
of the bioassay when compared with larvae fed on control

plants (Fig. 3C). Damage to the leaves was also increased
by 26% compared with the control (Table II). Differences
observed in mean weight between larvae fed on lines 2T
and 4T (54.0 mg versus 24.5 mg, P , 0.1%; Table II; Fig. 3C)
proceeded both from a tendency to have, respectively, a
slower or faster development than the control (Table II)
and a decreased or increased weight, respectively, com-
pared with the control (Fig. 3A).

To assess potential effects of MTI-2 consumption on the
gut proteinase pool in S. littoralis larvae, proteinase activity
was first analyzed in fourth-instar larvae grown on control
plants. Activity profiles showed a peak of activity at pH
11.0 (Fig. 4), which is in agreement with previously pub-
lished data for this insect (Ishaaya et al., 1971). This result
is in accordance with the mean pH value observed for gut
homogenate, i.e. pH 9.3. The overall activity showed a high
sensitivity to the trypsin/chymotrypsin inhibitor BBI
(Fig. 4), with 90% of activity inhibited at the optimum pH
(Fig. 5A). Proteinase activity insensitive to BBI is likely to
include elastase-like proteinase(s), since degradation of
N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide, shown to be a
substrate for gut chymotrypsin and elastase-like proteinase
in other lepidopteran pests (Johnston et al., 1995), was only
partly inhibited by the specific chymotrypsin inhibitor
N-tosyl-l-Phe chloromethyl ketone (result not shown). E64,
a potent inhibitor of Cys proteinases, had no significant
effect on BBI-insensitive proteolytic activity (Fig. 4). The
proteolytic complex was found to include at least four
proteinases active at pH 11.0 (Fig. 5B). These proteinases
were completely inhibited by BBI (result not shown),
whereas protein extract from MTI-2-expressing plants in-
hibited all but P2 proteinase, which showed reduced activ-
ity (Fig. 5C). Overall, the digestive proteolytic system we
observed in S. littoralis is consistent with previously pub-
lished data for Noctuidae (Christeller et al., 1992), which
had a proteinase activity that relied mainly on Ser protein-
ases, with a major component being trypsin-like protein-
ases (although chymotrypsin- and elastase-like proteinases
are also present). The proteinase P2, which is partly inhib-
ited by MTI-2, may account for part of this non-trypsin-like
activity.

Consumption of leaves from tobacco plants expressing
low levels of MTI-2 resulted in an increase in total protein-
ase activity (Fig. 5A). This higher activity stemmed from an
increased expression of proteinases already present in con-
trol insects (Fig. 5, B and C). The sensitivity of these newly

Figure 2. Visualization of MTI-2 in transgenic plants by gelatin/
PAGE. Plant extracts were separated in acrylamide gels containing
gelatin. Gelatin was subsequently degraded by incubation of the gel
in a trypsin-containing solution. Trypsin inhibition by 10 mg (tobac-
co) and 5 mg (Arabidopsis) of soluble proteins from leaf extract was
visualized by the undegraded blue-stained gelatin located where the
PI initially migrated.

Table II. Bioassays using S. littoralis larvae fed on transgenic tobacco plants
Assays were performed on groups of 30 pre-L2 instar larvae fed for 10 d on transgenic tobacco leaves.

Mortality at the end of the assay is reported as the percentage of initial larvae number. Larval instar at
the end of the assay is given as a percentage of surviving larvae. L2, L3, and L4 refer to instar 2, 3, and
4, respectively. Leaf-surface damage was measured after the last 2 d of the assay (d 9 and 10).

Line
Mortality at

10 d

Larvae Instar at 10 d Mean Wt
at 10 d

Leaf Surface
EatenL2 L3 L4

% of initial % of surviving larvae mg cm2 per larvae

Control 7 4 85 11 40.6 4.18
2T 27 9 91 0 24.5 2.92
4T 0 0 80 20 54.0 5.26
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induced proteinases to BBI (result not shown) and MTI-2
(Fig. 5C) appeared to be unchanged when compared with
proteinases extracted from control larvae. On the contrary,
the consumption of tobacco expressing high levels of MTI-2
resulted in a 33% decrease in the proteolytic activity at pH
11.0 (Fig. 5A), although six new proteinases appeared on
the proteolytic profile (Fig. 5B). These new proteinases
were completely inhibited by BBI (result not shown) and
MTI-2 (Fig. 5C). On activity gels, there was no evidence for
an increase in proteinase P3 (which is incompletely inhib-
ited by MTI-2) activity compared with control larvae. It is
interesting that, whatever the level of expression of MTI-2

in leaves, the amount of proteinase activity insensitive to
BBI did not change significantly (Fig. 5A).

DISCUSSION

This work illustrates the risks associated with a strategy
for pest control based on PI expression in transgenic plants.
It concentrates on the occurrence of unexpected adverse
effects as the result of inadequate PI expression. A varia-
tion of PI-expression levels within the range previously
shown to provide insect resistance to transgenic plants
(Hilder et al., 1987; McManus et al., 1994; Leplé et al., 1995;

Figure 3. Comparison of weight of S. littoralis
larvae fed on transgenic plant leaves for 10 d. A
and B, Weight distribution in larvae fed on to-
bacco (A) or Arabidopsis (B); C, larvae grown on
tobacco lines 2T, 4T, and CT. Each larvae
shown here had a weight nearly equal to the
mean weight observed in the insect pool to
which it belonged.
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Duan et al., 1996; Xu et al., 1996; Gatehouse et al., 1997; Yeh
et al., 1997) resulted in dramatic changes in the reaction of
S. littoralis larvae to transgenic leaf consumption. When the
trypsin PI MTI-2 was expressed at the highest level in
tobacco and Arabidopsis transgenic plants, deleterious ef-
fects were observed on insect larvae, together with a re-
duction of leaf damage, thus providing effective pest resis-
tance to the plant. These results are in agreement with
those obtained by Yeh et al. (1997) on the closely related
pest, Spodoptera litura F, when expressing a sweet potato
trypsin inhibitor in tobacco. On the contrary, when MTI-2
was expressed at lower levels in tobacco plants, larvae
developed faster, were bigger than on control plants, and
caused more damage to the leaves. These results were
related to physiological changes in the proteolytic profile of
the digestive tract of S. littoralis larvae.

The growth-enhancing effect of PI-containing leaves has
been previously reported in a few different studies. The
Noctuidae Thysanoplusia orichalcea F., closely related to S.
littoralis, showed an increased growth when fed tobacco
expressing a chymotrypsin inhibitor inconsistently (McMa-
nus et al., 1994). The cabbage seed weevil (Coleoptera
Psylliodes chrysocephala L.), raised on oilseed rape express-
ing the Cys PI OCI, exhibited an increased weight com-
pared with controls, together with a doubling of both OCI-
sensitive and -insensitive preexisting proteinases (Girard et
al., 1998c). Similarly, our results show that the consump-
tion by S. littoralis of leaves expressing MTI-2 at the lowest
level induced an increase in preexisting proteinase expres-
sion in gut, although not as large as found with P. chryso-
cephala. The mechanisms underlying this increase in pro-
teinase production and linking it to an increase in leaf
consumption are still unknown. Proteinase overproduction
associated with a reduced growth has often been reported
when insects were fed diets containing PI (Jongsma and
Bolter, 1997). Broadway and Duffey (1986) proposed that
PI-induced deleterious effects are caused by stimulating
proteinase overproduction aimed at compensating the in-
hibition of a proteolytic activity, thus inducing a shortage
of some amino acids. Such a compensation mechanism may
explain results obtained from tobacco plants expressing

low levels of MTI-2, even though such a level of PI expres-
sion failed to induce deleterious effects on S. littoralis. The
increase in leaf-surface consumption observed on low MTI-
2-expressing plants may be a consequence of the decrease
in the diet’s quality due to the presence of MTI-2 and/or to
the increase in gut proteolytic capacity of the larvae. Global
proteinase activity enhancement could provide sufficient
MTI-2-insensitive proteinases to counter, at least partly, the
effect of the amount of MTI-2 present in the larvae’s diet,
e.g. by degrading this PI, as recently reported in other
insects (Girard et al., 1998b; Giri et al., 1998).

The proteolytic activity observed in larvae fed leaves
expressing high levels of MTI-2 differed greatly from that
observed in larvae fed leaves with low MTI-2-expression
levels. The 30% decrease in overall proteinase activity,
compared with the control, was shown to coincide with the
appearance of new proteinases. The induction of new
forms of proteinase after feeding on a PI-containing diet
has been previously described in other insects (Broadway,
1996; Jongsma and Bolter, 1997). Newly induced protein-
ases have been shown to exhibit a lower sensitivity toward
the PI consumed by the insect. In S. littoralis we observed
that all of the newly induced proteinases were still sensi-
tive to MTI-2, suggesting that the deleterious effects ob-
served on growth and mortality could be linked to a short-
age of available amino acids because of extensive
proteinase synthesis. Leaf damage was reduced the same
way as overall proteinase activity, suggesting that the con-
sumed leaf area is at least partly determined by the pro-
teolytic activity in the gut.

The dramatic differences observed in larvae fed leaves
expressing high or low levels of MTI-2 suggest the occur-
rence of a sensitivity threshold in S. littoralis toward MTI-2.
This threshold represents the minimum concentration of
MTI-2 in the larvae’s diet necessary to induce deleterious
effects. Below this threshold value, larvae are able to over-
come the inhibition caused by PI ingestion by overexpress-
ing digestive proteinases. Above this threshold, PI inges-
tion induces strong adaptive reactions, such as the
production of new proteinases, mobilizing enough of the
larvae resources to impair its growth. If the threshold is not

Figure 4. Determination of digestive proteinase
activity in S. littoralis gut. Gut proteinase activity
was monitored using azoalbumin, a general pro-
teinase substrate, at different pHs. The activity
was measured by the amount of liberated oligo-
and polypeptides by reading A340. The activity
was monitored without (basal) or with PIs: 0.1
mg/mL of the trypsin/chymotrypsin BBI or 0.1
mg/mL of BBI and 0.1 mM of the Cys PI E64
(BBI 1 E64).
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reached, adverse effects such as damage enhancement
and/or increased pest growth can occur.

This work addresses questions that must be considered
on a case-by-case basis with regard to two different param-
eters: the target pest and the in planta expression charac-
teristics. On the one hand, the sensitivity threshold for a
same PI is likely to differ from insect to insect, since dif-
ferent insects have been shown to exhibit various sensitiv-
ities to a given PI and single insects have been shown to
exhibit different sensitivities to various PIs (Larocque and
Houseman, 1990; Christeller et al., 1992; McManus et al.,
1994). The design of a pest-defense strategy for a crop using
a particular PI is therefore dependent on the assessment of
the sensitivity threshold of the target pest toward the cho-
sen PI. In addition, care must be taken for the deployment

of PI transgenic plants in the field, since different popula-
tions of the insect pests can exhibit different sensitivity
levels to a same PI, as reported recently (Girard et al.,
1998a). However, the stability of expression is paramount
to the successful use of PI to protect plants against attack
by insect pests. Aside from the problem of the choice of an
adequate promoter, the development of a successful de-
fense strategy against a given pest, based on PI expression
in planta, must take into account potential variations in
PI-expression levels in a plant (as a result of age, physio-
logical status, etc.) and between plants of the same line
(Elkind et al., 1995) to ensure that the sensitivity threshold
of this pest for the PI is always reached. With regard to this
requirement, the use of PI presenting a high affinity to an
insect digestive proteinase is highly desirable, as lower
PI-expression levels could be sufficient to impair develop-
ment. Strategies aimed at improving the affinity of a PI for
a target pest’s major proteinase before its expression
in plants (Jongsma et al., 1996) should therefore receive
special attention.
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