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Pitchis one of the primary auditory sensations and plays a defining role in music, speech, and auditory scene analysis. Although the main
physical correlate of pitch is acoustic periodicity, or repetition rate, there are many interactions that complicate the relationship between
the physical stimulus and the perception of pitch. In particular, the effects of other acoustic parameters on pitch judgments, and the
complex interactions between perceptual organization and pitch, have uncovered interesting perceptual phenomena that should help to

reveal the underlying neural mechanisms.

The what and why of pitch

Pitch is one of the primary auditory sensations, along with loud-
ness and timbre. In music, sequences of pitch define melody, and
simultaneous combinations of pitch define harmony. In speech,
rising and falling pitch contours help define prosody and in tone
languages, such as Mandarin and Cantonese, pitch contours help
define the meaning of words. In complex acoustic environments,
differences in pitch can help listeners to segregate and make sense
of competing sound sources.

Put simply, pitch is the perceptual correlate of the periodicity,
or repetition rate, of an acoustic waveform. The most commonly
considered form of pitch-evoking sound is a harmonic complex
tone. This periodic waveform repeats at a rate corresponding to
the fundamental frequency (FO) and can be decomposed into
sinusoidal harmonics or overtones, which have frequencies at
integer multiples of the FO (Fig. 1 A, B). The relative amplitudes of
the harmonics within a complex tone play an important role in
determining the sound quality, or timbre, of a sound. Despite
differences in timbre and loudness, two tones generally have the
same pitch if they share the same F0. Although young humans
with normal hearing can hear sounds with frequencies between
~20 and 20,000 Hz, only repetition rates between ~30 and 4000
Hz elicit a pitch sensation that is salient enough to carry melodic
information (Attneave and Olson, 1971; Pressnitzer et al., 2001).

Scientific disputes on how we perceive the FO arose in the
mid-19th Century (Seebeck, 1841; Ohm, 1843; Helmholtz, 1885/
1954), but it was only firmly established in the mid-20th Century
that a tone retains the same pitch, even if all the energy at the FO
is removed or masked by noise (Schouten, 1940; Licklider, 1954).
This phenomenon of the “pitch of the missing fundamental”
provides an important benchmark in the search for physiological
correlates of pitch (Plack et al., 2005; Griffiths and Hall, 2012;
Wang and Walker, 2012). From a perceptual standpoint, it makes
sense that the pitch of a sound remains constant after the lowest
harmonic components are removed or masked (occluded), so
that some degree of perceptual invariance of a sound source can
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be maintained in a cluttered acoustic environment (McDermott
and Oxenham, 2008).

Relationship between pitch and early auditory
transformations

Figure 1 A shows the time waveform of a musical tone with an
FO of 440 Hz. As shown in Figure 1 B, when a time segment of
a waveform is analyzed, its power spectrum—the distribution
of sound intensity across the frequency spectrum—can be
extracted.

Cochlear filtering
When the sound enters the cochlea, different frequencies within
the sound selectively stimulate different regions of the cochlea.
This frequency-to-place mapping, or tonotopy, is maintained
throughout the auditory pathways up to at least primary auditory
cortex (Al), and forms a major organizational principle of audi-
tory neural processing. The perceptual consequences of tono-
topic organization are manifold and can be measured using
behavioral experiments in a variety of ways, often involving
masking (Oxenham and Wojtczak, 2010). The results from such
experiments are explained in terms of the frequency selectivity of
the “auditory filters” (Fig. 1C). These behaviorally defined filters
are thought to have their basis in cochlear filtering (Shera et al.,
2002, 2010). The output of the auditory filters can be represented
in terms of the long-term average, which is referred to as the
“excitation pattern” (Fig. 1 D), which can be thought of as a sche-
matic representation of mechanical activation of the cochlear
partition or neural activity as a function of characteristic fre-
quency (CF) (Glasberg and Moore, 1990). Alternatively, the out-
puts of the auditory filters can be considered in terms of their
time waveform (Fig. 1E). Because the filter bandwidths increase
with increasing CF, regions of the cochlea tuned to the frequen-
cies of low-numbered harmonics will respond almost exclusively
to a single harmonic, whereas regions tuned to the frequencies of
high-numbered harmonics will respond to several harmonics.
Harmonics that are exclusively represented within single filters
are referred to as “resolved,” whereas harmonics that interact
with others within auditory filters are referred to as “unresolved.”
Resolved harmonics produce peaks in the excitation pattern
(Fig. 1 D), and should elicit filtered waveforms that are similar to
single pure tones at that frequency (Fig. 1 E), whereas unresolved
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harmonics produce no distinct peaks, and
elicit complex waveforms that reflect the
interaction between multiple harmonics.
The point of transition between resolved
and unresolved harmonics is somewhat
fuzzy and depends on many factors, in-
cluding sound level and FO, as well as on
how resolvability is defined and measured
(Bernstein and Oxenham, 2003; Moore
and Gockel, 2011). Nevertheless, a num-
ber of phenomena related to pitch can
be explained in terms of harmonic resolv-
ability (Flanagan and Guttman, 1960;
Houtsma and Smurzynski, 1990; Shackle-
ton and Carlyon, 1994; Bernstein and Ox-
enham, 2006a,b).

Relationship of auditory-nerve and
brainstem responses to pitch

Neurons in the auditory nerve are more
likely to fire at one phase within the cycle
of a waveform than at other phases. This
precise stimulus-driven spike timing, or
phase locking, is known to underlie our
ability to perceive minute differences in
the time of arrival of sound at the two ears,
down to as little as 10 us, which in turn
helps us to localize sounds in space (Blau-
ert, 1997). It is entirely reasonable that the
same precise timing is used to help encode
stimulus periodicity and hence pitch. In
species such as cat and guinea pig, phase
locking is known to extend to ~1-2 kHz,
and then to degrade at higher frequencies
(Palmer and Russell, 1986). Because of the
invasive nature of the measurements, little
is known about phase locking in the hu-
man auditory nerve. Nevertheless, behav-
ioral data, showing that the ability to
discriminate frequency and to recognize
melodies degrades for pure tones above
~4-5 kHz (Attneave and Olson, 1971;
Moore, 1973), has been interpreted as re-
flecting the degradation of phase locking
at high frequencies, suggesting that accu-
rate pitch perception relies on timing in-
formation in the auditory nerve. There are
some indications that timing information
alone may not be sufficient to provide ac-
curate pitch: Oxenham et al. (2004) found
that when the timing information from
low-frequency harmonics was “trans-
posed” to a higher-frequency cochlear lo-
cation, listeners were not able to use the
information to extract the FO. This result
suggested that complex pitch was based
either on tonotopic or “place” informa-
tion, or on timing information that had
to be presented to the “correct” place
along the cochlea, as required by spatio-
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Figure 1.  Representations of a harmonic complex tone with a FO of 440 Hz. A, Time waveform. B, Power spectrum of the same
waveform. , Auditory filter bank, representing the filtering that occurs in the cochlea. D, Excitation pattern, or the time-averaged
output of the auditory filters. E, Sample time waveforms at the output of the filter bank, including filters centered at the F0 and the
fourth harmonic, illustrating resolved harmonics, and filters centered at the eighth and 12th harmonic of the complex, illustrating
harmonics that are less well resolved and show amplitude modulations at a rate corresponding to the F0.

How is pitch extracted? One way might be via the temporal

temporal models of periodicity coding (Loeb et al., 1983;  patterns generated by unresolved harmonics in the auditory pe-
Shamma and Klein, 2000; Cedolin and Delgutte, 2010; Carlyonet  riphery (Schouten et al., 1962). These provide a direct estimate of

al., 2012).

the FO, assuming that the brain can measure the timing between
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peaks of neural activity corresponding to peaks in the time wave-
form. In contrast, extracting pitch from the resolved harmonics
may require coding of the individual frequencies and then com-
bining that information to estimate the FO (Schroeder, 1968;
Goldstein, 1973). At face value, therefore, the unresolved har-
monics provide the easier route to code FO. On the other hand,
phase distortions produced by room acoustics and reverberation
can change the waveform of complex tones, which affects the
representation of unresolved harmonics, but not resolved har-
monics, making unresolved harmonics more susceptible to inter-
ference (Qin and Oxenham, 2005; Sayles and Winter, 2008). In
fact, many behavioral studies have shown that low-numbered
resolved harmonics elicit a much more salient, robust, and accu-
rate pitch than do high-numbered unresolved harmonics (Hout-
sma and Smurzynski, 1990; Carlyon, 1996; Bernstein and
Oxenham, 2003; Micheyl et al., 2010).

Pitch-matching and melody discrimination experiments have
recently revealed that the pitch of the missing fundamental can be
extracted even when all the harmonics present are well above 5
kHz (Oxenham et al., 2011). Because the pitch was extracted
from the individual harmonics, and not from the temporal enve-
lope produced by unresolved harmonics (Kaernbach and Bering,
2001), the results suggest either that temporal information is not
necessary for complex pitch perception (i.e., harmonics can be
represented via a place code), or that phase locking in the audi-
tory nerve extends to much higher frequencies than is generally
believed (see also Heinz et al., 2001; Recio-Spinoso et al., 2005;
Moore and Sek, 2009).

The frequency following response (FFR) is a measure of
phase-locked brainstem activity that can be recorded from the
scalp (Skoe and Kraus, 2010). It has been used as a measure of
pitch encoding accuracy, and several intriguing findings have
been reported recently, including stronger FFR in musicians than
in people without musical training (Wong et al., 2007), stronger
FFR in people with experience in tonal languages (such as Man-
darin) than without (Krishnan et al., 2005), increased FFR am-
plitudes after training in a speech-related task (de Boer and
Thornton, 2008; Tzounopoulos and Kraus, 2009), and correla-
tions between FFR amplitudes and the ability to learn new pitch
contours in a linguistic context (Chandrasekaran et al., 2012).
However, we are only beginning to understand the relationship
between the FFR and pitch perception (Gockel et al., 2011).

Interactions between periodicity and other acoustic variables
on pitch

Although pitch is often treated as being orthogonal to other per-
ceptual dimensions, such as loudness and timbre, some interac-
tions occur. For instance, small effects of stimulus intensity on
pitch have been reported (Verschuure and van Meeteren, 1975).
More commonly, many people find it difficult to ignore changes
in brightness (produced by changes in the spectral content of a
stimulus) when making pitch judgments (produced by changes
in the FO) (Moore and Glasberg, 1990). In fact, a recent study
reported that even many musically trained listeners find it diffi-
cult to detect small pitch differences between sounds with very
different timbres (Borchert et al., 2011).

The fact that listeners find it difficult to make pitch judgments
in the face of large timbral differences raises some question as to
whether we should expect to find a cortical neural representation
of pitch that is highly localized and invariant to changes in other
dimensions. As discussed later in these mini-reviews (Wang and
Walker, 2012), both localized pitch-specific invariant represen-
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tations (Bendor and Wang, 2005), and more distributed popula-
tion codes (Walker et al., 2011) have been proposed.

Other forms of interaction can aid comparisons between
sound sequences. For instance, contours—the pattern of rising
and falling pitch in melodies—have traditionally been consid-
ered specific to pitch, whereas recent findings suggest that listen-
ers are not only able to perceive contours in dimensions other
than pitch (i.e., loudness and timbre) but are also able to compare
contours across perceptual dimensions, suggesting a common
underlying representation (McDermott et al., 2008).

Future directions

There are many indications that perceptual organization and ob-
ject formation are affected by harmonicity and pitch, but also that
pitch can be influenced by perceptual organization (Darwin,
2005). Thus, the search for neural correlates of pitch in cortical
regions seems entirely reasonable and consistent with behavioral
data. In addition, paradigms in which pitch can be altered by
changes in perceptual grouping, in the absence of changes in
stimulus periodicity, could provide a fruitful approach to disso-
ciating neural correlates of pitch from those related strictly to
physical stimulus properties.

People with hearing loss, and especially those with cochlear
implants, often suffer from a deficit in pitch perception abilities
(McDermott, 2004; Oxenham, 2008). A better understanding of
the neural transformations involved in pitch extraction should
help in designing more effective neural and acoustic prostheses.

Although the tonotopic representation of frequency is estab-
lished early, it is relative, rather than absolute, pitch that is most
salient and important for human acoustic communication in
speech and music. Although some efforts to study the neural
correlates of pitch relations and contours have been made (Patel
and Balaban, 2000; Warren et al., 2003), this remains a field ripe
for further study.
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