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Abstract

improves the accuracy of such mapping.

Background: The identifying of binding sites for transcription factors is a key component of gene regulatory
network analysis. This is often done using position-weight matrices (PWMs). Because of the importance of in silico
mapping of tentative binding sites, we previously developed an approach for PWM optimization that substantially

Results: The present work implements the optimization algorithm applied to the existing PWM for GATA-3
transcription factor and builds a new di-nucleotide PWM. The existing available PWM is based on experimental data
adopted from Jaspar. The optimized PWM substantially improves the sensitivity and specificity of the TF mapping
compared to the conventional applications. The refined PWM also facilitates in silico identification of novel binding
sites that are supported by experimental data. We also describe uncommon positioning of binding motifs for
several T-cell lineage specific factors in human promoters.

Conclusion: Our proposed di-nucleotide PWM approach outperforms the conventional mono-nucleotide PWM
approach with respect to GATA-3. Therefore our new di-nucleotide PWM provides new insight into plausible
transcriptional regulatory interactions in human promoters.
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Background

Understanding the regulation of gene expression is a com-
plex problem and one of the most challenging domains of
biological and biomedical research. Intensive ongoing
studies aim to understand the detailed mechanisms of the
transcriptional regulation in eukaryotes. Transcription fac-
tors (TFs) are proteins that regulate the activity of a gene
at the levels of mRNA synthesis. These factors bind to
specific DNA sequences at positions in the genome near
the gene and either reduce or enhance its transcription
rate [1]. The binding of TFs to DNA requires specific
short cis-regulatory sequences (binding sites), usually
located upstream of 5' end of the gene (gene promoter).
Binding sites may also be located in the promoter prox-
imal region, or more distally from the target gene [2]. Dif-
ferent DNA binding sites for a specific TF often share
common features called sequence motifs [3]. The binding
site motifs are often highly degenerate, which makes it
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challenging to build reliable models for these DNA-
encoded signals [4]. A common approach to build these
models is use of position weight matrices (PWMs) [5-13].

A crucial limitation of the PWM approach is the paucity
of a sufficient number of high confidence, experimentally
verified binding sites. One way to address this problem is
to include additional transcription factor binding sites
(TEBS) identified computationally by including genomic
sequences with substantial similarity to the PWM of a par-
ticular TF [14,15].

Several methods to build PWMs have been described.
One of the most successful methods was proposed by Sta-
den [8]. It uses a collection of aligned TFBS to calculate a
base frequency table. The table comprises four rows for
each nucleotide (A, T, G and C) and the columns repre-
sent the length of the binding sites. The weight matrix
represents the logarithms of the probabilities of finding
each base at each position in a signal. Correspondingly,
the PWM is the estimate of the log-probabilities of each
base occurring at each position in the aligned TFBS.

The Staden method does not include the definition of
the optimal cutoff to minimize a level of false positive
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predictions for a given level of true positives [4]. Bucher
described a method to optimize the cutoff value of the
PWM [16] that was extended by Tsunoda and Takagi
[17]. They calculated the optimal cutoff values for 205
vertebrate TFs from TRANSFAC. The method proposed
by Gershenzon et al. [18] is another extension of the
Staden-Bucher method [8,16]. It optimizes various
PWM parameters including the cutoff and calculates
sensitivity and specificity of the derived PWM [19,20]. In
the present study we adopt the method by Gershenzon
et al. [18] first to use PWM built on experimental bind-
ing site data from Jaspar to identify probable GATA-3
binding sites within promoters, and subsequently to in-
corporate additional binding site information into the
PWM, hereby achieving better sensitivity and/or specifi-
city of the putative binding motif prediction by the opti-
mized PWM. Analysis of high throughput ChIP data
opens additional opportunities of PWM optimization.
The study by Leping et al. [21] considered the ChIP data
(human and mouse Oct4 and human p53) for PWM
optimization using genetic algorithm. However, the main
problem of using ChIP data for PWM optimization is its
low resolution which may result in high level of false
positive predictions by the optimized PWM. To over-
come this problem, we consider the GATA-3 binding
sites as more likely to be located in the relatively narrow
area of a promoter region. Our method would be also
useful for optimization of TFs whose ChIP data is not
yet available.

A standard PWM approach is based on the assumption
that individual nucleotides contribute independently and
additively to the binding of a TF to a given DNA motif [3].
Yet previous studies [18,22-24] demonstrate that some
TEBS nucleotides are mutually dependent. To account for
such non-additive effects we proposed that di-nucleotide
PWMs may be more accurate [18]. In our analysis, we
optimize both the mono-nucleotide and the di-nucleotide
matrices. (See Materials and Methods for details.)

We implemented the Gershenzon's method [18] to
analyze the known binding sites for GATA-3 and to iden-
tify novel GATA-3 TEBS. We selected this TF because of
its important role in the T-cell development [25,26] and
the differentiation of T-cells into effector subset [27]. The
factor is involved in three differentiation steps: specifica-
tion, T cell receptor (TCRaf3)-dependent positive selection,
and the activation of T helper cell (Th2) programs in ma-
ture T-cells. In addition, the method we adopted [18] ori-
ginally dealt with Spl factor which has a broad positional
distribution of binding motifs with a single peak around
TSS in the interval (-499 to +100 bp). However, GATA-3
occurrence distribution has two peaks instead of one. We
compared the distributions of several factors and found
that they exhibit either one peak in the promoter area like
ubiquitous Sp1 and E2F or two peaks like GATA-3, TCF1

Page 2 of 17

and Ets-1 specific for T-cell lineage. Hence GATA-3 is an
attractive candidate for this study, also because it may be
considered as a typical representative of variety of T-cell
specific TFs with specific positional distribution.

From the binding sites discovered in the present study
some were previously confirmed to be the important
binding sites [28-30] for GATA-3, as mutating them
causes complete loss of enhancer activity [30]. Nonethe-
less, they are not incorporated in existing databases of
TFBSs and thus were neither a part of the original PWM
nor were predicted by it. Identification of these sites by
our optimized PWM provides experimental evidence of
superiority of our TFBS prediction approach versus
existing techniques.

Results

GATA-3 overrepresentation in the promoter area

We started with computational identification of the
GATA-3 binding motifs in the promoters, and then we
determined the region where the GATA-3 sites are sta-
tistically over-represented. Following [18] we term this
region as a functional interval (window) for GATA-3
deeming the statistical over-representation as function-
ally related. First we examined the spatial distribution of
the occurrence frequencies (OF) of the GATA-3 motif in
two promoter databases: EPD [31-33] with 1870 human
promoter sequences and DBTSS [34,35] with 32102 pro-
moter sequences. Promoter sequences in both databases
were aligned with respect to the TSS. We scanned these
promoter sequence databases with the original PWM for
GATA-3. We quantified the distributions in terms of
z-scores, which quantitate the difference between the
occurrence frequency distribution of GATA-3 motif in
actual promoter sequences (OF) and the shuffled back-
ground sequences (OF, see Methods, Formula 6). Since
positional distribution of GATA-3 was basically consist-
ent for both databases (Figure 1), we further mostly fo-
cused on the analysis of the EPD, because this database
is being maintained as strictly non-redundant database
with its promoters rigorously selected, curated and qual-
ity-controlled. However, analysis of the DBTSS was also
performed for verification purposes with results basically
consistent with those by the EPD. From Figure 1 we can
see that the z-score distribution for EPD (blue) and
DBTSS (red) have quite similar features. Since the
z-score is proportional to the square root of number of
sequences in the promoter database (Formula 6), the
z-score may increase with higher number of sequences in
DBTSS. This explains why the EPD curve is below the
DBTSS curve. The distributions are under-represented al-
most across the entire promoter region with few exceptions
in the immediate upstream areas. We can see two peaks:
one around -2 bp (-1 bp to -3 bp) upstream of the TSS at 0
and another further upstream at -31 bp (-29 bp to -33 bp).
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Figure 1 Distribution of the occurrence frequency of GATA-3 in two different human promoter databases. Occurrence frequency of the
GATA-3 motifs in the promoter databases. x-axis represents distance (bp) with regards to TSS and y-axis represents the z-score. Red line denotes
the z-score distribution of OF in EPD and blue is for DBTSS. The promoters were aligned with respect to the TSS which is at 0. The horizontal line
denotes the OF, in the shuffled promoter database which is derived from EPD promoter database. The inset figure shows the distribution area

TSS +100

(The positions represent the beginning of the motif.) The
peaks are present in both the curves, for EPD and DBTSS,
and coincide in the same area in both the distributions.
In our study we utilized the area 500 bp upstream
of TSS as no peaks are seen upstream of the -500
bp region up to -10 kb interval (Additional file 1:
Figure S1).

The difference between the occurrence frequency of
the GATA-3 motif in the promoter sequences and oc-
currence frequency in the shuffled promoter database
(shown in the plot as the horizontal line) is much higher
in the peak areas than in the rest of the promoter inter-
val. The plot prominently identifies the over-represented
area in the promoter with z-score of ~3. The GATA-3
sites are functional in either orientation [30,36]. There-
fore the GATA-3 motif was scanned using the original
PWM in both strands. Since these over-representation
windows are located in the proximal upstream region,
they may have functional importance for GATA-3.
Therefore, GATA-3 TFBS motifs located inside these
windows may be utilized to improve the PWM for
GATA-3. The previous work mentioned the presence of
single over-represented area for Spl transcription factor
in the proximal region of the human promoters [18].
The occurrence of two peaks for GATA-3 is somewhat
unexpected. To verify the presence of the double peak in
the distribution, other similar transcription factors were
also examined. GATA-3 is a T-cell/kidney/brain lineage

specific factor [37], so to verify this distribution pattern
for other T-cell lineage specific factors we have studied
the distribution of Ets-1 and TCF-1 [37]. As we can see
from the Figure 2A and 2B, these two transcription fac-
tors also have similar positional distributions. They too
have double peaks, one around -32 and another just up-
stream of the TSS. However, the peak around -32 is al-
ways smaller than those downstream. Importantly both
the plots show the distinct two peaks. To compare with
a transcription factor that is not T-cell specific we have
selected E2F. The z-score distribution of this factor does
not exhibit double peaks. In addition to the peaks, we
have observed one more phenomenon in the distribution
of these transcription factors. If we compare two z-score
distributions of the same transcription factor, one with
stringent cutoff and another with relaxed cutoff, the
expected frequencies in these z-score distributions are
raised to higher values for the latter, which is expected,
as more false positive motifs would be picked up with a
lower threshold (Figure 3). However, the immediate sur-
rounding area of the peak remains under-represented
with the relaxed threshold for GATA-3, Ets-1 and TCEF-
1. For TCF-1 the under-representation of the motif in
the bottom panel around the peak area is more promin-
ent compared with the upper panel. A possible explan-
ation of this phenomenon is that the sequences around
the binding sites make the region unfavorable for the
transcription factor to bind in this area, which on the
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Figure 2 Distribution of the occurrence frequency of TCF-1, Ets-1 and E2F in human promoter database (EPD) in the proximal
promoter region. The individual occurrence frequency distributions of the various transcription factors in human promoters from EPD. The y-axis
is the OF of the transcription factors TCF-1 (A), Ets-1 (B) and E2F (C) motifs. The x-axis shows the areas upstream and downstream of the TSS
which is at 0. The blue horizontal line shows the expected occurrence frequency OF, for each of the factors calculated from the shuffled
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Figure 3 Differences in the distribution of the occurrence frequency of transcription factors at different thresholds (relaxed and strict).
The comparison of occurrence frequencies of the four transcription factors (GATA-3, Ets-1, TCF-1 and E2F) for different thresholds. The axes are
same as at the Figure 1. The top row is the z-score distribution at a strict threshold. The second row is the z-score distribution with relaxed
threshold. In all these plots we can see two distinct peaks and the depression area around the peaks. The straight blue horizontal line shows the
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other hand may enable the transcription factor to locate
its exact binding site.

As seen from the z-score distribution (Figure 1), there is
a slope from the further upstream of -499 bp up to the
area around the functional window. The slope becomes
more prominent if the threshold is relaxed. The slope may
be the result of functional binding sites present more up-
stream of the promoter which we might have missed in
the length of the promoter region being studied (-499 to
+100). To confirm that there is no other functional win-
dow present further upstream of the considered promoter
region in this study, we have checked the distribution of
z-score up to 10 kb upstream. In such distant area we
could not see any peak apart from the peak just upstream
of the TSS (Additional file 1: Figure S1).

Furthermore, to investigate the reason of the slope we
also checked the z-score distribution of other transcrip-
tion factors, namely Spl and Pul (Figure 4). In these
plots the z-score distributions do not show the same be-
havior as for GATA-3, Ets-1 and TCF-1 i.e. there is no
slope or under-represented area around the over-
represented region of binding sites. This visible slope
can be explained by the fact that 72% of the promoters
in human genome are CpG rich regions [38]. This can
further be confirmed from the binding sites distribution
of GC-rich transcription factors like E2F in Figure 3 and
Spl and Pul in Figure 4. The slope is the representation
of the difference between the GATA-3 distribution in

the actual promoters and in the shuffled sequences. To
correctly obtain the z-score distribution we took into ac-
count the relatively rich concentration of CpG di-
nucleotides in the promoters of human and generated
our shuffled dataset by preserving the proportion same.
From the z-score distribution we can see two peaks: one
immediately upstream or over the TSS and another fur-
ther upstream around position -31. To verify if the latter
peak is caused by the presence of a similar TATA motif
we have classified the promoters into two groups: TATA
containing (TATA+) and TATA-less (TATA-) group
using program Promoter Classifier [39]. In both the
groups we have analyzed the z-score distribution of the
predicted GATA-3 motif. In TATA containing promoters
the peak in position -31 is substantially higher than the
peak over TSS. This implies that the peak around -31 is
mainly due to the TATA-like motif enrichment. Similarly
in TATA-less promoters the peak over TSS is substan-
tially higher than the peak at -31 (Figure 5). Thus the
peak in the area around the TSS is most likely related to
the GATA-3 binding.

However, we have also classified the promoters to the
CpG-island-containing (CpG+) and non-CpG-island-
containing (CpG-) groups with the same method [39].
From this analysis it is clear that the slope that we
encountered in the promoter region is due to the CpG
rich area (Figure 6A). The GATA-3 motifs are found in
abundance in CpG rich promoters as one can see from
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the graph. The peak around -2 bp from TSS of the z-score
distribution of GATA-3 in CpG+ promoters (red plot) is
much higher than those in the CpG- promoters (blue
plot). In addition we have also analyzed the distribution of
hits in the two datasets (CpG+ and CpG-). The distribu-
tions of hits in these two datasets are similar to that of the

z-score distribution. In the CpG+ promoters the slope is
more prominent than in the CpG- promoters. To verify
whether the slope is caused by the GC rich content of the
human promoters, we have analyzed the distribution of
hits for GC rich factor. For this purpose, we have com-
pared the distribution of GC rich factor Sp1 with GATA-3
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Figure 5 Comparison of the GATA-3 z-score distribution in promoters divided with respect to the presence of TATA-box. Distribution of
the GATA-3 motif in partitioned EPD promoters based on the presence and absence of TATA-box element. Magenta and blue line represent the
distribution of GATA-3 in promoters containing (406) and lacking (1464) TATA-box respectively and red line represents the distribution in all
promoters (1870). X-axis represents distance with regards to TSS (bp) and y-axis represents the z-score.
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distribution. Indeed the Spl factor’s distribution is just
the opposite to that of the GATA-3. This can be seen in
the Figure 6B, where the hits distributions are plotted for
both GATA-3 and Spl. The region where GATA-3 is
under-represented is over-represented with Spl hits and
vice versa.

This means that the slope in the plot is caused by the
presence of CpG-islands in the promoters. The over-
representation of GATA-3 motif over TSS is caused by
the genuine GATA-3-like motif rich area whereas the
peak further upstream around -31 bp from TSS is
caused by the TATA box rich area.
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New PWM for the GATA-3

To start the optimization we built a PWM from the bind-
ing sites from Jaspar [40]. Since the cutoff for the existing
matrix is not given, we determined the initial cutoff as
described in the Methods section. Providing the original
matrix with the determined cutoff value, the set of experi-
mentally defined GATA-3 binding sites and initial func-
tional window to the optimization procedure, we attained
a new matrix. We performed the optimization for both
aforementioned intervals (-3 to -1) and (-33 to -29) separ-
ately. During the process of optimization from the former
interval (-3 to -1) the process attained the new window
(-7 to 0) including the transcription start site at 0 where
putative binding sites are statistically over-represented
(with z > 3) in promoter sequences versus control dataset
and from where new binding sites were selected to build
the new PWM. This interval represents optimized “func-
tional window” for GATA-3 as defined above. (The same
process of optimization with the interval around (-33 to
-29) resulted in a lower sensitivity and specificity for the
optimized PWM.)

Both the mono-nucleotide matrix and the di-
nucleotide matrix were optimized in the same window.
The determined initial cutoff value for the original
mono-nucleotide matrix is -1.0 with the sensitivity 50%.
The two new matrices were optimized with two different
cutoff values: -2.0 for the mono-nucleotide and -3.5 for
the di-nucleotide matrix. We compared the performance
of the initial PWM built from the Jaspar binding sites
for GATA-3 as described in the Methods section, as well
as those for the new mono-nucleotide and di-nucleotide
PWMs with different levels of sensitivity with the per-
formance of Match program (TEBS search algorithm
from TRANSFAC) for accession id M00077. Receiver-
Operator Characteristic (ROC) curves which plot the
true positive rate vs. false positive rate (specificity vs.
sensitivity) are usually used to compare different classi-
fiers [41]. They use numbers of true positive, false nega-
tive and false positive predictions. Since we don’t have
actual number of the false positives, we use the param-
eter of Occurrence Frequency (OF,) of predicted sites
picked from the shuffled sequences as a level of false
positives (Formula 8).

Figure 7 represents the OF, versus sensitivity (percent-
age of sites selected from the experimentally verified
motifs). The Match program uses three matrix-specific
cutoffs which attempt to minimize either false-negative
error (minFN), false-positive error (minFP), or the sum of
these two errors (minSUM) [42]. If we compare the Match
results (dot at the left upper corner) with those by our ori-
ginal matrix (blue line), new mono-nucleotide (red line)
and di-nucleotide (magenta) matrices, we find that the
randomized OF, for Match is much higher comparing to
the other PWMs for the sensitivity around 60%. Here, the
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Match program was run with the minimum FN cutoff
provided in the TRANSFAC. The sensitivity of the Match
for other thresholds was very low (~15% and ~30% for
minimal FP and SUM, respectively). The original PWM
obtained with the Bucher’s method also performs better
compared to the Match. Comparing the original PWM
built by the Bucher’s method with new mono-nucleotide
PWM we can see a very little difference between the per-
formances of the matrices. But if we compare performance
of the initial PWM with those of the optimized di-
nucleotide PWM we can see that the OF, is much lower
(i.e. specificity is much higher) for the di-nucleotide
matrix with similar sensitivity. This can be observed from
the Figure 7 where Match’s OF, on the y-axis is around
0.007 with the sensitivity of ~60%. Yet OF, for other
PWMs at the Figure 7 is around 0.002 with ~60% of sensi-
tivity. Even if we increase the sensitivity, the OF, reaches
up to around 0.004 even with 80% sensitivity which is far
below from the OF, of Match which is 0.007.

We have also compared the performance of all the
matrices considering specificity as proportion of true hits
among all positive predictions using ROC curve (Figure 8).
From the curve we can see that the performance of the
new matrices is much better than those of Match with all
the three matrix-specific cutoffs. The red and blue lines in
Figure 8 represent the sensitivity and specificity of the
new mono- and di-nucleotide PWMs respectively. The
filled and blank circles represent the performance at
the optimized cutoff for mono- and di-nucleotide PWMs
respectively. The filled and the blank squares represent
the performance of Match minFP and minSUM cutoffs re-
spectively, and the blank triangle represents the perform-
ance of minFN cutoff. The superior performance of the
optimized PWM is clearly seen from the Figure.

Comparison of the new and the original PWM

The new mono-nucleotide matrix is similar to the original
matrix with some insignificant differences for T in posi-
tions 1, 3, 6 (Table 1). The weight for nucleotide A is simi-
lar across all the positions. For nucleotide G there is no
much difference except positions 3, 4 and 5. And for nu-
cleotide C the differences are in positions 2, 5 and 6. The
core consensus sequences (GATA) are similar for both
new and original mono-nucleotide matrices.

As was stated earlier in [18], the di-nucleotide PWM
contains more information than mono-nucleotide matrix.
We compared our new di-nucleotide PWM with the
mono-nucleotide PWM (Table 2). For each di-nucleotide,
the observed values are presented as first line and
expected values are on the subsequent line of the Table 2.
The expected values were calculated from the mono-
nucleotide PWM. The observed frequencies were calcu-
lated from the binding sites used to build the new di-
nucleotide PWM.
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If we compare the frequencies presented in the Table 2
we can see the variation in the last (5™ column. For ex-
ample, the expected frequency for di-nucleotide AT at
position 5 is 5.88 but the observed value (10) is much
higher. The new di-nucleotide PWM includes more var-
iations in the 1%, 5™ and 6™ positions.

GATA-3 is a factor from the family of DNA binding
proteins GATA with consensus motif (A/T)GATA(A/G)
[43-45]. From these results one can see that the core
GATA motif is preserved by the two new matrices. In
addition, the di-nucleotide PWM assigns the highest

weight to the di-nucleotide AT and TA in the 5% pos-
ition, which results in the incorporation of nucleotide T
in the 5™ and 6™ positions in the core consensus motif
as compared to the mono-nucleotide PWM. However,
like mono-nucleotide PWM, the di-nucleotide PWM
also assigns higher weight to AA, TG and AG which
confirms the presence of nucleotides A or G in the 6™
position. Like for the mono-nucleotide PWM, higher
weights are assigned to CG, AG and TG, which confirms
the variation of C, A and T at the 1% position. The in-
corporation of C at the 1" position, T at the 5™ position
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Figure 8 A Receiver-Operator Characteristic curve (ROC) of the optimized PWM (mono-nucleotide and di-nucleotide) compared with
the program Match. The red and blue lines represent mono and di-nucleotide PWMs respectively. The filled and blank circles represent the
optimized cutoff for mono and di-nucleotide PWMs. The empty triangle on the top right represents the Match minFN cutoff and the filled and
the blank square represents the performance of Match minFP and minSUM cutoff.
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Table 1 Comparison of original and new mono-nucleotide
PWM

A)
1 3 4 5 6
A 25 0 61 0 39 15
T 20 0 1 58 19 8
G 4 62 1 5 4 37
@ 14 1 0 0 1 3
A 040 0.0 0.97 0.0 0.62 0.24
T 032 0.0 0.02 092 0.30 0.17
G 0.06 098 0.02 0.08 0.06 0.59
@ 0.22 0.02 0 0.0 0.02 0.05
A 0.00 -3.83 0.00 -4.12 0.00 -0.55
T -0.021 -3.82 -4.10 0.00 -0.79 -1.16
G -2.19 0.00 -447 -2.81 -2.63 0.00
@ -0.92 401 451 -4.47 -4.10 -2.50
a/t G A T A g/a
B)
1 2 3 4 5 6
A 27 0 66 0 43 16
T 22 0 1 63 20 8
G 4 67 1 5 4 41
@ 15 1 0 0 1 3
A 040 0.0 0.97 0.0 063 0.24
T 032 0.0 0.01 093 0.29 0.12
G 0.06 0.99 0.01 0.07 0.07 0.62
@ 0.22 0.01 0.0 0.0 0.01 0.04
A 0.00 -3.83 0.00 -4.13 0.00 -0.59
T -0.19 -3.82 -348 0.00 -0.76 -1.27
G -2.26 0.00 -3.84 -29 =273 0.00
@ -0.93 -349 -4.52 -448 -34 -261
a/t G A T A g/a

A. Original mono-nucleotide nucleotide counts (top panel), frequency table
(middle panel) and calculated PWM (bottom panel). The frequency table and
the PWM is calculated from 63 motifs adopted from Jaspar. The first row
represents the column index of the matrices. The last row represents the
consensus of the original PWM.

B. Optimized mono-nucleotide frequency table and PWM. The nucleotide
counts (top panel) and frequency table (middle panel) calculated from the 68
sites obtained by the optimization process in the functional window -7 to 0
was used to build the optimized PWM. The bottom panel is the calculated
PWM. The first row represents the column index of the matrices. The last row
represents the consensus of the optimized PWM.

and T at the 6™ position makes the new consensus [A/C/
T]GAT[A/T][A/T/G] which is different from those by
the mono-nucleotide PWM ([A/T]GATA[G/A]).

Genome-wide mapping of GATA-3 binding sites

The new PWMs can be used to search for novel puta-
tive binding sites [14,15]. We searched the human
proximal promoters from EPD database to obtain
novel GATA-3 binding sites with the new PWMs. The
same promoter lengths were used as in the earlier
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sections. We applied the optimized threshold and
scanned the promoter sequences of human genome
finding a total of 4329 putative binding sites using di-
nucleotide matrix and 7401 putative binding sites
using mono-nucleotide matrix. Such a high number is
not unexpected considering the short size of the motif.
Some of these identified putative binding sites may be
false positive and functionally irrelevant. To restrict
the selection of non-functional binding sites we con-
sidered only the binding sites occurring in the opti-
mized functional window (-7 to 0) of the promoter
sequences (see above).

Table 3 shows the new sites found by our optimized
di-nucleotide matrix. The functionality of some of these
sites has been demonstrated in earlier publications. For
example AGATTA and TGATAG have been cited in
[28,29]. However they were missed by Match and are
not included among GATA-3 binding sites in TRANS-
FAC and Jaspar. With minFN (minimized false-negative)
Match could find some sites like TGATAG and GGA-
TAT, but search with this cutoff is associated with a very
low specificity. However with other cutoffs having higher
specificity i.e. minFP (minimized false-positive) and min-
SUM (minimized sum of FP and FN) Match could not
find any of the sites listed in the Table 3.

Recently GATA-3 bound regions in the human gen-
ome in T-47D epithelial cell line derived from a mam-
mary ductal carcinoma were submitted by the ENCODE
Project Consortium [46] in the GEO expression database
[47]. We have extracted the genomic regions from the
BED file provided. To verify the performance of the new
PWMs with the existing PWMs and with Match pro-
gram we searched the PWMs in these bound regions of
the genomic sequences. If the PWM could recognize
any site in the extracted GATA-3 bound sequences then
the number of these sequences is considered as the true
positive. And the number of remaining sequences where
PWM could not find any match is regarded as the level
of false negatives. Thus we calculate the sensitivity. To
examine the specificity we use sequences where GATA-3
is not bound as the negative dataset. To construct the
latter we have extracted sequences of length 1000 bp
from the same human genome reference (GRch37/hgl9)
from UCSC from where the GATA-3 bound sequences
were extracted. The negative sequences were extracted
so that they do not overlap with the bound sequences.
We have mapped the PWM hits in these GATA-3-non-
bound sequences and calculated the false positive rate
using the number of hits in these sequences. The Table 4
shows the performance of each of the PWMs and the
program Match. It is seen from the Table that sensitivity
of the program Match with minFN is higher (96%) than
for any other PWMs. However, its specificity is much
lower. Our new di-nucleotide PWM has sensitivity of
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Table 2 Comparison of expected and observed

di-nucleotide frequencies and di-nucleotide PWM

1 2 3 4 5
AA 0 0 0 0 14

0 0 0 0 11.75
AT 0 0 72 0 10

0 0 71.04 0 5.88
AG 32 0 5 0 20

3091 0 5.64 0 3012
AC 0 0 0 0 4

0.46 0 0 0 22
TA 0 0 0 45 9

0 0 0 46.28 547
T 0 0 1 24 0

0 0 1.08 2153 2.73
TG 25 0 0 4 17

2518 0 0.09 431 14.01
TC 0 0 0 1 0

0.38 0 0 1.08 1.03
GA 0 76 0 3 0

0 75.55 0 367 1.09
GT 0 1 1 2 0

0 1.14 1.08 1.71 0.55
GG 3 1 0 0 3

458 1.14 0.09 034 28
GC 1 0 0 0 1

0.07 0 0 0.09 0.21
CA 0 1 0 0 0

0 1.13 0 0 0.27
cT 0 0 0 0 0

0 0.02 0 0 0.14
CG 18 0 0 0 1

17.17 0.02 0 0 0.7
CcC 0 0 0 0 0

0.26 0 0 0 0.05
AA -4.62 -5.66 -6.16 -5.81 -0.16
AT -4.14 -5.18 0.00 -5.33 -0.02
AG 0.00 -591 -3.39 -6.06 -0.05
AC 441 -545 -5.94 -5.60 -1.20
TA -4.02 -5.06 -5.55 0.00 0.00
T -4.58 -5.62 -4.72 -1.20 -4.17
TG -0.09 -5.75 -6.24 -3.01 -0.06
TC -4.69 -5.73 -6.22 -4.48 -4.27
GA -4.69 0.00 -6.22 -338 -4.27
GT -444 -4.08 -4.57 -3.54 -4.02
GG -2.69 -4.83 -6.72 -6.38 -2.27
GC -3.70 -6.14 -6.63 -6.29 -3.29
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Table 2 Comparison of expected and observed
di-nucleotide frequencies and di-nucleotide PWM
(Continued)

CA -4.70 -4.34 -6.24 -5.89 -4.28
cT -4.84 -5.89 -6.38 -6.04 -443
CcG -047 -5.80 -6.29 -5.95 -2.95
cC -5.17 -6.22 -6.71 -6.37 -4.76
AG/TG/CG GA AT TA TA/AT/AG/TG/AA

Optimized di-nucleotide frequency table and PWM. The observed frequencies
are provided in the first line for each di-nucleotide, with the following line
representing expected di-nucleotide frequencies (calculated from the
mono-nucleotide frequencies). The presented are the frequencies of the
di-nucleotides from the motifs selected from the interval -7 to 0.

83% with better specificity. The Table summarizes the
total number of hits found by all the PWMs in both
GATA-3 bound sequences and in not bound sequences.
Since the GATA-3 bound sequences contain at least one
GATA-3 binding site, we calculate the sensitivity as the
proportion of sequences predicted as bound (i.e. bound
sequences having any hits). The hits in the GATA-3 not
bound sequences can be regarded as false predictions,
yet we don’t know a total number of false positive pre-
dictions because some hits in the positive sequences
may be also false. Hence it makes more sense to esti-
mate the level of false positives by number of hits in the
negative sequences than by usual specificity level (pro-
portion of true hits among all positives) since the latter
is hard to calculate. As one may see from the Table 4,
total of 27158 sequences are found as GATA-3 bound
sequences by the Match minFN which is 16% more than
by the new di-nucleotide PWM and 27% more than by
the new mono-nucleotide PWM. Nevertheless, the su-
periority of the new PWMs can be seen if we compare
the PWMs in terms of the rate of false predictions from
the GATA-3 not bound sequences. The match minFN
gives 84% and 148% more false prediction than the new
di-nucleotide PWM and new mono-nucleotide PWM re-
spectively. In case of Match with more relaxed thresh-
olds the sensitivity falls dramatically, while level of false
positive hits in the non-bound sequences is comparable
with those in the bound sequences.

Discussion

Since the prevalent positioning of the GATA-3 motif
overlaps the TSS, it can be suggested that the GATA-3
motifs (GATA) and TSS-related motif share some bases.
To check this possibility we have divided the promoters
with respect to the Initiator element Inr (YYANWYY)
with Promoter Classifier [39] and compared the z-score
distribution of GATA-3 in both the Inr + and Inr- data-
sets. We found that in both the datasets there are some
remarkable two peaks (one immediately upstream and
another at -32 bp upstream of TSS) as mentioned earlier
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Table 3 Motifs discovered by di-nucleotide PWM from -7
to 0 [TSS]

Motif Score Match

minFN minSum minFP
TGATAG -0.14 Found Not found Not found
AGATTA -1.19 Not found Not found Not found
CGATTA -1.66 Not found Not found Not found
GGATAT =271 Found Not found Not found

New sites found in human promoter sequences by new PWMs and Match. The
sites selected with highest score by the di-nucleotide PWM are shown. The
column Motif shows the sites picked up from the human promoters in EPD
database and the column Score shows the score given to these sites. The
column Match shows the sites found by the Match program with the
threshold provided in TRANSFAC as a minimum FN, minimum SUM and
minimum FP level in the same database EPD.

[Additional file 1: Figure S2]. Although the promoters
having the Inr element have higher peak in the immedi-
ate upstream area compared to the promoters missing
the Initiator, which may suggest some contribution of
the Initiator to the higher peak in this area, the peak in
the Inr-less promoters demonstrates an enrichment of
genuine GATA-3 elements in that area.

The slope in the z-score distribution of the AT-rich fac-
tors like GATA-3, Ets-1 and TCEF-1 is the manifestation of
the under-representation of their binding sites around the
functional window. If we plot the z-score distribution of
GATA-3 further upstream i.e. up to 10 kb, the slope in the
z-score starts approximately from 1 kb upstream of the
TSS. The under-representation becomes more prominent
closer to the functional window (Additional file 1: Figure
S1). The z-score distribution for the other transcription
factors specific for T-cell (TCF-1 and Ets-1) also shows
the similar pattern of distribution in the 10 kb promoter
databases (data not shown).

Our new mono-nucleotide and di-nucleotide PWM
were able to identify novel binding sites for GATA-3 fac-
tor (Additional file 1: Table S1), and some of these sites
found experimental confirmation in the previous litera-
ture. The novel sites found by the new PWM are not
being found by Match and initial PWM with stringent
cutoff. If we relax the cutoff we may get these novel sites
found by the existing matrices, but then number of false
positive predictions increases dramatically. The novel sites
mentioned in our study were previously experimentally
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verified as the GATA-3 binding sites, and the mutations in
the sites lead to the complete loss of their activity. These
sites were not among the sites in the TRANSFAC database
and hence were not a part of our training data set.

Conclusions

The present work provides computationally refined
PWMs for GATA-3 transcription factor along the lines
established earlier [18]. Thus implementing the op-
timization method we can refine the existing TRANS-
FAC or Jaspar PWMs to new PWMs which outperform
the existing PWMs. The PWMs thus obtained can be
used to discover new binding sites. The optimized PWM
is expected to help the researchers working with GATA-
3 when we still have but a handful of experimentally
confirmed binding sites. The present work also confirms
the fact that the di-nucleotide PWMs provide viable al-
ternative to the standard mono-nucleotide PWMs.

The high-throughput TFBS data is gradually revealed
in the ChIP-chip and ChIP-Seq experiments. Yet the
ChIP-chip method does not provide the data with high
resolution necessary for building reliable PWM. The
high throughput GATA-3 TFBS data is not published
yet in any frequently used databases like TRANSFAC or
Jaspar. To work with PWM for GATA-3 one still has to
resort to the data from TRANSFAC and Jaspar, which
are quite widely used as the best available datasets now
despite known weaknesses. Therefore any scientist look-
ing for a model to predict putative GATA-3 binding sites
in sequences of interest is still limited by the available
(even though somewhat inadequate) model to work
with. This study focuses on the improvement of the
existing GATA-3 PWM with the same limited resources.
While we may someday be overwhelmed with binding
site information for GATA-3 from technologies like
ChIP-chip or ChIP-seq, at the present time our method
provides substantially better alternative to the existing
PWMs from TRANSFAC or Jaspar.

Materials and methods

The method of optimization proposed in [18] used three
starting input elements to build the new PWM, namely, an
existing PWM, a database of promoter sequences and a set

Table 4 Performance of different PWMs in GATA-3 bound sequences and GATA-3 not bound sequences

PWM GATA-3 bound sequences GATA-3 not bound sequences

Total hits TP sequences FN Sensitivity Total hits Total sequences with hits TN
New-mono 45095 21289 7040 75% 39276 19760 8569
New-di 58409 23378 4951 83% 52897 22450 5879
Match_minFN 102257 27158 m7n 96% 97461 27071 1258
Match_minFP 673 663 27666 238% 639 630 27699
Match_minSUM 14988 11436 16893 43% 12330 9846 18483
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of experimentally verified TF sites. Consensus motifs can
also be used instead of existing PWM and the considered
database should be well populated with TFBS of interest.
We have adopted this method with slight improvements.

Building initial PWM

To build the initial PWM form the training set of experi-
mentally defined binding sites, we used 63 experimentally
defined motifs for human GATA-3 from Jaspar database
[40,48,49]. The matrix information was adopted from [44].
As described in [16,18,50] to build the PWM we first find
out the frequencies for each base at each position of the
aligned known 63 GATA-3 binding sites. The frequencies
are further converted into odds scores by dividing the
observed frequency by expected frequency or the back-
ground frequency of each nucleotide at each position,
averaged over the proximal promoters [50]. We have
derived the expected frequencies using the formula
described in [18]:

L
g Mpi
i=1

L

(1)

where b is one of 4 nucleotides (A,C,G or T) at position i,
np,; is the number of times base b occurs at the i position
of the motif and L is the length of the sequence.

The expected frequencies were derived from the human
promoter sequences from Eukaryotic Promoter Database
(EPD) [31-33] release 105 (http://www.epd.isb-sib.ch/).

The database contains 1870 non-redundant experi-
mentally verified human promoter sequences. We
extracted 600 bp promoter sequences from this data-
base, which comprise up to -499 positions upstream of
the transcription start site (TSS) to position +100 down-
stream with TSS at 0. The promoters are aligned with
respect to the TSS. Therefore the value for L in our case
is 600, the length of the promoter area.

The positional distribution of the GATA-3 motif derived
from the above database is also compared with Database
of Transcription Start Sites (DBTSS) [34,35]. This data-
base contains 32102 promoter sequences aligned with re-
spect to the TSS. The rationale of using both databases
(EPD and DBTSS) is that EPD is manually curated and is
highly reliable, whereas DBTSS contains more promoters.

The weight for each position of the matrix is derived
using the formula described in [18] which is a modifica-
tion of Bucher’s formula:

€p; =

Npi

wpi = In <—l + Si> +¢i (2)
€bi

Here b is one of the 4 nucleotides, 7, is the number

of times base b occurs at the i position of the motif, ¢;

is a constant providing column maximum value to be
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zero, s; is a smoothing parameter preventing the loga-
rithm of zero (or too small a value).

(The parameter S; in Bucher’s formulae is used as the
smoothing percentage.) We adopted the criteria as
described in [18]: S; = 0 if the first term under logarithm

in Formula 2 is larger than 0.01 x 7~ and

Si —

0.01 x =~ otherwise, where
€pi

n= Z np (3)
b=1

To calculate weights for the di-nucleotide matrix we
used the same Formula 2. In this case b represents one
of the 16 di-nucleotides, 7,; is the number of times di-
nucleotide b is present in position i of the motif and ey,
is the expected frequency of the di-nucleotide b at the
i™ position, ¢; and s; have the same meaning as for the
mono-nucleotide PWM, s;=0 if the first term under
logarithm in Formula 2 is larger than0.01 x and

_n
16xep;

Jp— n 1
s; = 0.01 x Toner otherwise, where

n = Zl’lb (4)
b=1

The mono-nucleotide matrix thus built has 4 rows
where each row represents each nucleotide and the col-
umns represent positions inside the motif. The di-
nucleotide matrix has 16 rows, with each row representing
each di-nucleotide. The number of columns of the matrix
represents the length of the motifs which is less by one
for di-nucleotide PWM comparing to those for mono-
nucleotide.

To calculate the weight score S for a specific sequence
we use the formula:

Ly,
S = ZW},,‘ (5)
i=1

where L, is the length of PWM, w,,; is the weight of nu-
cleotide b at position i in the PWM. For di-nucleotide
matrix we use the same formula with L,, =L, -1 instead
of L,, and wy, represents weight of di-nucleotide.

Finding the functional window and optimization of the
matrix
To obtain the positional distribution of the GATA-3
motif we compare the observed occurrence frequency of
the GATA-3 motif with its background or expected fre-
quency along the promoter sequences. The background
frequency is determined by shuffling each sequence from
the promoter database which results in a randomized
DNA sequence with the same nucleotide content.
Shuffling of the sequences was done by cutting each
sequence in randomly chosen positions into randomly
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chosen smaller fragments and rearranging these frag-
ments. The sequences were fragmented with segment
lengths from 1 bp to 10 bp. This step was repeated 100
times and the whole process was repeated 100 times.
The EPD database was used for the shuffling; therefore
the shuffled sequence database contained sequences of
same number and length. Since we exclusively consid-
ered the promoter region for shuffling, we thereby pre-
served the proportion of all the nucleotides in the
shuffled sequences as that in the promoter datasets. The
reason to preserve the proportion is to retain the GC-
rich property of the promoter in the shuffled sequences.
The GC-proportion was checked with the help of pro-
gram called “geecee” from the collection of program
suite EMBOSS [51] after shuffling the promoter
sequences and found to be similar. After shuffling the
sequences to compare the proportion of CpG di-
nucleotide for first-order dependencies we have used the
Promoter Classifier [39] to see how many sequences in
both the original and the shuffled promoter sequences
are CpG-rich (contain CpG islands). We found that both
the datasets have similar number of CpG rich sequences.
Moreover, we have further examined the shuffled
sequences to see if we reduced the number of CpG while
shuffling the sequences. To do this we have used the
“cgpreport” program from EMBOSS [51] and calculated
the average CpG per sequences in both shuffled and ori-
ginal promoter sequences. From this we found that the
average number of CpG in the shuffled sequences is
consistent with those in the original promoters.

To identify the area where the GATA-3 binding site
motif is over-represented along the aligned promoter
sequences, we looked into the distribution of the z-score
derived as

(Obs — Exp)
VExp

where Obs is the observed occurrence frequency of
GATA-3 element in the promoter sequences and Exp is
the expected occurrence frequency as found in the
shuffled promoter sequences.

143

The occurrence frequencies were calculated as OF; = 5/
;

Z — score =

(6)

(TP x TN) — (EN x FP) )

cC =
V(TP + EN) x (IN + EP) x (TP + EP) x (IN + EN)

where #; is the number of promoters containing consid-
ered motif starting at position i and N; is the number of
sequences.

The area where the occurrence of the GATA-3 motif is
statistically higher than expected, which is represented
by z-scores ~3 or higher, is regarded as the initial
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“functional window” (Figure 1). This region shows the
occurrence frequency of GATA-3 binding sites much
higher than the background or expected frequency.

We assume that statistically significant occurrence of
the sites in the “functional window” reflects importance
of this window in biological function. The functional
window thus obtained is the initial approximate interval
from where the new sites can be incorporated to build a
new PWM. The final matrix after optimization would de-
fine the exact functional window.

Calculation of a new GATA-3 PWM from the existing PWM
PWNMs are routinely used for prediction of the binding
affinities for TFs to a segment of DNA sequence in pro-
karyotes and eukaryotes [52-56]. TRANSFAC database
holds numerous PWMs for large variety of TFs. However
the majority of the existing PWMs provide a low level of
both sensitivity and specificity [55]. Therefore the need
to optimize PWM parameters in order to improve its
performance is essential. The method developed by Ger-
shenzon et al. [18] iteratively modifies the PWM by in-
corporating new putative binding sites located inside the
identified functional window from the promoter se-
quence database until the best possible correlation coeffi-
cient is achieved as described below. We follow this
method in the present study.

We start with the initial PWM built from the 63
GATA-3 experimentally defined motifs adopted from
Jaspar, as described in the previous section. As a control
set of sites, we use the 26 unique motifs from the 63 ex-
perimentally defined GATA-3 binding sites in human
genes from Jaspar. The removal of redundancy from the
experimental motifs was important to avoid any biasness
toward any motif. The method also utilizes a database to
incorporate new putative binding sites of interest to
build new PWM. We have used the EPD for this
purpose.

Since the initial PWM is not provided with a given
cutoff we determine the cutoff value from the correl-
ation coefficient (CC) distribution.

The CC is calculated as:

CC is calculated for each cutoff starting from a very strin-
gent threshold and relaxing the threshold until we get the
maximal CC. To calculate CC here, we designate TP as the
number of sites from the experimentally defined dataset
positively identified by the matrix with a given cutoff. FN is
defined as the difference between the total number of sites
in the experimental dataset and TP. We designate negative
sites as all possible sites from the shuffled sequence data-
sets, which can be calculated as 594 x 1870 where 594 is
length of the shuffled promoter sequence (600) minus the
length of the matrix and 1870 is the number of sequences
in the shuffled dataset. We define FP as the sites picked up
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as positive from the total negative sites and TN as the dif-
ference between the total negative sites and FP.

The method starts with extracting putative binding
sites for GATA-3 based on existing PWM with the cut-
off determined at the above step. The PWM extracts pu-
tative binding sites from inside the identified initial
functional window. The functional window was defined
comparing the occurrence frequency distribution of the
GATA-3 binding sites against the shuffled sequences. A
new matrix is built from these aligned sites using the
formulae described in [18]. These sites do not need any
additional alignment as they are of similar length. The
new matrix is obtained from new sites extracted by the
original matrix with the given cutoff and sensitivity,
from the functional window.

Sensitivity was calculated as:

P
(TP + EN)

The optimization is done in three levels, as follows:
cutoff value, then motif length and finally functional
window.

The objective function that is optimized in this
method is the correlation coefficient (Formula 7). This
criterion utilizes all the four parameters: true positives,
false positives, true negatives and false negatives.

The definitions of the TP, FP, TN and FN for the
optimization procedure are slightly different from the
previously described.

The TP here is defined as the number of sites posi-
tively identified by the new matrix from the given func-
tional window identical to the sites extracted by the
original matrix. FP is defined as the difference between
the total number of sites identified as positive by the
new matrix and the number of sites identified as positive
by the original matrix. FN is defined as the difference
between the total number of sites from the experimental
dataset recognized by the original matrix as positive and
the TP. And TN is the total number of possible sites
from the functional window subtracting TP, FP and FN:

Sensitivity =

FP = N,,,, — TP,
FN = NOrigL’nal — TP,
TN =1, x Ny— TP — FP — FN

CC is calculated every time after building a new matrix
by changing any parameters. (See the flow chart of the
adopted optimization process in [18] [Figure 2] for details.)

First the optimal cutoff value is obtained for the given
position and size of the functional window and for the
given motif length. This is attained by calculating CC
parameter for every changed cutoff value. The cutoff
value varies around the initial given cutoff value. The
range we have used is from -0.5 to -4.0 with the
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increment of 0.1. The cutoff value is considered to be
optimal where the CC reaches the maximum. Next, the
length of the matrix is varied while the optimal cutoff
value is kept. If the CC reaches higher value than at the
previous step, the modified length is considered as opti-
mal at the current stage. Thus we obtain a modified
matrix with optimal modified length and cutoff values.
This modified matrix is regarded as the initial matrix for
further process of optimization. The optimization cycle
continues with this new initial matrix and all the afore-
mentioned steps are repeated. This continues until we
reach the maximal CC = 1. Usually it takes 6 to 12 cycles
for the matrix to converge, which is consistent with the
previous work [18]. After that we proceed to a new func-
tional window by increasing or decreasing its length by
1 bp from either side. The CC is maximized again for
each length and position of the functional window. This
process is repeated for each considered functional win-
dow. Finally we would get a PWM with optimized cutoff
value and matrix length from optimal functional win-
dow. From this pool of new matrices we use the criteria
of sensitivity and specificity to select the best.

The parameters TP, TN, FP and FN described earlier
are internal parameters of the procedure, and they are
not used to evaluate the sensitivity and specificity of the
final PWM. The sensitivity of the optimized PWM is
calculated as the number of experimentally confirmed
sites recognized by the new matrix. And to calculate the
specificity we use the occurrence frequencies of pre-
dicted TFBS in the randomized sequences. We assume
that the sites recognized as positive from the rando-
mized sequences are the false positives. We calculate oc-
currence frequency as the average number of positive
predictions per bp in the random shuffled dataset:

ZTotalprediction /

L

OF = N (8)
where N is the total number of sequences in the shuffled
sequences database and L is the length of the sequence
subtracting the length of PWM. We will use the nota-
tion OF, to designate occurrence frequency calculated
from shuffled sequence dataset. Therefore higher the oc-
currence frequencies from the shuffled sequences are,
lower is the specificity. Now we choose the matrix
resulted from the process of optimization that has sensi-
tivity and specificity higher than the initial PWM.

Additional file

Additional file 1: The following additional data are available with
the online version of this paper (all included in one file). Additional
file 1: Figure S1: z-score distribution of GATA-3 across 10 kb upstream of
the EPD promoters. Additional file 1: Figure S2: Comparison of the
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