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Abstract
The objective of this work was to study the insecticidal effect of labramin, a protein that shows 
lectin–like properties. Labramin was isolated from seeds of the Beach Apricot tree, Labramia 
bojeri A. DC ex Dubard (Ericales: Sapotaceae), and assessed against the development of the 
Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), an important pest 
of stored products such as corn, wheat, rice, and flour. Results showed that labramin caused 90% 
larval mortality when incorporated in an artificial diet at a level of 1% (w/w). The presence of 
0.25% labramin in the diet affected the larval and pupal developmental periods and the 
percentage of emerging adults. Treatments resulted in elevated levels of trypsin activity in midgut 
and fecal materials, indicating that labramin may have affected enzyme–regulatory mechanisms 
by perturbing peritrophic membranes in the midgut of E. kuehniella larvae. The results of dietary 
experiments with E. kuehniella larvae showed a reduced efficiency for the conversion of ingested 
and digested food, and an increase in approximate digestibility and metabolic cost. These 
findings suggest that labramin may hold promise as a control agent to engineer crop plants for 
insect resistance.
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Introduction

The Mediterranean flour moth, Ephestia 
kuehniella Zeller (Lepidoptera: Pyralidae), is 
widely distributed in tropical and temperate 
regions of the world. It can be found in a great 
variety of foodstuffs including flour, grain 
residues (insect–infected grain, broken 
kernels, and dust), and various whole grains 
(Ayvaz et al. 2008). Control of these insects 
generally requires the use of chemical 
insecticides, although these insecticides are 
toxic to humans and domestic animals, and 
negatively impact the environment (Boobis et
al. 2008).

Plants have protective mechanisms that allow 
them to successfully resist unfavorable 
conditions, including attack by insects and 
phytopathogenic microorganisms. A
mechanism to enhance the resistance of 
important crops is the use of plant insecticidal 
proteins, such as protease inhibitors, arcelins, 
chitinases, ribosome–inactivating proteins, 
and lectins (Carlini and Grossi-de-Sá 2002; 
Hosseininaveh et al. 2009).

The insecticidal activity of carbohydrate–
binding plant lectins against insects of the 
orders Coleoptera, Diptera, Lepidoptera, and 
Homoptera has been studied (Macedo et al. 
2003; Oliveira et al. 2011). The identification 
of an increasing number of plant lectins 
showing insecticidal activity towards 
economically important pest species has 
fueled growing interest in their potential use 
in the field for the engineering of crops
(Sharma et al. 2004; Fitches et al. 2008). 
During the last decade, evidence has 
accumulated to indicate that plants also 
synthesize lectins in minute amounts in 
response to some specific stress factors and 
changing environmental conditions 

(Vandenborre et al. 2011). Although the 
precise mode of action of insecticidal plant 
lectins is not fully understood, these proteins 
can act as recognition molecules in cell–cell
or cell–matrix interactions, and may bind to 
the PM (peritrophic membrane) and/or 
chitinous structures in the midgut region of 
insects; this binding is necessary for lectins to 
exert their deleterious effects in insects. In 
addition, lectins are frequently resistant to 
proteolytic degradation by insect digestive 
enzymes and assimilatory proteins, and are 
therefore available to inhibit food digestion 
and absorption (Macedo et al. 2010).

Macedo et al. (2004a) purified a novel protein 
from the seeds of the Beach Apricot tree 
Labramia bojeri A. DC ex Dubard (Ericales: 
Sapotaceae) seeds. Labramin is a homologue 
of the kunitz–type trypsin inhibitor and has 
lectin–like properties. The study of the 
specificity of the lectin–like activity of 
labramin showed that it has higher affinity for 
glycoproteins and N-acetylglucosamine. This 
affinity was verified for insecticidal and 
physiological proteins, such as Arcelin-1
lectin–like (Fabre et al. 1998) and typical 
plant lectins (Machuka et al. 1999). 

The objective of this work was to study the 
insecticidal effect of labramin against the E. 
kuehniella. The effect of labramin was 
evaluated during different stages of insect 
development and by analyzing nutritional 
parameters and the activity of trypsin, the 
main enzyme for protein digestion in E. 
kuehniella.

Materials and Methods

Materials
The seeds of L. bojeri used in this study were 
collected in the state of Rio de Janeiro, Brazil. 
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N-benzoyl-DL-arginyl-p-nitroanilide 
(BApNA) was supplied from Sigma-Aldrich
(www.sigmaaldrich.com). All other chemicals 
were of reagent grade and obtained from local 
suppliers.

Insect cultures
A culture was originally supplied by Dr. 
J.R.P. Parra (Laboratory of Insect Biology, 
University of São Paulo, Piracicaba, São 
Paulo, Brazil), and was routinely maintained 
on artificial diet prepared by mixing wheat 
flour, whole wheat husks, whole wheat, and 
yeast (8:2:1.9:0.1) in the Laboratory of 
Protein Purification and its Biological 
Functions of the Federal University of Mato 
Grosso do Sul, Brazil.

Extraction and purification of labramin
Labramin was prepared according to Macedo 
et al. (2004a). Seeds of L. bojeri were ground 
and extracted in 150 mM NaCl buffer (1:5 
w:v ratio) at 4 °C for 24 hours, then 
centrifuged at 10,000 × g (30 min; 4 °C). The 
clear supernatant (crude extract) was used to 
determine the protein content and 
hemagglutinating activity. Pure labramin was 
obtained in three chromatographic steps: 
Sephacryl S-400, DEAE-sepharose, and
reverse phase HPLC on C18 µ-Bondapack 
column.

Protein concentrations were determined by the 
dye–binding method of Bradford (1976), with 
bovine serum albumin as the standard.

Insect bioassays 
Insect bioassays were maintained in plastic 
boxes (5.0 × 3.0 cm) with perforated plastic 
covers at 65-75% RH, 16:8 L:D photoperiod, 
and a temperature of 28 ± 1 °C.

To examine the effects of labramin on E. 
kuehniella, larvae were reared on an artificial 

diet containing 0.25, 0.50, or 1.00% (w/w) 
labramin. An artificial diet without labramin 
was used as the control. Each treatment was 
repeated five times using 10 neonate larvae 
per replicate, and larval weights and survival 
were recorded in the fourth instar.

A total of 75 individuals were reared from 
neonate to adult stage on artificial diet 
containing the control diet or 0.25% (w/w) 
labramin. The intermolt durations and 
mortalities were recorded daily. In addition, 
surviving fourth instars were used to assess 
the effects of labramin on digestion and the 
trypsin–like activity of the midgut. Feces were 
separated and stored at −20 °C until required.

Measurement of nutritional parameters
Nutritional parameters were compared 
between fourth instar larvae that were exposed 
to either a labramin–treated (0.25% w/w) or a 
control diet. Five E. kuehniella larvae (newly 
hatched) were placed in plastic boxes (n = 50) 
containing a known weight of the diet. Fourth 
instar larvae were examined at 25 days after 
treatment. Larvae, feces, and the remaining 
uneaten diet were separated, dried, and 
weighed. The following nutritional indices 
were then measured according Scriber and 
Slansky Jr. (1981): 

Efficiency of conversion of ingested food
(ECI) estimates the percentage of ingested 
food that is converted to biomass, calculated 
as: (biomass gained (mg fresh mass) / food 
ingested (mg dry mass)) × 100. 

Efficiency of conversion of digested food 
(ECD) estimates the efficiency with which 
digested food is converted to biomass, 
calculated as: biomass gained (mg fresh 
mass)/(food ingested (mg dry mass) – feces 
(mg dry mass)) × 100.
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Metabolic cost (MC) was calculated as 100 –
ECD.

Approximate digestibility (AD) estimates the 
amount of ingested food that is digested, and 
was calculated as: (food ingested (mg dry 
mass) – feces (mg dry mass))/food ingested 
(mg dry mass) × 100. 

Midgut preparation
Homogenates of the larval guts were prepared 
according to Macedo et al. (1993). Fourth 
instar larvae were cold–immobilized and their 
midguts removed in cold 150 mM NaCl and 
stored frozen at −20 °C until use. Later the 
midguts were homogenized in 150 mM NaCl, 
centrifuged at 6000 × g for five min at 8 °C 
and the supernatants (fluid midgut) were 
pooled and kept on ice for enzymatic assays.

Preparation of fecal samples
The fecal samples of fourth instars after
treatment were homogenized and centrifuged 
as described above, then the supernatants were 
pooled and kept on ice for enzymatic assays.

Enzymatic assay
Trypsin–like enzymes were assayed using 
BApNA as substrate. For routine assays, N-
benzoyl-DL-arginyl-p-nitroanilide (BApNA) 
was used at a final concentration of 1 mM in 
1% (v/v) DMSO. Aliquots (50 µg of protein) 
of midgut larval extracts and feces were 
incubated in 50 mM Tris-HCl buffer, pH 8.0, 
in a final volume of 0.1 mL for 10 min, before 
adding 1 mL of substrate. The reaction was 
allowed to proceed at 37 °C for 20 min and 
then stopped by adding 0.2 mL of 30% (v/v) 
acetic acid. The resulting absorbance was read 
at 410 nm. Each assay was carried out in 
triplicate. The linearity of the relationship 
between the changes in absorbance with time 
was checked to ensure substrate 
concentrations were not limiting. Substrate 

and enzyme controls were run to ensure the 
validity of sample absorbance readings. 
Protein concentrations were determined by the 
dye–binding method of Bradford (1976), with 
bovine serum albumin as the standard.

Digestion of labramin
Larval gut homogenates were prepared as 
described above. For this, 10 larval midguts of 
E. kuehniella (fourth instar) were dissected 
and extracted in 1 mL of 0.1 M Tris, pH 8.0, 
and processed as described previously. 
Labramin was incubated with this homogenate 
in Tris buffer (final concentration, 2 mg/mL). 
The labramin/midgut protein ratio was 1:10 
(w/w). The digestion was carried out for 0, 6, 
12, 24, and 48 hours at 37 °C and was stopped 
by immersing the tubes in boiling water for 
two min. The degradation of BSA was used as 
a positive control for serine protease activity. 
The proteins were subsequently separated by 
SDS-PAGE on 12.5% polyacrylamide gels as 
described by Laemmli (1970).

Statistical analysis
All data were examined using the Mann-
Whitney Test. Statistical significance was 
considered at the p < 0.05 level.

Results

Effect of labramin on fourth–instar larvae
The effect of labramin on the development of 
A. kuehniella was assessed by determining the 
number and weight of surviving larvae 
(fourth–instar) fed on a diet containing 
increasing amounts of labramin (Figure 1). 
The mortality and weight of larvae fed with 
the control diet were about 5% and 5.7 mg, 
respectively, and when fed with 1.0% 
labramin were about 90% and 0.5 mg, 
respectively The regression analysis shows 
that 0.5 and 0.48% labramin caused a 50% 
reduction in the average survival (LD50) and 
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Table 1. Duration of developmental stages and mortality of 
Ephestia kuehniella fed on an artificial diet containing 0.25% 
labramin (w/w).

Means (days ± SD) followed by different letters denote a 
significant difference between the control and labramin 
treatments (n = 75, p < 0.05; Mann-Whitney U).

Table 2. Nutritional indices of Ephestia kuehniella fourth 
instar larvae fed on 0.25% labramin treated artificial diet.

Different letters denote a significant difference between the 
control and Labramin treatments. (n = 50, p < 0.05; Mann-
Whitney U ).
*ECI, efficiency of conversion of ingested food; ECD, efficiency 
of conversion of digested food; MC, metabolic cost; AD, 
approximate digestibility.

weight (ED50) of the larvae, respectively, 
compared to the control. 

Effects of labramin on developmental
stages 
The larval and pupal developmental times of 
larvae fed on labramin diet at 0.25% were 
significantly longer. The larval period 
increased by 14 days and the pupal period by
two days, resulting in a prolonged period of 
development from neonate larvae to adults. 
Labramin treatment caused 57% mortality of 
E. kuehniella, while the emergence rate of 
control larvae was 85%. These results are 
summarized in Table 1.

Nutritional parameters
Labramin incorporated into artificial diet at 
0.25% (w/w) significantly affected the 
nutritional parameters of A. kuehniella fourth–
instar larvae. Larvae reared on a labramin–
containing diet consumed less and produced 
less feces than the control group. As shown in 
Figure 2A, the mean diet consumption and 
fecal production in labramin–fed larvae were 
reduced by 41% and 50%, respectively, 
compared to the control. No significant 
differences were observed in the consumption 
of the diet when assessed as a ratio of the 
body weight for both the control and the 
0.25% labramin groups (Figure 2B). Labramin
reduced the conversion of ingested (ECI) and 
digested food (ECD) into biomass by A. 
kuehniella larvae by approximately 27% and 
26%, respectively. Labramin–fed larvae 
presented a higher metabolic cost (MC) and 
approximate digestibility (AD) indices of 
about 32% and 91%, respectively, compared 
to the control larvae (Table 2).

Trypsin–like activity 
The labramin diet significantly increased total 
trypsin activity in the midgut by 
approximately 19%. Elevated levels of trypsin 

activity in fecal material were also observed. 
Labramin–fed larvae had an approximately 
23% higher activity compared to that of 
controls (activity per μg feces protein; Figure 
3).

Digestion of labramin and gel 
electrophoresis
The susceptibility of labramin to degradation 
by A. kuehniella midgut proteolytic enzymes
was assessed by incubating the lectin with 
these enzymes followed by SDS-PAGE
(Figure 4). Incubation of labramin with A. 
kuehniella midgut extracts for up to 48 hours
demonstrated that this lectin–like compound 
was resistant to proteolysis (Figure 4). Bovine 
serine albumin was hydrolyzed within one 
hour when incubated with E. kuehniella
midgut proteolytic enzymes (data not shown).
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Discussion

The present study describes the insecticidal 
and physiological properties of labramin, a 
lectin–like protein isolated from L. bojeri
seeds. Ephestia kuehniella is a polyphagous 
pest that feeds on a wide variety of stored 
products. The present study describes the 
insecticidal properties of labramin, a lectin–
like protein isolated from L. bojeri against E. 
kuehniella.

Various plant lectins have shown entomotoxic 
effects when fed to insects from Coleoptera, 
Hemiptera, and Lepidoptera (Carlini and 
Grossi-de-Sá 2002; Lam and Ng 2011). In 
general, previous studies have tested toxicity 
by incorporating lectins into artificial diets at 
concentrations ranging from 1 to 50 ng/g of 
diet, or from 5 to 1500 µg/mL diet to deliver 
these proteins to chewing and sucking insects, 
respectively (Vasconcelos and Oliveira 2004). 
Purified labramin caused a significant 
decrease in the weight and survival of the A. 
kuehniella fourth–instar larvae, when 
incorporated into an artificial diet at a level of 
1%. The diet containing 0.25% labramin
caused a 32% increase in mortality and a 25% 
reduction in the average weight of the fourth–
instar larvae (Figure 1). Generally, addition of 
0.25% labramin to the diet prolonged the 
larval and pupal developmental periods (total
of 16 days) and reduced the percentage of 
emerging adults (mortality ~57%) compared 
to the control (Table 1). As such, labramin
may play an important role in the control and 
reduction of the population of this pest. 

It has been shown that lectins displaying 
similar saccharide specificity may have very 
different effects on closely–related insects 
(Gatehouse et al. 1995). The LC50 of
Koelreuteria paniculata seed lectin was 
0.65%, and the ED50 was 0.20% when fed to 

E. kuehniella larvae (Macedo et al. 2003). 
However, for these same insect larvae,
Bauhinia monandra leaf lectin at a 
concentration of up to 1% did not significantly 
decrease survival, but produced a decrease of 
40% in larval weight (Macedo et al. 2006).

The larvae reared on the labramin–containing 
diet consumed less and produced less feces 
than the control group during the fourth instar 
(Figure 2A). When the consumption of diet
was assessed as a ratio of body weight, no 
significant difference between the control and 
the 0.25% labramin treatment was observed
(Figure 2B). Thus, there was no evidence that 
labramin exerts a feeding deterrent effect. 
Similar results were reported for Lacanobia 
oleracea when fed with Galanthus nivalis 
agglutin (Fitches et al. 1997), as also observed 
for the soybean pest A. gemmatalis (Macedo 
et al. 2010). The reduction in larval weight, 
despite the increase in consumption for 
LbAE–fed larvae, suggests that LbAE inhibits 
nutrient uptake in A. gemmatalis (Eisemann et 
al. 1994).

Therefore, the diet containing 0.25% labramin
was less appropriate for E. kuehniella larval 
growth, since labramin–fed larvae presented 
higher metabolic cost indices than control 
larvae (Table 2). As such, labramin apparently 
did not affect the larval feeding pattern, as 
also observed for the soybean pest A. 
gemmatalis (Macedo et al. 2010). The 
reduction in larval weight, despite the increase 
in consumption by labramin–fed larvae, 
suggests that labramin inhibits nutrient uptake 
in A. gemmatalis (Eisemann et al. 1994). ECI 
is an overall measurement of an insect’s 
ability to utilize the food that it ingests for 
growth. A decrease in ECI indicates that more 
food is being metabolized for energy and less 
is being converted into body substance (i.e., 
growth). The proportion of digested food that 
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is actually transformed into net insect biomass 
is denoted by ECD, the efficiency of 
conversion of digested food. ECD also 
decreases as the proportion of digested food 
metabolized for energy increases (Farrar et al. 
1989; Weeler and Isman 2001). In this study, 
ECI and ECD values decreased by about 27% 
and 26%, respectively, indicating that 
labramin exhibits some toxicity and/or 
antinutritional properties in E. kuehniella
larvae. A greater approximate digestibility
value would help to meet the increased 
demand for nutrients and compensate for the
deficiency in foodstuff conversion (reduction 
in ECI and ECD), perhaps by diverting energy 
from biomass production into detoxification 
(Table 2). Coelho et al. (2007) observed 
similar nutritional indices in E. kuehniella
larvae when they studied an insecticidal lectin 
from Annona coriacea seeds. However, the 
precise mechanism for the action of lectins in 
insects is still unknown (Murdock and Shade 
2002). A prerequisite for toxicity is that the 
lectin should be able to survive the proteolytic 
environment of the insect midgut. Depending 
on their resistance to gut proteolysis and on 
their specificity for carbohydrate receptors, 
lectins may bind to different parts of the 
intestine to cause various changes in cellular 
function and morphology (Puztai et al. 1990; 
Harper et al. 1998; Macedo et al. 2004b). The 
incubation of labramin with proteases of E.
kuehniella midgut homogenates showed that
labramin is resistant to hydrolysis by E.
kuehniella enzymes (Figure 4), and does not 
demonstrate any inhibition in trypsin activities 
up to a concentration of 100 µg (data not 
shown). 

To establish whether labramin acts by 
disrupting the digestive capacity of the larval 
midgut of E. kuehniella, here we reported the 
effects of 0.25% labramin on an enzyme 
involved in protein digestion, the soluble 

endoprotease trypsin. Trypsin–like proteases 
are major digestive enzymes in lepidopteran 
larvae (Terra et al. 1996; Srinivasan et al. 
2006). Labramin stimulated an increase in the 
trypsin–like activities in the midgut by 
approximately 19% (Figure 3). Since labramin
is known to be resistant to proteolysis, the 
elevated gut protein levels observed in the 
feeding assay may partially reflect an 
accumulation of lectin–like protein bound to 
larval tissues, which in turn could lead to the 
induction of trypsin–like activity. Fitches et 
al. (1998) showed that midgut trypsin 
secretion can be stimulated by Canavalia 
ensiformes lectin in L. oleracea larvae.

The peritrophic membrane (PM) is an 
essential structure for the normal physiology 
of the insect midgut. It has been suggested 
that crucial selective pressure during the 
development of the PM is necessary to avoid 
the evacuation of digestive enzymes with the 
feces via the organization of the gut lumen 
into the ecto– and endo–peritrophic spaces 
(Terra 2001). The PM consists of proteins, 
proteoglycans, and chitin (containing N-
acetylglucosamine residues) (Wang and 
Granados 2001). In this study, labramin
binding may have affected enzyme–regulatory 
mechanisms as a consequence of perturbation 
of the peritrophic membrane environment. 
Part of this labramin binding probably 
represents interactions with chitinous 
structures present in the insect’s membranes, 
since this lectin–like protein bound to a chitin 
column (Macedo et al. 2004a). Elevated levels 
of trypsin activity in fecal material were also 
observed; lectin–like fed insects had ~23%
higher activity than the controls. A change in 
the membrane environment and consequent 
disruption of enzyme recycling mechanisms 
may provide an alternative explanation for the 
observed increases in the tryptic activity of 
fecal extracts collected from 0.25% labramin–
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fed larvae. Recently, a similar effect was 
verified for E. kuehniella larvae when fed 
with Pouterin, a lectin–like protein from 
Pouteria torta seeds (Boleti et al. 2009). In 
conclusion, labramin may be considered a 
potential tool for crop protection strategies 
due to its ability to act on the developmental 
stages of the E. kuehniella.
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Figure 1. Effect of dietary labramin on Ephestia kuehniella artificial 
larval: (A) Survival (%) and (B) weight (mg) using an artificial diet 
bioassay. Each point has n = 50. Bars indicate SE of the mean. The 
same letters indicate that there were no significant statistical 
differences (Mann-Whitney U, n = 50, p < 0.05). High quality 
figures are available online.

Figure 2. Nutritional parameters measured for Ephestia 
kuehniella larvae in the 0.25% labramin (w/w) feeding trial. (A) Diet 
consumption and fecal production by larvae of fourth–instar. (B) 
Mean diet consumption as a ratio to mean larval body weight. Bars 
indicate SE of the mean. The same letters indicate that there were 
no significant statistical differences between the control and 
labramin treatments (Mann-Whitney U, n = 50, p < 0.05). High 
quality figures are available online.

Figure 3. Trypsin activities in midgut and feces from Ephestia 
kuehniella larvae after exposure to 0.25% labramin in the feeding 
trial. Larvae were fed for four instars (25 days) on control diet or 
diets containing 0.25% labramin. Enzyme activities are expressed 
as mean of total pmols of product per minute per μg protein. The 
product was p-nitroanilide for trypsin assay. Bars indicate SE of 
the mean. Different letters denote a significant difference between 
the control and labramin treatments (Mann-Whitney U, n = 50, p
< 0.05). High quality figures are available online.

Figure 4. SDS-PAGE of labramin digested by midgut extracts of 
Ephestia kuehniella. High quality figures are available online.


