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The endocannabinoid system was revealed following the understanding of the mechanism of action
of marijuana’s major psychotropic principle, D9-tetrahydrocannabinol, and includes two G-protein-
coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands
(the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol
(2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands.
However, other minor lipid metabolites different from, but chemically similar to, anandamide
and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other
GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has
been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was
proposed that anandamide might also activate other targets, and in particular the transient receptor
potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been
shown to occur both in peripheral tissues and brain, during both physiological and pathological
conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid,
N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as
ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject,
and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and canna-
binoid receptors contribute to making this signalling system a versatile tool available to organisms
to fine-tune homeostasis.
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1. INTRODUCTION
The discovery, in the 1990s, of cannabinoid receptor
type-1 (CB1) and -2 (CB2) [1,2], two specific
G-protein-coupled receptors (GPCR) for D9-tetrahy-
drocannabinol (THC), the psychotropic ingredient
of Cannabis sativa, raised at least three important ques-
tions: (i) since there are GPCRs for THC, are there
endogenous ligands for these receptors? (ii) are
there other receptors for THC other than CB1 and
CB2 but homologous to these two proteins? (iii) do
other cannabinoids in C. sativa, such as, for example,
the widely studied and potentially therapeutically
important, non-psychotropic compound, cannabidiol,
also have specific receptors? Studies carried out in the
last 20 years have now largely answered these ques-
tions, in as much as we now know that: (i) yes, there
are endogenous CB1 and CB2 ligands [3–5], named
‘endocannabinoids’ [6]; (ii) no, there are no CB1
and CB2 homologues in mammals that are activated
by THC; and (iii) probably not, since, for example,
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cannabidiol exhibits activity, in vitro and in vivo,
towards a plethora of previously identified molecular
targets, be they ion channels or previously identified
GPCRs, which underlie most of its pharmacolo-
gical actions [7]. It has been discovered also that
the two most studied endocannabinoids so far,
2-arachidonoylglycerol (2-AG) [4,5], and, particularly,
N-arachidonoyl-ethanolamine (anandamide) [3], do
not interact with only CB1 and CB2, and exhibit
instead a degree of ‘promiscuity’ more similar to canna-
bidiol than THC. This promiscuity applies, to some
extent, also to the less-studied and less-well-established
arachidonic acid-derived endocannabinoids, such as
N-arachidonoyl-dopamine (NADA), noladin ether
and virodhamine [8–10], and implies that probably,
in a not so distant future, the definition of ‘cannabinoid
receptors’ will have to be enlarged to also encompass
some of the many ‘endocannabinoid receptors’ pro-
posed so far [11]. Perhaps more importantly and as
will be discussed in this article, the functional and
metabolic flexibility of endocannabinoids, allowing
them to regulate both directly and through other mol-
ecular targets the activity of cannabinoid receptors,
helps explain why the latter, unlike most GPCRs,
have more than one endogenous ligand.
This journal is q 2012 The Royal Society
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2. ENDOCANNABINOID BIOCHEMISTRY AND
FUNCTIONAL ACTIVITY AND SELECTIVITY AT
CANNABINOID RECEPTORS
Since their discovery as high (anandamide) and low-
to-moderate (2-AG) affinity ligands for CB1 receptors
[3–5], it also became clear that the two major endo-
cannabinoids exhibit varying efficacy as CB1
agonists. Anandamide was described as a partial ago-
nist in most functional assays [12–14]. However,
2-AG, the activity of which may be decreased in vitro
and in vivo by its non-enzymatic transformation into
equal amounts of the two enantiomers, and 2-AG
regio isomers, sn-1-AG and sn-3-AG [15], behaved
as a full agonist in most assays [13,16]. Subsequently,
it was also suggested, again based on a variety of
in vitro functional assays, that anandamide is nearly
inactive as a CB2 agonist, whereas 2-AG is a full agonist
also at this receptor [17,18]. Thus, although the effi-
cacy of a given agonist at a certain receptor in a given
in vitro assay depends on several factors, including the
expression level of the receptor and the several G pro-
teins that may mediate its intracellular effects, and
considering that different agonists may induce the traf-
ficking of different G proteins towards the receptor in
a more or less efficacious way depending on their chemi-
cal structure, it is now thought that anandamide is a high
affinity, CB1-selective partial agonist, whereas 2-AG is a
moderate affinity, CB1/CB2 full agonist.

The difference in efficacy at CB1 and CB2 recep-
tors between the two most studied endocannabinoids
is only one of those biochemical features that can
be predictive of a different function for these com-
pounds. Another biochemical difference between
anandamide and 2-AG is represented by the diverse
metabolic pathways that underlie their biosynthesis
and breakdown. Although both compounds are
usually produced following elevation of intracellular
Ca2þ concentrations such to overcome the threshold
for activation of their biosynthetic enzymes, the latter
are different for anandamide and 2-AG [19]. Ananda-
mide is obtained from the one- to three-step enzymatic
hydrolysis of a family of minor membrane phospholi-
pids, the N-arachidonoyl-phosphatidylethanolamines
(NArPE). N-acyl-phosphatidylethanolamine specific
phospholipase D (NAPE-PLD), an enzyme that has
little in common with other phosphodiesterases [20],
is Ca2þ-sensitive and catalyses the hydrolysis of
NArPE directly to anandamide. On the other hand,
the sequential action of a,b-hydrolase-4 (ABHD4)
and glycerophosphodiesterase-1 (GDE1) catalyses the
conversion of NArPE into lyso-NArPE first, then gly-
cerophosphoanandamide and, finally, anandamide
[21]. Formation of lyso-NArPE can occur also through
the action of a soluble phospholipase A2, followed by
direct conversion into anandamide by a lyso-PLD
[22]. Finally, an as-yet-unidentified phospholipase C
(PLC), followed by the action of various phosphatases
(such as protein tyrosine phosphatase N22 or SH2
domain-containing inositol phosphatase), can convert
NArPE first into phospho-anandamide and then ana-
ndamide [23]. Of these four biosynthetic routes, only
the first two and the last one were shown to occur
in intact cells, and evidence was obtained in transgenic
animals (double NAPE-PLD/GDE1 null mice)
Phil. Trans. R. Soc. B (2012)
suggesting that the first two concomitantly participate
in brain anandamide biosynthesis in vivo [24].

The biosynthesis of 2-AG is in seemingly simpler.
Again, only one family of lipids, the sn-1-acyl-2-arachi-
donoylglycerols (DAGs), is used as biosynthetic
precursors, and they can be directly converted into
2-AG through the action of either of two Ca2þ-sensitive
sn-2-selective DAG lipases (DAGLs), i.e. DAGL-a
and DAGL-b [25]. Studies in mice lacking either
of these two enzymes suggested that the former is
the most important at determining 2-AG levels in the
brain and 2-AG function in the regulation of
synaptic strength (see below). Although DAGs acting
as 2-AG precursors are mostly produced from the
hydrolysis of phosphatidyl-inositols (PIs) via PI-specific
PLC, phosphatidic acid was also suggested to act as a
source of these lipids [19]. Thus, except perhaps for
some unidentified PLC enzymes, little overlap exists
between anandamide and 2-AG biosynthetic enzymes,
which indicates that the levels of these two endo-
cannabinoids can be regulated independently from
each other following cell stimulation and intracellular
Ca2þ elevation. Yet, DAGL-a2/2 mice exhibit reduced
brain levels not only of 2-AG, but also of anandamide
[26–28], possibly suggesting that the phospholipid
remodelling in these mice might also ultimately affect
the fatty acid composition of brain precursors for
NArPE [19]. In fact, NArPE is produced by the
action of an as yet unidentified Ca2þ-dependent
N-acyl-transferase catalysing the transfer of a (usually
rare) arachidonoyl moiety from the sn-1 position of
nearly any phospholipid to the nitrogen atom of
phosphatidylethanolamine [29].

Also, the catabolic enzymes for anandamide and 2-AG
are mostly different. Both compounds are broken
down inside the cell by intracellular enzymes, the
former being the substrate of fatty acid hydrolase-1
(FAAH-1, expressed in all mammals) and, to a much
lesser extent, of fatty acid hydrolase-2 (FAAH-2, not
expressed in rodents); and the latter being hydrolysed
through the action of monoacylglycerol lipase (MAGL)
and, to a lesser extent, a,b-hydrolase-6 (ABHD6),
a,b-hydrolase-12 (ABHD12) and FAAH-1 [30–32].
However, both compounds have been suggested to be
taken up by cells through the action of a common and
as yet unidentified membrane transporter (possibly
involved also in the release of de novo biosynthesized
anandamide and 2-AG) [33]. Yet, the intracellular traf-
ficking of anandamide was found to be mediated by a
protein specific for this compound and unable to bind
2-AG, shown to be a catalytically silent FAAH-1 splicing
variant named FAAH-like anandamide transporter
(FLAT) [34].

In summary, it is clear that the tissue levels
of anandamide and 2-AG are usually regulated indepen-
dent of each other, thus allowing the two compounds
to exert different functions even in the same organ,
tissue or cell. Indeed, as clearly shown in about 15 years
of research on this topic [35], both physiological and
pathological conditions can be accompanied, in either
central or peripheral organs and tissues, by alterations
in the concentrations of only one of these compounds,
whereas examples of anandamide and 2-AG tissue
levels undergoing opposite changes are not rare. This
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Figure 1. Different functions at different receptors for brain anandamide and 2-AG. Anandamide (structure highlighted in pink)
and 2-AG (structure highlighted in light green) are depicted as being produced (thin brown arrows) from both pre- and post-

synaptic intracellular membranes and from post-synaptic plasma membranes, respectively. Anandamide, by acting at pre-synap-
tic CB1 receptors, may participate in ‘tonic’ suppression of GABAergic signalling in organotypic hippocampal cultures [40],
whereas at pre-synaptic TRPV1 it stimulates glutamate release, thereby participating in some pathological conditions (shown
in italics; see text). By acting at post-synaptic TRPV1, anandamide either reduces glutamate signalling and produces long-
term depression (LTD) by stimulating AMPA receptor (AMPAR) endocytosis [41,42] or, as shown in MSNs of the striatum

[43], it inhibits 2-AG biosynthesis and retrograde action at CB1 receptors [44], with potential consequences on endocannabi-
noid-mediated retrograde control of DSE and DSI, LTD and LTP. 2-AG can also act at post-synaptic CB1 receptors, thereby
mediating ‘slow self-inhibition’ of neocortical interneurons [45]. Finally, 2-AG is the likely agonist at the CB1 receptor on astro-
cytes, which is recently emerging as the possible mediator of a series of biological actions listed in the figure [46–49], and at CB2
receptors in the same cells as well as in microglia, with strong implications for the inhibition of neuroinflammation and potential

therapeutic use in several neuroinflammatory disorders [50,51]. MSN, medium spiny neurons; LTP, long-term potentiation;
AMPA, 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid; DSE, depolarization-induced suppression of excitation;
DSI, depolarization-induced suppression of inhibition.
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observation strengthens the ever-growing realization that
endocannabinoids do not only regulate the activityof can-
nabinoid receptors, but might also fine-tune cell
homeostasis via coordinated enhanced, or decreased,
interactions with more than one target at once.

Perhaps the best established non-cannabinoid
receptor for endocannabinoids, and for anandamide
in particular, is the transient receptor potential vanil-
loid type-1 (TRPV1) channel [36,37], previously
discovered as the receptor for the pungent active prin-
ciple of hot chilli peppers, capsaicin [38]. Anandamide
activates this channel (and hence behaves as an ‘endo-
vanilloid’) with potency and efficacy that are usually
lower than those exhibited at CB1 receptors, but
which vary depending on the assay and cell type
used and increase under certain pathological (e.g.
inflammatory) conditions that alter TRPV1 expression
in tissues and sensitivity to agonists ([39] for review).

Importantly, it is not only the metabolic enzymes for
anandamide and 2-AG that differ, but also their
Phil. Trans. R. Soc. B (2012)
anatomical distribution, or at least of those which have
been studied in the brain so far, and that of their pro-
posed molecular targets [19]. Thus, the finding
in several brain areas of DAGLa in post-synaptic
dendrites and somata, and of CB1 and MAGL in pre-
synaptic terminals, allows 2-AG to be produced from
post-synaptic neurons, act as a ‘retrograde’ signal at
pre-synaptic fibres (see below) and be inactivated near
its site of action at CB1. On the other hand, the fact
that: (i) NAPE-PLD is located both pre- and post-
synaptically, (ii) FAAH-1 is predominantly found
in post-synaptic neurons, where TRPV1 is also more fre-
quently found, and (iii) these enzymes are mostly
concentrated in intracellular membranes, allows the
hypothesis of a role for anandamide also as intracellular,
‘anterograde’ or autocrine mediator through this
channel (figure 1). Some aspects of the biological
importance of anandamide’s ‘dual’ nature as endocan-
nabinoid and ‘endovanilloid’ will be discussed in the
next sections.
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3. CO-EXPRESSION OF CB1 OR CB2
RECEPTORS AND TRPV1 CHANNELS IN
NEURONAL AND NON-NEURONAL CELLS
Given the local (paracrine, autocrine or even intra-
cellular) nature of the action of endocannabinoids at
their receptors, any consideration on their potential
biological function as multi-target mediators must
take into account the possible co-expression of these
receptors in the same or in neighbouring cells. In the
case of TRPV1, there are numerous studies indicating
that this channel is co-expressed with either CB1, CB2
or both, in neuronal and non-neuronal cells. Such
studies, mostly carried out using quantitative RT-
PCR or immunohistochemical techniques, can be
summarized as follows: (i) TRPV1 is co-localized
with CB1 in rat primary sensory neurons of the
dorsal root ganglia [52–54], where the expression of
the two proteins is upregulated during inflamma-
tion [55]; they are also co-localized in perivascular
neurons [56], in the isolated vagus nerve [57], in the
rat retina [58] and in the somata and/or axons of
central neurons from several brain areas [59–61];
(ii) TRPV1 is co-localized with CB1 and CB2 in
cerebromicrovascular endothelial cells [62] and with
CB1 in endothelial cells from mesenteric arteries of
cirrhotic rats [63,64]; (iii) TRPV1 is co-localized
with both CB1 and CB2 in mouse bone-marrow-
derived dendritic cells [65], and in human skeletal
muscle cells [66], myometrial smooth muscle cells
[67], osteoclasts [68], proximal tubular (HK2) cells
of the kidney [69], keratinocytes [70,71], melanocytes
[72] and dental pulp cells [73]; (iv) TRPV1 is co-loca-
lized only with CB1 in human sperm cells [74], and
only with CB2 in synoviocytes from rats after intra-
articular injection of mono-iodo-acetate, a model of
osteoarthritis [75].

In view of the previously reported cross-talk
between TRPV1 and CB1 receptors at the level of
down-stream signalling events [76,77], these many
examples of co-expression between the channel and
one or both cannabinoid receptor sub-types offer the
opportunity of widening further the range of pharma-
cological effects that endogenous mediators capable
of activating both types of receptors may have, and,
hence, the extent of ‘plasticity’ that their action can pro-
duce in a large variety of biological systems. Some
examples of this ‘plasticity’ are given in the next section,
with the aim of distinguishing further the potential func-
tion of the two ‘major’ endocannabinoids, anandamide
and 2-AG.
4. ANANDAMIDE DUAL ACTIONS AT CB1 AND
TRPV1 AS A ‘PLASTIC’ WAY OF REGULATING
SYNAPTIC PLASTICITY
Perhaps two of the most exciting discoveries made in
recent years regarding the physiological role of CB1
receptors, on the one hand, and TRPV1 channels,
on the other hand, are concerned with the variegated
functions that these two endocannabinoid-sensitive
targets play in the regulation of both short- and long-
term forms of synaptic plasticity [78] (figure 1).
From its discovery, CB1 appeared to be the most
abundant GPCR in the brain, and its role in the
Phil. Trans. R. Soc. B (2012)
inhibition of the release of both excitatory (e.g. gluta-
mate) and inhibitory (e.g. GABA) neurotransmitters
was immediately clear, especially since it was found
that this receptor is very often located pre-synaptically
in axon terminals, and not only in GABAergic
neurons, as had been initially suggested [44]. Still, it
was surprising to identify endocannabinoids as per-
haps the most widespread and long-sought-after
‘retrograde’ signals in the brain [44]. These
are mediators produced following depolarization or
metabotropic receptor-stimulation (and subsequent
elevation of intracellular Ca2þ) of the post-synaptic
cell, and travelling ‘backwards’ to pre-synaptic CB1
receptors, thereby inhibiting either excitatory or
inhibitory transmitter release onto either the same
or a neighbouring synapse. This ‘retrograde’ action
causes short-term depolarization-induced inhibition
of excitatory (DSE) or inhibitory (DSI) transmission,
or more long-lasting forms of plasticity, such as long-
term depression (LTD) or potentiation (LTP) [44].
The discovery of endocannabinoids as retrograde
neuromodulators, however, immediately raised new
questions: which of the two most studied endocanna-
binoids acts as retrograde signal? If both do, when is
it anandamide and when 2-AG? Do they play this
role in a redundant or in a functionally distinct way?

As soon as it was possible to dissect the role of ana-
ndamide from that of 2-AG through the use of
selective pharmacological or genetic tools inactivating
their catabolic or biosynthetic enzymes, the answer
seemed to be unanimous: 2-AG is the true ‘retrograde’
endocannabinoid, and DAGLa is the Ca2þ- or metabo-
tropic receptor-dependent enzyme that mostly, if not
uniquely, initiates this signal [26–28,44,79]. However,
limited to certain synapses in some brain areas, or to
some special types of synaptic plasticity, anandamide
also seems to play this role. In particular, ‘tonic’ (i.e.
continual) endocannabinoid actions in the hippo-
campus appear to be mediated by anandamide and
not 2-AG. In fact, in organotypic hippocampal cultures,
chronic inactivity caused by TTX or experimental
deafferentation decreases the tonic CB1-mediated sup-
pression of GABA release through the reduction in the
continuous availability of an endocannabinoid, which,
based on experiments with inhibitors of anandamide
cellular uptake or FAAH, was suggested to be ananda-
mide [40]. The same inhibitors did not affect DSI in
non-activity-deprived, normal neurons. The authors
suggested that chronic neuronal inactivity increases ana-
ndamide uptake and degradation, thereby decreasing
the ‘tonic’ (as opposed to ‘phasic’, i.e. stimulus-
induced) CB1-mediated suppression of GABA release
[40]. On the other hand, in those less frequent cases
in which anandamide was suggested to also participate
in the stimulus-induced regulation of synaptic activity,
this endocannabinoid was shown to do so not (or not
only) in a ‘retrograde’ manner via CB1 receptors, but
rather through a pre- or post-synaptic, likely intracellu-
lar, mechanism mediated by TRPV1, a function that,
clearly, 2-AG is less likely to play given its very low
potency and efficacy at this channel.

Although still somehow controversial [80], the pres-
ence and functional activity of TRPV1 in the brain has
been now shown in an overwhelming number of
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studies (see, [81,82] for reviews). Studies employing
TRPV1 null mice or the inhibitor of anandamide
inactivation by FAAH-1, URB597, to increase the
endogenous levels of anandamide, suggested that
this compound influences synaptic plasticity by
acting at both post- and pre-synaptic TRPV1 chan-
nels. Post-synaptic TRPV1 activation by anandamide
hyperpolarizes neurons by: (i) reducing the post-
synaptic DAGLa-mediated biosynthesis of 2-AG,
thereby counteracting the metabotropic (glutamater-
gic and cholinergic)-induced and CB1-mediated
retrograde inhibition of GABA release onto striatal
medium spiny neurons (MSNs) [43,83]; or (ii) stimu-
lating post-synaptic AMPA receptor endocytosis,
thus impairing glutamate signalling and inducing
LTD [41,42]. A recent study showed that LTD in
the bed nucleus of the stria terminalis of the extended
amygdala is also mediated by post-synaptic mGluR5-
dependent production of anandamide acting on
post-synaptic TRPV1 receptors [84], whereas, in the
same neurons, 2-AG mediates both short-term
depression and LTD through a retrograde action at
CB1 receptors. Instead, as shown through the use of
mice with genetically impaired expression of FAAH,
pre-synaptic TRPV1 activation by anandamide directly
facilitates glutamatergic signalling in striatal MSN [85].
Finally, two other studies showing that TRPV1 mediates
LTD did not identify the ‘endovanilloid’ involved. LTD
at hippocampal interneurons [86], a phenomenon that is
exerted pre-synaptically and is mediated by calcineurin
and potentiation of GABA signalling [87,88], might be
due to either 12-hydroperoxyeicosatetranoic acid
(12-HPETE) or anandamide, both possibilities being
supported by the finding of NAPE-PLD and 12-lipoxy-
genase (the enzyme converting arachidonic acid into
12-HPETE) in CA1 pyramidal cells [89]. In the
developing superior colliculus, again either 12-HPETE
or anandamide might cause TRPV1-mediated LTD,
possibly through a pre-synaptic mechanism occurr-
ing in glutamatergic retinal afferents to GABAergic
interneurons [90].

In summary, the fact that some endocannabinoids,
such as anandamide (and the less studied and less abun-
dant in brain, NADA) activate both CB1 and TRPV1
receptors, not only differentiates these mediators from
other endocannabinoids, such as 2-AG or noladin
ether, but also creates the possibility of a ‘dual-target
and multiple mechanism-mediated’ regulation of
synaptic plasticity; in a way, a more ‘plastic’ manner to
regulate plasticity, which probably underlies the pro-
posed role not only of CB1 [91], but also of TRPV1
in stress, emotionality and cognition [92,93].
5. ANANDAMIDE DUAL ACTIONS AT CB1
AND TRPV1 AS A ‘PLASTIC’ WAY OF
REGULATING PAIN
The opposing roles of cannabinoid receptors and
TRPV1 channels in pain are well established and have
been reviewed in numerous articles (see, [94–96] for
up-to-date examples). Recent evidence suggests, how-
ever, that one should move away from the ‘old’
concept that selective activation of CB1 or TRPV1
attenuate or worsen nociception, respectively. It is now
Phil. Trans. R. Soc. B (2012)
clear that the former receptor can also participate
in supra-spinal pro-nociceptive [97] or spinal pain-
sensitization [98] mechanisms, which can be activated
following elevation of endocannabinoid levels. Conver-
sely, activation of TRPV1 can enhance the activity of
supra-spinal pathways of pain control [97,99] or be
easily followed by desensitization and hence produce
analgesia as efficaciously as its inactivation [100].
Thus, anandamide can both inhibit and stimulate
calcitonin gene-related peptide release from primary
nociceptive mouse and rat neurons, at low and high con-
centrations, via CB1 and TRPV1, respectively [101].
The stimulatory effect was followed by desensitization
to heat responses, suggesting that anandamide may
inhibit pain and inflammation by activating and sub-
sequently desensitizing TRPV1 channels [101]. When
administered intrathecally, or when its spinal levels
are increased through inhibition of FAAH-1 with
URB597, anandamide reduces hyperalgesia and allody-
nia in rats with neuropathic pain caused by chronic
constriction injury of the sciatic nerve. This effect is
mediated by either CB1 or TRPV1 depending on
whether the endogenously elevated spinal levels of ana-
ndamide are low or high respectively [102]. In the
ventro-lateral periaqueductal grey (vl-PAG), tonic pre-
and post-synaptic TRPV1 activation or pre-synaptic
CB1 activation by anandamide or anandamide and
2-AG, respectively, result in stimulation of output excit-
atory neurons via enhancement of depolarization/
glutamate release or disinhibition from tonic GABA-
ergic control, respectively [97,103]. This results in
glutamate release in the rostral ventromedial medulla
(RVM) and activation of OFF neurons in this area,
with subsequent anti-nociception. Furthermore,
pre-synaptic TRPV1 activation by endovanilloids
stimulates glutamate release also in the PAG [104],
which results in the facilitation of metabotropic gluta-
mate receptor-induced impairment of GABA release
via endocannabinoids acting in a retrograde and CB1-
mediated manner, and again stimulates the descending
anti-nociceptive pathway [105].

The concept that, when expressed in the same or
in neighbouring cells, and especially if activated by
the same mediator, such as anandamide, CB1 and
TRPV1 can also cross-talk, with different impacts on
pain perception, is now emerging. The co-expression
of CB1 and TRPV1 in: (i) both DRG and spinal
cord neurons [52–55], which are crucial for the
ascending transmission of painful stimuli; (ii) neurons
of the vl-PAG and RVM, which participate in
the descending anti-nociceptive pathway [97]; and
(iii) neurons of the peri-and infra-limbic cortex [106],
or of the hippocampus and thalamus [107], in neuro-
pathic rodents, strongly suggest that cross-talk between
the two receptors is crucial in pain signalling. Based on
the previous observations that: (i) activation of CB1
can either or enhance counteract TRPV1 stimulation
by anandamide, depending on whether it stimulates
intracellular activation of the PLC-protein kinase C or
inhibition of adenylate cyclase-protein kinase A path-
ways, respectively [76], and that (ii) TRPV1 is
sensitized to the action of agonists by protein kinase C
and cAMP-dependent protein kinase A ([108] for
review), Fioravanti and colleagues investigated the
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effect of CB1 knockout or pharmacological blockade on
the TRPV1-mediated pro-nociceptive effects of capsai-
cin. The authors reported that constitutive activity at
the cannabinoid CB1 receptor and subsequent acti-
vation of the PLC pathway are required for
behavioural response to noxious chemical stimulation
of TRPV1 in mice [109]. In the medicinal leech,
where the presence of CB1 and TRPV1 orthologues is
still somewhat controversial, LTD in the monosynaptic
connection between the nociceptive sensory neuron
and the longitudinal motor neuron was found to be
dependent on a retrograde action by post-synaptically
produced 2-AG [110]. Interestingly, this form of LTD
was also inhibited by pre-synaptic injection of two
TRPV1 antagonists and hence suggested to be mediated
by pre-synaptic TRPV1-like channels. Considering that
2-AG is not efficacious at TRPV1 (although things
could be different for the leech orthologue of this chan-
nel), these findings suggest the occurrence of TRPV1-
CB1 cross-talk in determining LTD in this invertebrate.

Stress may play a role in CB1-TRPV1 cross-talk
and its consequences on pain perception. In rats that
underwent a water-avoidance stress for 10 days, and
subsequent elevation of circulating corticosterone
levels and visceral hyperalgesia, anandamide levels in
dorsal root ganglia (DRG) were elevated together with
the expression and phosphorylation of TRPV1, whereas
CB1 expression was concomitantly reduced [111].
In vitro, DRG treatment with anandamide reproduced
these mutual changes in CB1 and TRPV1 expression,
thus suggesting that TRPV1 over-activation may have
caused CB1 downregulation. In contrast, treatment of
control DRGs in vitro with the CB1-selective agonist
WIN 55,212-2 decreased the levels of TRPV1 and
TRPV1 phosphorylation. Treatment of stressed rats
in situ with WIN 55,212-2 or the TRPV1 antagonist
capsazepine prevented the development of visceral
hyperalgesia and blocked the upregulation of TRPV1
[111]. Thus, mutual regulation of expression bet-
ween CB1 and TRPV1 in DRG might underlie
stress-induced visceral hyperalgesia.

CB1 and TRPV1 also seem to cross-talk in keratinocy-
tes, thereby reducing their proliferation, a phenomenon
that, given the capability of these cells to produce inflam-
matory cytokines, might contribute to counteract some
inflammatory skin disorders, which can be accompanied
by peripheral sensitization, neurogenic inflammation and
pain. Tóth et al. [71] presented evidence suggesting that
the sequential stimulation by anandamide of CB1 and
TRPV1 triggers Ca2þ influx, concomitant elevation of
intracellular Ca2þ concentrations and keratinocyte death.
6. ANANDAMIDE DUAL ACTIONS AT CB2 AND
TRPV1 AND OSTEOCLAST ACTIVITY
Another cell type that is emerging as a potential site of
cannabinoid receptor–TRPV1 interaction is the osteo-
clast, which is responsible, among others, for bone
resorption and calcium homeostasis. This cell type,
once differentiated, expresses both CB1 and CB2 recep-
tors, the activation of which was reported to produce
opposing effects on cell activation (see, [112,113] for
reviews). Osteoclasts from non-menopausal women, in
which CB2 and CB1 activation was suggested to inhibit
Phil. Trans. R. Soc. B (2012)
and stimulate cell activity, respectively, also express
functionally active TRPV1 channels, the activation of
which strongly stimulated the expression of markers of
osteoclast activity [68]. These cells also express enzymes
for anandamide biosynthesis and inactivation, i.e.
NAPE-PLD and FAAH-1, and produce measurable
amounts of anandamide and 2-AG [68]. Importantly,
when osteoclasts were prepared from post-menopausal
women with osteoporosis, apart from more strongly
producing markers of activity, they were found to
express significantly more CB1 and TRPV1, and to con-
tain more anandamide, than osteoclasts from post-
menopausal non-osteoporotic women, whereas CB2
expression did not change [114]. Even more interest-
ingly, despite its increased expression or perhaps
because of it, TRPV1, in terms of its capability of
gating Ca2þ following stimulation with capsaicin, was
less functional in osteoclasts from post-menopausal
osteoporotic women, an observation that was pro-
bably associated with the different TRPV1 sub-cellular
distribution (intracellular, rather than on the plasma
membrane) in these cells. On the other hand, TRPV1
stimulation in these cells caused reduction of their
activity, instead of the activation observed in osteoclasts
from non-menopausal [68] or menopausal non-osteo-
porotic women [114], and this effect was accompanied
by a slight elevation of CB1 expression and a strong,
10- and 3-fold elevation of CB2 mRNA and protein
levels, respectively. Therefore, it is possible that in
post-menopausal women, osteoporosis arises as a conse-
quence of increased CB1 activation by anandamide.
On the other hand, pharmacological activation of
TRPV1 in ‘osteoporotic’ osteoclasts reduces rather than
increases their activity via: (i) a switch from TRPV1
stimulation of Ca2þ to TRPV1 stimulation of can-
nabinoid receptor expression; (ii) upregulation of CB2
versus CB1 receptors and subsequent increase of the
CB2/CB1 ratio; and (iii) a switch of anandamide action
from TRPV1/CB1 to CB2, which can be activated also
by 2-AG, the levels of which do not change during
osteoporosis. These observations can be exploited thera-
peutically by designing new CB2 agonists that also either
activate or antagonize TRPV1, as possible treatments
for osteoporosis.

In summary, the human osteoclast offers another
important example of the complex interactions bet-
ween cannabinoid and TRPV1 receptors and of their
potential use for therapeutic purposes. Indeed, several
examples of synthetic compounds that are capable of
interacting with both cannabinoid receptors (either
directly or indirectly, i.e. by elevating endocannabinoid
levels) and TRPV1 channels have been developed (see
[115] for review), and these should now be tested in
models of osteoporosis as well as of other pathological
conditions in which both types of receptors are
involved, like neuropathic and inflammatory pain
and anxiety [92].

Although no evidence exists to date for any role
of TRPV1 in osteoblasts, which counterbalance osteo-
clast action in the bone, a recent study was carried out
in odontoblasts that participate in dentin formation
physiologically and developmentally in that they syn-
thesize and secrete collagenous and non-collagenous
matrix proteins and are involved in dentin
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mineralization by transportation and accumulation of
Ca2þ. The authors showed that rat odontoblasts
express both CB1 and TRPV1 and suggested that in
these cells TRPV1-mediated elevation of intracellular
Ca2þ levels functionally couples with CB1 receptor
activation via the biosynthesis of 2-AG or anandamide
as intermediates, thus resulting in the activation of the
protein kinase A cascade, further activation of TRPV1
and in accumulation of intracellular Ca2þ [116].
7. EMERGING DIRECT ACTIONS OF 2-AG AT
NON-CANNABINOID, NON-TRPV1 RECEPTORS
Alternative molecular targets, mostly among previously
discovered receptors, are also emerging for 2-AG,
whereas reports of anandamide directly modulating the
action of non-TRPV1, non-cannabinoid receptors have
been increasing for the last 10 years and have been com-
prehensively reviewed previously as well as recently
[11,117]. Some of these interactions might distinguish
even further the biological functions played by these
two most studied endocannabinoids. Owing to possible
non-specific effects on biological membranes of greater
than 10 mM concentrations by lipophilic molecules,
and to the fact that even the stimulus-induced local con-
centrations of 2-AG and, particularly, anandamide near
their targets are not likely to be higher than this threshold
value, we believe that, among the several alternative
mechanisms of endocannabinoid action so far reported,
only those that were shown to occur at low micromolar or
sub-micromolar concentrations in vitro should be con-
sidered for now. For example, among the tens of direct
effects reported so far for anandamide, (i) the inhibition
of T-type Ca2þ channels [118–120] and background
TASK potassium channels [121] as well as of a4b2

and a7 nicotinic acetylcholine receptors [122–124];
and (ii) the allosteric enhancement of glycine receptors,
particularly at the level of the a1-subunit [125–128], are
actions that have been reported most consistently and at
low concentrations, and for which structure–activity
relationship studies were also performed, although
their physio-pathological significance in vivo has not
been evaluated yet.

Once thought to be the only ‘true’ and efficacious
endocannabinoid, 2-AG was recently reported to
potentiate GABAA receptors at low concentrations of
GABA, by binding to two amino acid residues of
the transmembrane segment M4 of the b2 subunit
[129]. The endocannabinoid was shown to act in a
superadditive fashion with the neurosteroid 3a,
21-dihydroxy-5a-pregnan-20-one and to modulate
d-subunit-containing receptors, which are located
extra-synaptically and respond to neurosteroids.
Through this interaction, 2-AG was suggested to inhibit
locomotor activity in CB1/CB2 double-KO mice, in
agreement with the observation that b22/2 mice instead
show hypermotility. The authors suggested that a 2-AG
direct stimulatory effect on GABAA receptors may play
a role in two of its typical in vivo actions, i.e. inhibition
of locomotion and sedation [129], although they did
not test the endocannabinoid in b22/2 mice.

An inhibitory effect by 2-AG was, instead, recently
shown to occur at the level of the KATP channel in pan-
creatic b-cells, with an IC50 for 2-AG of 1 mM. The
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compound also inhibited other channels but at
higher concentrations [130]. Pharmacological exper-
iments showed that these effects were independent of
cannabinoid receptors, and it is possible that they
provide an additional mechanism for the previous
suggestion that endocannabinoids increase insulin
secretion [131,132]. Unfortunately, however, the
authors did not test anandamide, which is known to
inhibit several types of Kþ channels [11,117].

Finally, the effect of 2-AG at peroxisome prolifera-
tor-activated receptor-g (PPAR-g) should also be
mentioned, although it is not yet clear whether this
action is also mediated through cannabinoid receptors
[131,133], and by the endocannabinoid itself [134],
or its COX-2 metabolite, 15-deoxy-delta-12,14-
prostaglandin J2-glycerol ester [135]. At any rate, the
relevance of this action to the anti-inflammatory
effects of 2-AG has been pointed out, whereas an ana-
logous direct effect of anandamide on PPAR-g was
instead related to its pro-adipogenic function in
adipocytes [136,137].
8. CONCLUSIONS
We have discussed here the possible reasons why,
unlike most GPCRs (opioid receptors perhaps being
the only other exception), CB1 and CB2 receptors
have more than one endogenous ligand, i.e. why
there are at least two endocannabinoids, anandamide
and 2-AG. Such reasons, in our opinion, are to be
looked for in the different (also from the point of
view of their subcellular distribution) biomolecular
mechanisms that, at the cellular level: (i) regulate the
levels, and (ii) underlie the biological effects of these
two compounds (figure 1). Indeed, the capability of
anandamide and 2-AG to be biosynthesized and
inactivated independently of each other, and their
‘promiscuity’ (i.e. the fact that they, unlike most
neurotransmitters, neuropeptides, hormones and cyto-
kines, and like some other lipid mediators, do not only
interact with cannabinoid receptors, but also activate
or inhibit several molecular targets, ranging from
GPCRs to ion channels and nuclear receptors)
allows for a very high degree of differential flexibility
of their actions. Although most of the ‘alternative’
endocannabinoid receptors have not yet been shown
to underlie at least some of the pharmacological and
biological actions of anandamide and 2-AG in vivo,
they do occur in vitro at concentrations compatible
with the local tissue levels that can be achieved for
either compound after stimulation. One can imagine
that 2-AG is produced rather selectively in those
physio-pathological conditions in which stimulus-
induced (‘phasic’) CB1-mediated retrograde regulation
of synaptic strength is required, whereas anandamide is
instead produced either during tonic control of synaptic
signalling, or for the TRPV1-mediated fine-tuning of
‘phasic’ and 2-AG mediated control of synaptic strength
(figure 1). Likewise, anandamide direct inhibition of T-
type Ca2þ channels or TASK Kþ channels might also
intervene to strengthen or tone-down CB1-mediated
signalling in the brain, whereas the allosteric enhance-
ment by anandamide of glycine receptors and 2-AG of
GABAA receptors might allow these ubiquitous
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mediators to also control neuronal excitability in those
neurons that do not express CB1.

In non-neuronal cells, anandamide stimulation of
TRPV1 [77] and 2-AG inhibition of KATP channels
[130] might synergise with endocannabinoid CB1-
mediated stimulation of insulin release from pancreatic
b-cells [131,132]. In spermatozoa, anandamide acti-
vation of CB1 or TRPV1 exerts different functions,
possibly in different time windows [138,139]. In several
cancer cell types, both CB1/CB2 and TRPV1 expression
can be increased compared to that of the corresponding
non-transformed cells (see, [140] for an example], and
activation of these receptors, via different molecular and
cellular mechanisms, can counteract cancer growth
[141] and/or reduce cancer cell invasiveness [142].

We did not discuss here the possible alternative tar-
gets of other, less studied putative endocannabinoids,
such as NADA, virodhamine and noladin ether, because
the biosynthesis and inactivation mechanisms of these
compounds, as well as the biochemical details of their
functional activity at CB1 and CB2 receptors, have
been much less investigated, and as a consequence,
their role as endogenous cannabinoid receptor ligands
is less established. However, the little information that
is known regarding these compounds suggests that
they too can interact with non-cannabinoid receptors
[143,144]. As to the more recently identified endogen-
ous peptide CB1 antagonist, hemopressin, although
some of its effects in vivo are clearly mediated by CB1
receptor blockade [145], evidence that it directly binds
to CB1 has not been confirmed so far in laboratories
other than the one that first described this activity
[146,147], and very little, if anything, is known about
its biosynthesis and inactivation, which makes any
interpretation of its biological importance difficult.

In conclusion, it is clear that not all endocannabi-
noids are alike and, in the future, perhaps even the
name ‘endocannabinoid’ for anandamide and 2-AG
will be no longer considered appropriate. Unless strictly
selective ligands for cannabinoid receptors are discov-
ered, these proteins might eventually be regarded as
part of a wider lipid-based signalling system, also invol-
ving, forexample, other endogenous bioactive congeners
and analogues of anandamide and, hence, other
molecular signal transducers. Since non-THC cannabi-
noids seem to interact with some of the same non-CB1,
non-CB2 receptors with which anandamide and other
long-chain fatty acid amides interact [37], it is possible
that even the definition of ‘cannabinoid receptors’
might be enlarged in future to encompass these
proteins [11].
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42 Chávez, A. E., Chiu, C. Q. & Castillo, P. E. 2010
TRPV1 activation by endogenous anandamide triggers
postsynaptic long-term depression in dentate gyrus.
Nat. Neurosci. 13, 1511–1518. (doi:10.1038/nn.2684)

43 Maccarrone, M. et al. 2008 Anandamide inhibits metab-

olism and physiological actions of 2-arachidonoylglycerol
in the striatum. Nat. Neurosci. 11, 152–159. (doi:10.
1038/nn2042)

44 Alger, B. E. 2012 Endocannabinoids at the synapse a
decade after the dies mirabilis (29 March 2001): what

we still do not know. J. Physiol. 590, 2203–2212.
(doi:10.1113/jphysiol.2011.220855)

45 Marinelli, S., Pacioni, S., Bisogno, T., Di Marzo, V.,
Prince, D. A., Huguenard, J. R. & Bacci, A.

2008 The endocannabinoid 2-arachidonoylglycerol is
responsible for the slow self-inhibition in neocortical
interneurons. J. Neurosci. 28, 13 532–13 541. (doi:10.
1523/JNEUROSCI.0847-08.2008)

46 Navarrete, M. & Araque, A. 2010 Endocannabinoids

potentiate synaptic transmission through stimulation
of astrocytes. Neuron 68, 113–126. (doi:10.1016/j.
neuron.2010.08.043)

47 Coiret, G., Ster, J., Grewe, B., Wendling, F., Helmchen, F.,
Gerber, U. & Benquet, P. 2012 Neuron to astrocyte com-

munication via cannabinoid receptors is necessary for
sustained epileptiform activity in rat hippocampus. PLoS
ONE 7, e37320. (doi:10.1371/journal.pone.0037320)

48 Han, J. et al. 2012 Acute cannabinoids impair working
memory through astroglial CB1 receptor modulation

of hippocampal LTD. Cell 148, 1039–1050. (doi:10.
1016/j.cell.2012.01.037)

49 Min, R. & Nevian, T. 2012 Astrocyte signaling controls
spike timing-dependent depression at neocortical synapses.
Nat. Neurosci. 15, 746–753. (doi:10.1038/nn.3075)

http://dx.doi.org/10.1038/nn.2720
http://dx.doi.org/10.1074/jbc.M306642200
http://dx.doi.org/10.1074/jbc.M306642200
http://dx.doi.org/10.1074/jbc.M707807200
http://dx.doi.org/10.1042/BJ20040031
http://dx.doi.org/10.1042/BJ20040031
http://dx.doi.org/10.1016/j.neuropharm.2007.05.020
http://dx.doi.org/10.1039/C000237B
http://dx.doi.org/10.1039/C000237B
http://dx.doi.org/10.1083/jcb.200305129
http://dx.doi.org/10.1523/JNEUROSCI.5693-09.2010
http://dx.doi.org/10.1016/j.neuron.2010.01.021
http://dx.doi.org/10.1016/j.neuron.2010.01.021
http://dx.doi.org/10.1113/jphysiol.2011.212225
http://dx.doi.org/10.1111/j.1432-1033.1996.0053h.x
http://dx.doi.org/10.2174/157488912798842223
http://dx.doi.org/10.2174/157488912798842223
http://dx.doi.org/10.1111/j.1748-1716.2011.02280.x
http://dx.doi.org/10.1124/mol.110.069427
http://dx.doi.org/10.1016/j.tips.2012.01.001
http://dx.doi.org/10.1016/j.tips.2012.01.001
http://dx.doi.org/10.1038/nn.2986
http://dx.doi.org/10.1016/j.cbpa.2009.04.615
http://dx.doi.org/10.1038/22761
http://dx.doi.org/10.1007/s11481-009-9177-z
http://dx.doi.org/10.1038/39807
http://dx.doi.org/10.1016/j.pharmthera.2007.01.005
http://dx.doi.org/10.1038/nn.2517
http://dx.doi.org/10.1038/nn.2685
http://dx.doi.org/10.1038/nn.2684
http://dx.doi.org/10.1038/nn2042
http://dx.doi.org/10.1038/nn2042
http://dx.doi.org/10.1113/jphysiol.2011.220855
http://dx.doi.org/10.1523/JNEUROSCI.0847-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.0847-08.2008
http://dx.doi.org/10.1016/j.neuron.2010.08.043
http://dx.doi.org/10.1016/j.neuron.2010.08.043
http://dx.doi.org/10.1371/journal.pone.0037320
http://dx.doi.org/10.1016/j.cell.2012.01.037
http://dx.doi.org/10.1016/j.cell.2012.01.037
http://dx.doi.org/10.1038/nn.3075


Review. Differences between anandamide and 2-AG V. Di Marzo and L. De Petrocellis 3225
50 Fernández-Ruiz, J., Pazos, M. R., Garcı́a-Arencibia, M.,
Sagredo, O. & Ramos, J. A. 2008 Role of CB2 receptors
in neuroprotective effects of cannabinoids. Mol. Cell.
Endocrinol. 286(Suppl. 1), S91–S96. (doi:10.1016/j.
mce.2008.01.001)

51 Stella, N. 2010 Cannabinoid and cannabinoid-like
receptors in microglia, astrocytes, and astrocytomas.
Glia 58, 1017–1030. (doi:10.1002/glia.20983)

52 Ahluwalia, J., Urban, L., Capogna, M., Bevan, S. &
Nagy, I. 2000 Cannabinoid 1 receptors are expressed
in nociceptive primary sensory neurons. Neuroscience
100, 685–688. (doi:10.1016/S0306-4522(00)00389-4)

53 Ahluwalia, J., Urban, L., Bevan, S., Capogna, M. &
Nagy, I. 2002 Cannabinoid 1 receptors are expressed by
nerve growth factor- and glial cell-derived neurotrophic
factor-responsive primary sensory neurones. Neuroscience
110, 747–753. (doi:10.1016/S0306-4522(01)00601-7)

54 Binzen, U., Greffrath, W., Hennessy, S., Bausen, M.,
Saaler-Reinhardt, S. & Treede, R. D. 2006 Co-
expression of the voltage-gated potassium channel Kv1.4
with transient receptor potential channels (TRPV1 and
TRPV2) and the cannabinoid receptor CB1 in rat dorsal

root ganglion neurons. Neuroscience 142, 527–539.
(doi:10.1016/j.neuroscience.2006.06.020)

55 Amaya, F., Shimosato, G., Kawasaki, Y., Hashimoto, S.,
Tanaka, Y., Ji, R. R. & Tanaka, M. 2006 Induction of
CB1 cannabinoid receptor by inflammation in primary

afferent neurons facilitates antihyperalgesic effect of per-
ipheral CB1 agonist. Pain 124, 175–183. (doi.org/10.
1016/j.pain.2006.04.001)

56 Ralevic, V. & Kendall, D. A. 2009 Cannabinoid

modulation of perivascular sympathetic and sensory
neurotransmission. Curr. Vasc. Pharmacol. 7, 15–25.
(doi:10.2174/157016109787354114)

57 Weller, K., Reeh, P. W. & Sauer, S. K. 2011 TRPV1,
TRPA1, and CB1 in the isolated vagus nerve–

axonal chemosensitivity and control of neuropeptide
release. Neuropeptides 45, 391–400. (doi:10.1016/j.
npep.2011.07.011)

58 Nucci, C. et al. 2007 Involvement of the endocannabi-
noid system in retinal damage after high intraocular

pressure-induced ischemia in rats. Invest. Ophthalmol.
Vis. Sci. 48, 2997–3004. (doi:10.1167/iovs.06-1355)

59 Cristino, L., de Petrocellis, L., Pryce, G., Baker, D.,
Guglielmotti, V. & Di Marzo, V. 2006 Immunohisto-
chemical localization of cannabinoid type 1 and

vanilloid transient receptor potential vanilloid type 1
receptors in the mouse brain. Neuroscience 139,
1405–1415. (doi:10.1016/j.neuroscience.2006.02.074)

60 Maione, S., De Petrocellis, L., de Novellis, V., Moriello,

A. S., Petrosino, S., Palazzo, E., Rossi, F. S.,
Woodward, D. F. & Di Marzo, V. 2007 Analgesic
actions of N-arachidonoyl-serotonin, a fatty acid
amide hydrolase inhibitor with antagonistic activity at
vanilloid TRPV1 receptors. Br. J. Pharmacol. 150,
766–781. (doi:10.1038/sj.bjp.0707145)

61 Micale, V., Cristino, L., Tamburella, A., Petrosino, S.,
Leggio, G. M., Drago, F. & Di Marzo, V. 2009
Anxiolytic effects in mice of a dual blocker of fatty
acid amide hydrolase and transient receptor potential

vanilloid type-1 channels. Neuropsychopharmacology 34,
593–606. (doi:10.1038/npp.2008.98)

62 Golech, S. A., McCarron, R. M., Chen, Y., Bembry, J.,
Lenz, F., Mechoulam, R., Shohami, E. & Spatz, M.
2004 Human brain endothelium: coexpression and

function of vanilloid and endocannabinoid receptors.
Brain Res. Mol. Brain Res. 132, 87–92. (doi.org/10.
1016/j.molbrainres.2004.08.025)

63 Domenicali, M. et al. 2005 Increased anandamide
induced relaxation in mesenteric arteries of cirrhotic
Phil. Trans. R. Soc. B (2012)
rats: role of cannabinoid and vanilloid receptors. Gut
54, 522–527. (doi:10.1136/gut.2004.051599)

64 Moezi, L., Gaskari, S. A., Liu, H., Baik, S. K.,

Dehpour, A. R. & Lee, S. S. 2006 Anandamide med-
iates hyperdynamic circulation in cirrhotic rats via
CB(1) and VR(1) receptors. Br. J. Pharmacol. 149,
898–908. (doi:10.1038/sj.bjp.0706928)

65 Lu, T., Newton, C., Perkins, I., Friedman, H. &

Klein, T. W. 2006 Role of cannabinoid receptors in
delta-9-tetrahydrocannabinol suppression of IL-12p40
in mouse bone marrow-derived dendritic cells infected
with Legionella pneumophila. Eur. J. Pharmacol. 532,

170–177. (doi:10.1016/j.ejphar.2005.12.040)
66 Cavuoto, P., McAinch, A. J., Hatzinikolas, G.,
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