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Exogenous cannabinoids, such as delta9-tetrahydrocannabinol (THC), as well as the modulation
of endogenous cannabinoids, affect cognitive function through the activation of cannabinoid
receptors. Indeed, these compounds modulate a number of signalling pathways critically impli-
cated in the deleterious effect of cannabinoids on learning and memory. Thus, the involvement
of the mammalian target of rapamycin pathway and extracellular signal-regulated kinases,
together with their consequent regulation of cellular processes such as protein translation,
play a critical role in the amnesic-like effects of cannabinoids. In this study, we summarize
the cellular and molecular mechanisms reported in the modulation of cognitive function by the
endocannabinoid system.
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1. NATURAL AND SYNTHETIC CANNABINOIDS
AFFECTING COGNITION
Marijuana and other derivatives of the plant Cannabis
sativa have been used for recreational and medical
purposes for thousands of years. To date, more than
70 unique compounds derived from the hemp plant
named phytocannabinoids have been identified [1].
The main psychoactive ingredient of cannabis is
delta9-tetrahydrocannabinol (THC) [2]. Since its dis-
covery, the pharmacological effects of THC have been
extensively characterized in animal models as well as in
humans. These pharmacological effects are well known
in humans and include mood-altering properties, seda-
tion, impairments of memory and motor function,
analgesia, anti-emesis and appetite stimulation, among
others [3]. Studies that linked the structure of phytocan-
nabinoids with their pharmacological activity, together
with the cloning of cannabinoid receptors, allowed the
development of new molecules displaying different
intrinsic activity and selectivity for cannabinoid recep-
tors. A number of biologically active analogues of
THC have been synthesized [4]. These compounds
are collectively called cannabinoids for their cannabimi-
metic properties and share most characteristics of
THC, presenting slightly different pharmacological
profiles. According to their chemical structure, synthetic
cannabinoid agonists can be classified as classical,
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non-classical and aminoalkylindoles [4]. The classical
group consists of dibenzopyran derivatives of THC,
which include HU-210, HU-243 and nabilone [4].
The non-classical group consists of bicyclic and tricyclic
analogues of THC that lack the pyran ring. CP55,940
would be the most representative compound for this
group [4]. The aminoalkylindole group shows a struc-
ture completely different from that of THC, and the
best-known member in this group is WIN55,212-2
[4]. Interestingly, when cognitive performance was
tested, most cannabinoids demonstrated certain impair-
ing effects on a diverse array of learning and memory
tests [5,6]. On the other hand, the generation of selective
antagonists for different cannabinoid receptors, such as
SR141716A (rimonabant) [7] and AM251 [8] for the
CB1 cannabinoid receptor (CB1R) subtype, and
SR144528 [9] and AM630 [10] for the CB2 cannabi-
noid receptor (CB2R) subtype, represents excellent
tools to characterize the role of specific components of
the endocannabinoid system (ECS) in cognition.
In this regard, several of these antagonists have shown
memory-improving capabilities in spatial and operant
paradigms, further supporting the role of the ECS in
cognitive function [11,12].
2. THE ENDOCANNABINOID SYSTEM
The ECS is composed of the cannabinoid receptors,
their endogenous ligands (endocannabinoids) and
the enzymes involved in the synthesis and degradation
of these endocannabinoids. The ubiquitous presence of
the ECS correlates with its role as a modulator of multiple
physiological processes, being a homeostatic mechanism
that guarantees a fine adjustment of information
This journal is q 2012 The Royal Society
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processed in the brain and multiple peripheral tissues,
and providing counter-regulatory mechanisms aimed at
preserving the structure and function of organs [13,14].

(a) Cannabinoid receptors: structure

and distribution

Cannabinoids exert their pharmacological actions
through the activation of at least two distinct cannabi-
noid receptors, CB1R and CB2R, although compelling
evidence supports the existence of other receptors
that bind cannabinoid ligands, such as GPR55
[15,16]. CB1R was cloned in 1990 [17] and 3 years
later, CB2R was also cloned [18]. Both receptors are
G-protein-coupled receptors with seven transmembrane
domains, but there are considerable differences regard-
ing their distribution in the body [4]. Although recent
studies have reported a role for CB2R in the central ner-
vous system [19–24], the abundance of CB1R and
scarcity of CB2R at the central level entail that CB1R is
primarily responsible for the psychoactive effects of
exogenous and endogenous cannabinoids. Indeed,
CB1R is one of the most abundant G-protein-coupled
receptors in the brain and its distribution has been well
characterized in both rodents [25,26] and humans
[27]. CB1Rs are mainly confined at the presynaptic
terminals of central and peripheral neurons, where they
modulate the release of different excitatory and inhibi-
tory neurotransmitters, which include glutamate,
gamma-aminobutyric acid (GABA), acetylcholine, nor-
adrenaline, dopamine, serotonin and cholecystokinin
(CCK), among others [28–30]. Indeed, the ability of
CB1R agonists to inhibit neurotransmitter release
seems to be responsible for their main effects when admi-
nistered in vivo. More recently, CB1R has been localized
in astrocytes [31] and mitochondria [32].

(b) Major endocannabinoids

Endocannabinoids are neuromodulatory lipids finely
regulated by the balance between their synthesis
and inactivation. The most studied endocannabinoids
are N-arachidonoylethanolamine (anandamide, AEA)
and 2-arachidonoylglycerol (2-AG) [33–35], and both
are synthesized on demand in response to elevations of
intracellular calcium [36]. Similar to THC, AEA
behaves as a partial agonist at both CB1R and
CB2R, and also as an endogenous ligand for the vanil-
loid receptor TRPV1 [37]. 2-AG is the most prevalent
endocannabinoid in the brain, and acts as a full agonist
for both cannabinoid receptors, indicating that 2-AG
is a true natural ligand for the cannabinoid receptors
[38]. Endocannabinoids are considered to act as retro-
grade messengers in the central nervous system [39]
behaving as neuromodulators in a wide variety of
physiological processes, thus preventing the presence
of excessive neuronal activity in a manner that main-
tains homeostasis in physiological and pathological
conditions [40].

(c) Enzymes involved in the biosynthesis and

degradation of endocannabinoids

Both 2-AG and AEA are produced from cell membrane
lipids through several biosynthetic pathways. AEA is
synthesized from the phosphatidylethanolamine present
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on the cell membrane by the activation of two enzymes:
N-acyltransferase and phospholipase D [41]. 2-AG is
generated when calcium stimulates phospholipase C,
which transforms membrane phosphoinositides into a
diacylglycerol, from which 2-AG is synthesized by
diacylglycerol lipase [13]. However, other path-
ways might also be involved in the synthesis of these
endocannabinoids [42].

The identification of the enzymes involved in the
degradation of endocannabinoids prompted a search
for inhibitory compounds that target these enzymes
[43]. AEA is mainly degraded by fatty acid amide
hydrolase (FAAH) [44], whereas 2-AG is primarily
metabolized by monoacylglycerol lipase (MAGL)
[45]. Therefore, the action of AEA can be prolonged
by inhibiting its degradation through FAAH enzyme
inhibitors, such as URB532, URB597 [46], OL-135,
OL-92 [47] and PF-3845 [48]. On the other hand,
endogenous 2-AG concentrations can be enhanced
by the administration of the selective MAGL inhibitor
JZL184 [49]. Therefore, the use of these specific
inhibitors of endocannabinoid metabolism allows
modulating specifically AEA or 2-AG accumulation
at their specific sites of action.
3. MECHANISMS UNDERLYING MEMORY
MODULATION BY THE ENDOCANNABINOID
SYSTEM
The ECS is distributed at the pre- and postsynaptic
side of the nerve terminals in brain areas involved in
learning and memory, such as the hippocampus,
modulating synaptic function [50].

(a) Role of the endocannabinoid system in

synaptic plasticity in the hippocampus

Neuronal activity is a potent stimulus for endocanna-
binoid synthesis and release [13]. Once released by
the postsynaptic neurons, endocannabinoids travel
retrogradely across the synapse to bind presynaptic
CB1R, suppressing neurotransmitter release at both
excitatory and inhibitory synapses in a short- and
long-term manner [51–53]. Activation of CB1R
and subsequent long-term inhibition of transmitter
release defines endocannabinoid-mediated long-term
depression (eCB-LTD). When eCB-LTD occurs
at inhibitory terminals (I-LTD), it can facilitate the
induction of long-term potentiation (LTP) at excitatory
inputs [54,55]. Nevertheless, CB1R also mediates
short-term plasticity, as in the case of depolarization-
induced suppression of inhibition or excitation (DSI
or DSE, respectively). In the same target cell, the differ-
ence between eCB-LTD and eCB-DSI/DSE relies on
the duration of CB1R activity, which engages distinct
signalling events in the neuron, leading to a short or
long suppression of neurotransmitter release [53].
A role for intracellular CB1R and mitochondrial mech-
anisms has been recently reported for eCB-DSI in the
hippocampus [32]. On the other hand, the ECS can
be directly modulated by exogenous cannabinoids. In
this regard, the exposure to a single administration of
THC abolished eCB-LTD and I-LTD when measured
in hippocampal slices obtained the next day after canna-
binoid administration, an effect that was reversed to
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control conditions when the electrophysiological
recordings were performed 3 days after THC adminis-
tration [56]. More recently, a critical role for astroglial
CB1R was revealed using in vivo recordings of
cannabinoid-induced LTD (CB-LTD) at hippocampal
CA3–CA1 synapses, because this specific modulation
of synaptic plasticity was not observed in mice that did
not express CB1R in astrocytes [57]. Indeed, the CB-
LTD detected after THC or HU-210 administration
correlated with the impairment of spatial working
memory, an effect that depended on astroglial CB1R
[57]. When THC was administered chronically for
7 days, but not after a single administration, Schaffer
collateral-CA1 LTP generated by theta-burst stimu-
lation or high-frequency stimulation in hippocampal
slices was abolished [58]. A similar result was obtained
after chronic THC in hippocampal perforant path LTP
induced by theta-burst stimulation [59]. The blockade
of LTP as the result of chronic exposure to THC per-
sisted for 3 days after its last administration, and did
not fully recover until 14 days of the last THC injection
[58]. On the other hand, hippocampal slices of mice
lacking CB1R showed an increase in LTP in Schaffer
collateral-CA1 synapses [60], as well as in the dentate
gyrus at perforant path-granule cell layer synapses [61].

Therefore, the modulation of the ECS in the hippo-
campus shapes different forms of synaptic plasticity
in ways that influence hippocampal function and
therefore may affect cognition.
(b) Role of the endocannabinoid system

in cognition

The physiological role of the ECS in cognition has been
widely investigated. It was reported that the ECS has a
specific role in facilitating extinction and/or forgetting
processes [62,63]. In this sense, CB1R knockout mice
showed impaired short-term and long-term extinction
in auditory fear conditioning tests, with unaffected
memory acquisition and consolidation. Treatment of
control mice with rimonabant mimicked the phenotype
of CB1R-deficient mice, revealing that CB1R is
required for memory extinction. Consistently, tone
presentation during extinction trials resulted in elevated
levels of endocannabinoids in the basolateral amygdala
complex, a region known to control extinction of
aversive memories [62].

Both acute and chronic exposure to cannabis are
associated with dose-related cognitive impairments,
most consistently in attention, working memory,
verbal learning and memory functions in animals [5,6]
and in humans [64,65]. In addition to reduced learning,
heavy cannabis use is also associated with a decreased
mental flexibility, increased perseveration and reduced
ability to sustain attention [66]. Long-term heavy
cannabis users show impairments in memory and atten-
tion that, depending on the task analysed, might be
reversible [67], although in some cases they persist
beyond the period of intoxication and get worse with
increasing years of regular cannabis use [68].

Multiple animal models have been used to assess
the effects of the ECS on various stages of memory
(acquisition, consolidation, retrieval and extinction)
and using a wide range of behavioural paradigms
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[6,63,69–71]. Evidence indicates that the activation
of the ECS interferes with working memory and the
acquisition of long-term memory, whereas inhibiting
the ECS can enhance similar phases of memory. On
the other hand, other stages of memory, such as
memory retrieval, could be resistant to cannabinoid
alteration [72,73]. A detailed review of the literature
on the different conditions of pharmacological treat-
ment and behavioural tasks analysed has been
previously reported [6].
(c) Neuroanatomical basis for the effects of

cannabinoids in cognition

In rodents, activation of cannabinoid receptors by
endogenous or exogenous agonists impaired learning
and memory by a mechanism that involves the hippo-
campus. As mentioned earlier, synapses at different
levels in the hippocampus respond to cannabinoid
exposure by increasing or decreasing their functional
connectivity. Multiple studies to reveal memory
impairment produced by cannabinoids have been con-
ducted in paradigms involving spatial tasks known to
be hippocampus-dependent, including the eight-arm
radial maze, the spatial alternation in a T-shaped
maze, the context-recognition test and the open-field
water maze, among others [6,50,71]. However, in
the majority of the studies, cannabinoid agonists are
administered systemically and the contribution of
hippocampus is not directly confirmed.

Interestingly, intrahippocampal infusion of rimona-
bant completely blocked the memory impairment
produced by the systemic administration of THC or
CP55,940 in the radial arm maze task, without affect-
ing other pharmacological properties of cannabinoids,
as assessed in the tetrad assay [74]. In agreement,
intrahippocampal CP55,940 administration produced
working memory deficits that are similar to those
found after systemic cannabinoid administration
[75]. Moreover, intrahippocampal administration of
WIN55,212-2 disrupted memory in the radial and
T-shaped maze delayed alternation tasks [76], and
in the spontaneous object- and place-recognition
paradigms [77].

Electrophysiological evidences also suggest a
predominant role of the hippocampus in the memory-
disruptive effects of cannabinoids. Thus, systemic
administration of THC or WIN55,212-2 disrupted
memory in a delayed non-match-to-sample operant
task that was related to depressed hippocampal cell
firing [78]. Accordingly, exogenous cannabinoid
agonists [58] and endocannabinoids [79] decrease LTP
in hippocampal slices. In addition, THC and HU-210
induced LTD in CA3-CA1 synapses in anaesthetized
and freely moving rats, an effect that was directly related
to an impairment in spatial working memory [57]. Inter-
estingly, both THC and CP55,940 decreased the power
of theta, gamma and ripple oscillations in the rat hippo-
campus, which correlated with memory impairment
on the hippocampus-dependent delayed alternation
memory paradigm [80]. Most of these electrophysio-
logical and cognitive effects of cannabinoid agonists
were attenuated by the administration of rimonabant
[50,71,81–83] or the use of CB1R knockout mice
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[57]. On the other hand, rimonabant facilitated olfactory
memory in the social recognition test [11] and working
memory in the radial arm maze [12]. In agreement
with these pharmacological data, mice lacking CB1R
showed an increase in LTP in the hippocampus [60],
an improvement in memory retention in the object-
recognition paradigm [11,84] and an increased number
of conditional changes in the active avoidance task [85].

Taken together, these findings are consistent with
the notion that CB1R located in the hippocampus
contribute to the amnesic-like effects produced by
cannabinoid agonists. However, the involvement of
CB1R in other brain regions cannot be excluded. As
an example, THC infusion into the prefrontal cortex
disrupted memory on a radial arm maze procedure
of short delay [86], but not on the standard radial
arm task [87]. Therefore, the type of cognitive task
can determine the neural substrates underlying the
memory impairment produced by cannabinoids [6].
(d) Cellular and subcellular localization of CB1R

and its implication in cognition

The widespread anatomical localization of CB1R in
the brain may explain its involvement in multiple
memory stages that might require different neural sub-
strates. In the hippocampus, CB1R is highly expressed
in interneurons, mainly in CCK-positive basket
cell terminals surrounding the soma of pyramidal
neurons [88,89]. However, CB1R is not detected in
parvalbumin-positive fast-spiking basket cells. This
differential distribution of CB1R in inhibitory term-
inals in the hippocampus has implications for the
differential control of inhibitory inputs to the principal
neurons [90]. In 2006, the development of a high-titre
CB1R antibody allowed the localization of CB1R in
the terminals of glutamatergic neurons [91,92]. How-
ever, the density of CB1R on excitatory terminals is
much lower than that on inhibitory terminals [92,93].
On the other hand, CB1R is also expressed in the
cortex, which participates in certain types of memory,
as well as in the amygdala, a structure involved in
emotional memory processes. More recently, CB1R
has also been detected in astrocytes [31] and mitochon-
dria [32], where it can also participate in the control of
cognitive processes.

Several studies point to the deregulation of the excit-
atory/inhibitory neurotransmission in the hippocampus
as a putative mechanism underlying the deleterious
effects of cannabinoids on memory formation. Indeed,
CB1R is much more densely expressed on GABAergic
than glutamatergic terminals in the hippocampus
[92,93], and THC has been shown to act as a full ago-
nist at CB1R located on those GABAergic terminals,
while it acts as a partial agonist at CB1R present on glu-
tamatergic terminals [94]. Therefore, the activation of
CB1R located in GABAergic terminals, leading to a
suppression of GABA release [89], would produce
a concomitant unspecific increase in excitatory firing
contributing to the miss-encoding of memory traces.
In this regard, a selective GABA reuptake blocker has
been reported to enhance spatial learning [95]. Further-
more, the amnesic-like effects of THC are sensitive to
pre-treatment with N-methyl-D-aspartate receptor
Phil. Trans. R. Soc. B (2012)
(NMDAR) antagonists [57,71] also pointing to a role
for glutamate transmission in the cannabinoid-mediated
cognitive deficiency. In addition, THC administra-
tion decreases GABA levels and increases glutamate
concentrations in the rat prefrontal cortex [96].

An alternative or complementary explanation could
come from the presence of CB1R in astroglia, because
CB1R promote the release of glutamate from astroglia,
which could then act on perisynaptic NMDARs
turning on long-term plastic changes [31,57].

The specific enhancement of AEA levels with
the FAAH inhibitor URB597 also affected object-
recognition memory consolidation through the activa-
tion of NMDARs, because this effect was abolished by
the pre-treatment with the NMDAR antagonist
MK801 [97]. In agreement, enhanced NMDAR-
mediated synaptic transmission in a particular line of
knockout mice that exhibits a marked increase in
LTP at Schaffer collateral-CA1 pyramidal synapses,
the IRSp53 knockout mice, is associated with impaired
memory in Morris water maze and object-recognition
tasks [98]. In the same line, mice lacking dystrophin
protein, which is enriched in the postsynaptic densities
of pyramidal neurons, exhibit enhancement of CA1
hippocampal LTP and impaired long-term memory
in the object-recognition task, probably due to a
decrease in the threshold for NMDAR activation
[99]. Several studies support the idea that enhanced
LTP is not often correlated with enhanced memory,
and thus, numerous mutant mice showing increased
LTP display memory impairments [100].

The use of CB1R conditional knockout mice that
lack CB1R either in glutamatergic, GABAergic [101]
or astrocytic cells [57] have provided new insights
into the role of CB1R on memory regulation. Thus,
most of the pharmacological effects of THC, such as
catalepsy, hypothermia, hypolocomotion and antinoci-
ception (cannabinoid tetrad), have been linked to the
activation of CB1R expressed in principal glutamater-
gic neurons because they were mostly abolished in
mice lacking CB1R in forebrain glutamatergic neurons
[102]. In agreement, THC produces full tetrad effects
in the conditional knockout mice lacking CB1R in
GABAergic terminals [102]. Likewise, the GABA-A
receptor antagonist bicuculline does not block THC-
induced tetrad effects [103]. Interestingly, the effects
of cannabinoids on long-term memory and working
memory have been associated to CB1R in GABAergic
terminals [71] or astrocytes [57], respectively. CB1R
located in GABAergic neurons in the hippocampus
are more abundant [91–93] and more sensitive
[94,104] to cannabinoid agonists than CB1R expressed
in glutamatergic neurons. Because THC would prefer-
entially decrease GABA release and has less effect on
glutamate release, memory impairment could be a con-
sequence of a disruption of hippocampal network
activity, which is mediated by synchronized GABAergic
discharges that are disrupted by cannabinoids [80,105].
In agreement, mutant mice overexpressing the GABA
transporter type 1, which removes GABA from the
synaptic cleft, displayed impaired object-recognition
[106], indicating that decreased GABAergic tone, as a
consequence of increased clearance of GABA from the
synaptic cleft, alters memory in the object-recognition
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task. Electrophysiological studies show that repetitive
low-frequency synaptic stimulation promotes persistent
upregulation of endocannabinoid signalling at CA1
GABAergic synapses. In this way, LTD would be
induced at inhibitory synapses, whereas LTP is facili-
tated at glutamatergic synapses [107]. Altogether,
these studies suggest that enhanced NMDAR-mediated
LTP, through a possible unbalance between excitatory
and inhibitory transmission produced by cannabinoids,
could lead to memory impairment.

Lastly, the modulatory effect of CB1R on other neuro-
transmitters has also been proposed to explain the control
of cognitive function by the ECS. Indeed, memory
impairment produced by cannabinoids has been rela-
ted to an inhibition of cholinergic activity in the CNS
[108]. In agreement, both in vitro [109] and in vivo
[110] studies have shown that cannabinoid agonists
induce an inhibition of acetylcholine release in rat hippo-
campus. Moreover, the inhibition of CCK release from
CCK-positive interneurons has also been suggested as a
mechanism because the blockade of CCK receptors
impairs learning in a radial arm maze [111].
(e) Intracellular signalling cascades activated by

the endocannabinoid system affecting cognition

The activation of cannabinoid receptors leads to the
engagement of numerous signal transduction pathways
[14]. However, the precise molecular signalling cas-
cades underlying the disruptive memory effects of
cannabinoids have not been fully characterized. As
members of the G-protein-coupled receptor superfam-
ily, cannabinoid receptors were initially reported to
mediate their biological effects by activating heterotri-
meric Gi/o type G proteins, although they can also
couple to other G proteins [112]. One of the most
characterized CB1R-mediated effects through Gi/o pro-
teins is the inhibition of adenylyl cyclase activity and
reduction in cyclic AMP production, accompanied by
a subsequent decrease in protein kinase A activity.
This particular signalling cascade was found relevant
at the presynaptic level in the modulation by endocan-
nabinoids of the I-LTD in hippocampal slices through
the presynaptic active zone protein Rab3-interacting
molecule-1 alpha (RIM1alpha) [113].

In addition, other signalling cascades are modulated
in the brain through the stimulation of CB1R. Thus,
the phosphorylation of focal adhesion kinase (FAK)
was modulated by THC and the endocannabinoids
AEA and 2-AG in a CB1R-dependent manner
[114,115]. Interestingly, FAK is critically involved in
the regulation of integrins and their association with
the actin cytoskeleton, a key regulator of synaptic
plasticity [116].

Furthermore, CB1R coupling to G proteins can lead
to the phosphorylation and activation of multiple mem-
bers of the mitogen-activated protein kinase family,
including extracellular signal-regulated kinase 1 and 2
(ERK1/2), p38 and c-Jun N-terminal kinase [112].
The relevance of the changes in ERK activity in the hip-
pocampus for the amnesic-like effects of cannabinoids
has not been clarified, although a role for ERK activation
in the molecular adaptations related to cannabinoid
abuse liability [117,118] has been hypothesized.
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THC also modulates the phosphatidylinositol-
3-kinase/protein kinase B (Akt)/glycogen synthase
kinase-3 signalling pathway in the hippocampus after
acute exposure [119]. This would be an independent
event from ERK activity because the ERK inhibitor
SL327 did not affectTHC-induced Akt phosphorylation
[119]. Instead, another downstream transduction path-
way from Akt, the mammalian target of rapamycin
(mTOR)/p70-S6 kinase (p70S6K) pathway, was associ-
ated to the impairing effects of THC in two cognitive
tests involving the hippocampus, the object-recognition
test and the context-recognition test [71]. In this sense,
inhibition of the mTOR/p70S6K pathway with systemic
rapamycin, a specific inhibitor of mTOR, prevented
the phosphorylation of p70S6K after THC adminis-
tration, as well as the memory deficits produced by the
cannabinoid agonist. In agreement, an increase in
the activity of the hippocampal mTOR pathway was
observed when the endogenous AEA levels were
enhanced by the FAAH inhibitor URB597 that was cor-
related with a memory deficit in both memory tasks.
Interestingly, systemic inhibition of mTOR prevented
both the enhanced signalling through this molecular
pathway and the cognitive deficit [97]. Indeed, 2-AG
enhanced levels with the MAGL inhibitor JZL184 did
not induce mTOR activation in the hippocampus
nor memory impairment in the object-recognition and
the context-recognition memory tasks [97], indicat-
ing a dichotomy in the physiological role of both
endocannabinoids in memory modulation.

mTOR is a serine/threonine kinase involved in synap-
tic plasticity as well as in memory processes [120,121]
and, through the formation of mTOR complex 1,
exerts a crucial role in the regulation of protein synthesis
[122]. mTOR contributes to overall cap-dependent
translation by phosphorylating the initiation factor 4E
binding protein (4E-BP) and, in combination with the
activation of the other target p70S6K, might further
enhance the translation efficiency, by upregulating ribo-
somal proteins and translational factors [122]. In this
regard, acute systemic THC administration promotes
in the hippocampus the phosphorylation of both effec-
tors, p70S6K and 4E-BP, as well as some components
of the translational apparatus and factors that partici-
pate in the initiation step of translation, such as
the ribosomal protein S6 and the eukaryotic initiation
factors eIF4E, eIF4G and eIF4B [71]. Interestingly,
non-amnesic doses of the protein translation inhibitor
anisomycin prevented the disruptive effects that
THC produces in long-term memory in the object-
recognition task, indicating that mRNA translation is
required for the long-term amnesic-like effects of
THC [71].

The intact function of mTOR and the precise control
of translation are required for proper memory storage.
Thus, either an enhanced or a reduced level of activity
of the mTOR signalling cascade has been recently
associated to memory disruption [123]. Upon CB1R
stimulation by THC or AEA, the mTOR signalling
pathway is over-activated and memory consolidation is
distorted. In this sense, several lines of mutant mice
that show an activation of the hippocampal mTOR
pathway also display memory deficits. This is the case
for tuberous sclerosis complex 1 (TSC1) and tuberous
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sclerosis complex 2 (TSC2) heterozygous mice
(TSC1þ/2 and TSC2þ/2) [124,125], and the fragile-
X mental retardation protein knockout mouse, an
animal model for fragile X syndrome [126]. Further-
more, the FK506-binding protein 12 knockout mice,
which showed enhanced mTOR and p70S6K phos-
phorylation in the hippocampus, display enhanced
associative contextual fear memory and an anomalous
performance in the object-recognition task, probably
due to perseveration [127]. However, it is unknown in
all these mutant mice whether mTOR-driven transla-
tional control leads to an increase in translation of a
specific subset of mRNAs or promotes unspecific
general translation.
4. CONCLUDING REMARKS
The ECS has been proposed as a critical neuromodu-
latory system that affects learning and memory. This is
due to its neuromodulatory effects induced in specific
brain areas involved in cognitive function such as
the hippocampus.

Recent reports have shown how cannabinoid recep-
tors expressed in particular neuronal populations are
crucial to regulate the amnesic-like effects of cannabi-
noids. A certain degree of functional specificity for the
main endocannabinoids, AEA and 2-AG has also been
proposed. The subcellular localization of the ECS
components in synaptic terminals readily affects
synaptic plasticity processes that lie behind cognitive
performance. In addition, the intracellular signalling
pathways associated to the activation of the ECS over-
laps those involved in the physiological mechanisms
for memory formation. Among those signalling path-
ways, the mTOR pathway has been considered
crucial for the effects of cannabinoids in cognition
based on biochemical and behavioural evidence. This
pathway, modulated in vivo by cannabinoids, plays a
key role in preventing or promoting memory in physio-
logical and pathological conditions.

Additional studies would be required to clarify the
complexity of cannabinoid signal transduction in
the brain areas involved in the control of cognitive func-
tions. In addition, it would be of interest to identify the
potential role that the ECS may play in specific patho-
logical conditions running with cognitive deficits,
where pharmacological modulation by cannabinoid
receptor ligands might be beneficial. The new evidence
on the signalling pathways involved in the cognitive def-
icits produced by cannabinoids open new opportunities
to design therapeutic strategies to minimize the deleter-
ious effects of cannabinoids while preventing other
therapeutic actions such as analgesic, anti-emetic,
anti-epileptic, anti-ischemic or anti-tumoural effects.
Moreover, uncovering the specific role of the ECS in
the physiological processes regulating cognition may
serve as a tool to modulate specific memory traces or
to regulate cognitive competence.
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