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The commentary in this issue by Boffetta et al.1

addresses a challenging problem: given that a genetic
factor, G, and an environmental factor, E, might both
influence risk of cancer, how can we systematically
assess the accumulated published evidence for the
existence of interaction between them? Most complex
diseases, not just cancer, probably arise through a
web of factors that are both genetic and environmen-
tal, so this question arises as one of central relevance
to the epidemiological study of aetiology.

Boffetta et al. begin with a comprehensive review of
the literature on approaches and sources of bias for
assessments of interaction, giving an overview that
should be highly useful to readers. They then suggest
a scoring system to combine prior biological know-
ledge related to plausibility, for example knowledge
that both the exposure and the genetic factor are
involved in the same pathway, with available evidence
for main effects and for interaction. Whereas the au-
thors deserve credit for taking on a daunting problem
and paying due attention to the biology, I have some
issues with the proposed enterprise. I will start by
offering some supplemental points and end with a
bigger-picture conceptual issue.

First, the recommendations provided were repre-
sented as specific to cancer, but the same overall
strategies should apply to other complex phenotypes
as well. Given that readers will want to apply the pro-
posed principles more broadly, it seems worthwhile to
broaden our consideration of them. The authors men-
tion some designs other than the case–control design,
including the case-parent trio design, which they say is
‘rarely used’ but can be used for testing. It is true that
case-parent designs are not typically appropriate in
cancer research, because most diagnoses occur in later
life. Nevertheless, the case-parent triad design has been
extensively used in studies of non-cancerous
young-onset conditions. An ongoing ‘Two Sister
Study’ uses a family design for young-onset breast
cancer. Whereas a case-parent approach cannot assess
main effects of exposures (unless unaffected siblings are
also studied), the design is in some ways ideal for the

study of birth defects, pregnancy complications and
phenotypes such as asthma, schizophrenia and
autism, which are diagnosed at a young age. As its in-
ference relies on transmissions of alleles from parents to
offspring, under a case-parent design relative risks asso-
ciated with inherited genotypes are estimable without
concern for genetic population stratification. However,
this is not its major selling point, as good statistical
methods for genomic control are available for case–con-
trol studies (provided ancestry-informative markers are
available). Family designs also resist bias due to
self-selection of cases and controls (no population-
based controls are needed). They also resist confound-
ing bias due to prenatal experiences that are caused or
modified by the maternal genome, a mechanism that
can be particularly important for young-onset condi-
tions and can distort inference based on case–control
designs, including inference related to GxE interaction.
With data from nuclear families, one can also identify
and study causative genes that are subject to
parent-of-origin effects, a phenomenon that cannot be
probed using a case–control design. Such a gene was
recently reported for breast cancer2 based on Icelandic
family data.

A word of caution is needed. Whereas family-based
designs offer some advantages over a case–control
design for studying conditions with onset early in
life, we have recently shown3,4 that, although for geno-
type main effects they fully resist bias due to popula-
tion stratification, neither case–control designs nor
designs based on nuclear families are fully robust for
assessments of GxE interaction. Bias can arise if the
population stratification involves the exposure. The
problem is that exposures can track with genes be-
cause cultural practices tend to be passed on along
with genes. What can happen with assessments of
GxE is that, e.g. in a genome-wide interaction study,
one is typically not directly examining a causative
single nucleotide polymorphism (SNP), but a marker
SNP that is related to risk only through linkage dis-
equilibrium (LD) with an untyped causative locus. If
there are incompletely mixed genetic subpopulations,
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and haplotype prevalences and exposure prevalences
both vary across those subpopulations, then the expos-
ure can act as a surrogate for the degree of LD between
the SNP that was typed and a causative SNP, produ-
cing spurious evidence for (or suppression of) multi-
plicative interaction. Thus, control for population
stratification, or inclusion of an unaffected sibling4

can be important when assessing interaction.
One problem that must be confronted in case–control

approaches is that valid tests of GxE interaction (regard-
less of the choice of null model) require that the main
effects of both G and E be correctly specified. G effects
can be saturated simply through assuming a co-dom-
inant model. In contrast, if E is a continuous exposure,
getting the E main effects model right is challenging.
With a case-parents design, this issue is partially
bypassed by modelling the transmission of the variant
allele as possibly depending on E under GxE alterna-
tives.5,6 This approach permits valid inference for a
test of multiplicative GxE without the need to correctly
specify the E main effects. Categorization of E provides
another practical solution, which should work for a
case–control design or a case-parent design,6 but the
choice of cut-points becomes somewhat arbitrary, as
discussed by Boffetta et al.1

Boffetta et al. quite sensibly, in my opinion, propose
that a marginal main effect of G and main effect of E
will likely be discernable if the two interact. Although
one can invent examples where neither has a marginal
effect on risk, but nevertheless the two interact, such
examples are highly artificial. The exposure would have
to be beneficial in those with a particular genotype and
detrimental in those with a different genotype.
Consequently, it seems sensible to include assessments
of main effects as important to establishing plausibility
that two factors interact.

Consider the evidence for a main effect of G. One must
remember that a genome-wide association study
(GWAS) with a million SNPs may still not have typed
the causative SNP; consequently, associations will often
be attenuated because we are typing more or less weak
surrogates for the aetiologically relevant genotype.
Moreover, the LD that GWASs rely on to produce evi-
dence for a main effect for G may be different in differ-
ent populations, and flip-flops can even occur, where
the direction of effect switches due to different ancestry
in the different populations.7 Thus, a finding of hetero-
geneity in the apparent G effect across studies should
not necessarily be taken as weakening the evidence for
a genotype’s main effect. Another related point is that
several SNPs in loci that are in high LD may simultan-
eously need to be present (e.g. if the true effect depends
on a haplotype). Similarly, there can be ‘epistasis’: sev-
eral unlinked variant SNPs may be jointly needed to
disable a causally relevant pathway. Such multi-SNP
effects are subject to huge attenuation under
SNP-by-SNP analysis.8

Finally, interaction itself, as a phenomenon that
might either exist or not exist, is not a well-defined

concept. Do E and G interact? Mathematically, we
already know the answer. If they both are risk factors
under some coding, then the answer must be yes; for
some selected no-interaction null hypothesis, they
statistically must ‘interact’. If their true joint effect
is multiplicative then they interact compared with
an additive no-interaction null. If their true joint
effect is additive, then they interact compared with
a multiplicative no-interaction null. If their joint
effect is something else entirely, neither additive nor
multiplicative, then they interact compared with both
nulls. So, in the event that both main effects are
present, if we make the existence of interaction our
primary question, we either agree that there is always
some kind of interaction, or we condemn ourselves to
an ongoing round of arguments over which of the
possible null-interaction models is the right one.
I9,10 and others have argued for additivity of hazards
as the best no-interaction null model, because hazard
additivity captures biological effects that are separate
and probabilistically independent, which feels like
what one should want biologic independence to
mean. This is also how toxicologists have historically
defined ‘simple independent action’ for the joint
effect of toxic exposures.11 But if two factors act at
separate stages, e.g. in a carcinogenic cascade, then
we know that biologic independence can alternatively
produce a multiplicative joint effect.12 In my view, the
arguments over which is the best null model for no
interaction are interesting but ultimately unresolv-
able. Perhaps the question itself, the one about
whether G and E interact, needs to be reframed.
Suppose evidence suggests that both G and E are
risk factors. If our goal is to better understand how
risk factors work together to increase risk, the real
aetiological challenge is to devise and understand
the best multi-predictor model for their combined ef-
fect.10 Having developed a revelatory model, we could
then probe it for insights into the underlying biologic
processes.13 This project is admittedly difficult. But
ultimately, I think what will serve us better than a
well-crafted scoring scheme is multi-predictor models
that reflect both the published data and prior biolo-
gical knowledge, and offer testable insights into the
underlying pathogenic processes.
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Thompson1 noted in 1991 that, although more than a
decade had passed since the first discussion of ‘inter-
action’ in the epidemiological literature, debate had
by then subsided and few clear conclusions had
emerged. He concluded:

Unfortunately, choice among theories of patho-
genesis is enhanced hardly at all by the epidemio-
logical assessment of interaction . . . What few
causal systems can be rejected on the basis of
observed results would provide decidedly limited
etiological insight.

This conclusion probably represented the consensus of
opinion at that time. Yet 20 years later, discussion
and reports of interactions pervade the literature. In
this journal alone, two papers giving guidelines and
recommendations for reporting and assessing inter-
actions have appeared within weeks of one another.
Knol and VanderWeele2 considered only the reporting
of interactions. Boffetta et al.3 primarily discuss the

assessment of evidence, but, since they are much
concerned with the ‘cumulative’ evidence following
meta-analysis or systematic review, they inevitably
touch on the reporting of interactions.

One could point to several developments that have
contributed to this reawakening of interest. The first
of these has arisen from recent work by the statisti-
cians in ‘causal modelling’, which has led to new,
deterministic, definitions of mechanistic interaction.
One such approach derives from the earlier work of
Rothman4 on component causes, whereas the other is
based on the currently popular focus on counterfac-
tual outcomes. In the former approach, interaction
between two causal factors is defined as the presence
of a sufficient cause, which involves both factors as
component causes, whereas from the latter viewpoint,
interaction implies the existence of people in the
population who would not have developed disease
unless they had been exposed to both factors. These
viewpoints have been shown to be mutually consist-
ent5–7 and, subject to certain assumptions, are also
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