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LEARNING OBJECTIVES

After completing this course, the reader will be able to:

1. Describe the current in vivo experimental and clinical dendritic cell (DC) vaccination studies encompassing the
monitoring of natural killer (NK) cells.

2. Discuss the evaluation of NK cell stimulating potency in the design of DC-based cancer vaccines in the preclinical
phase and in clinical trials.

3. Explain the added value of immune monitoring of NK cells in cancer vaccination trials.

This article is available for continuing medical education credit at CME.TheOncologist.com.CMECME

ABSTRACT

The cytotoxic and regulatory antitumor functions of natu-
ral killer (NK) cells have become attractive targets for im-
munotherapy. Manipulation of specific NK cell functions
and their reciprocal interactions with dendritic cells (DCs)
might hold therapeutic promise. In this review, we focus on
the engagement of NK cells in DC-based cancer vaccina-
tion strategies, providing a comprehensive overview of cur-
rent in vivo experimental and clinical DC vaccination
studies encompassing the monitoring of NK cells. From
these studies, it is clear that NK cells play a key regulatory
role in the generation of DC-induced antitumor immunity,

favoring the concept that targeting both innate and adap-
tive immune mechanisms may synergistically promote
clinical outcome. However, to date, DC vaccination trials
are only infrequently accompanied by NK cell monitoring.
Here, we discuss different strategies to improve DC vaccine
preparations via exploitation of NK cells and provide a
summary of relevant NK cell parameters for immune mon-
itoring. We underscore that the design of DC-based cancer
vaccines should include the evaluation of their NK cell
stimulating potency both in the preclinical phase and in
clinical trials. The Oncologist 2012;17:1256–1270
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NATURAL KILLER CELLS IN CANCER
In the early 1980s, the role of natural killer (NK) cells in de-
fense against cancer was described in seminal reviews [1, 2]. A
myriad of reports rapidly followed, supporting the involve-
ment and therapeutic potential of NK cells in cancer immunity
[3, 4]. A range of solid tumors [5–12] and hematological ma-
lignancies [13–19] were shown to be associated with signifi-
cantly impaired NK cell functions. Importantly, NK cell
abnormalities have been shown to be, at least in part, respon-
sible for the failure of antitumor immunity. Deficiencies can
reside in all NK cell populations, located in peripheral blood,
in (lymphoid) organs, and in the tumor itself [16]. Functional
impairment can originate from (a) primary NK cell dysfunc-
tion (e.g., imbalanced NK cell receptor expression, impaired
cytolytic capacity, reduced cytokine secretion potency), (b) in-
sufficient interaction with other immune cells (e.g., impaired
killing of dendritic cells [DCs]) [14], (c) active immune sup-
pression (e.g., regulatory T cell [Treg]-mediated suppression)
[20, 21], and (d) NK cell resistance mechanisms by tumor cells
(e.g., shedding of decoy molecules for activating receptors)
[22]. In this regard, multiple cancer studies point toward a
prognostic value for NK cells. Table 1 summarizes valuable
NK cell parameters used for prognosis of disease progression
and patient survival as well as for prediction of therapy effi-
cacy.

In humans, NK cells are characterized by a CD56�

CD3�NKp46� phenotype. Based on their CD56 cell-surface
density, they can be divided into two subsets with distinct pheno-
typic properties and key effector functions [23]. The major-
ity (�90%) of peripheral blood NK cells have a CD56dim

CD16bright phenotype and were originally regarded as the more
naturally cytotoxic subset, characterized by high cytotoxic gran-
ule and perforin expression and lower cytokine-secreting capac-
ity. The smaller CD56brightCD16dim/� NK cell fraction (�10%)
constitutively expresses a higher number of cytokine and chemo-
kine receptors and a lower amount of cytotoxic granules, gener-
ally showing a poorer cytotoxic capacity but a superior ability to
produce abundant immunoregulatory cytokines following activa-
tion, in particular the prototypic cytokine interferon (IFN)-�.
Remarkably, these seemingly subtype-specific effector
functions appear to be not as restricted as previously
thought. Several research groups recently demonstrated that
CD56dimCD16bright NK cells can be more prominent cytokine
and chemokine producers than CD56brightCD16dim/� NK cells,
depending on the stimuli received [24–26].

Altogether, it is well accepted that NK cells possess potent
antitumor functions that could be targeted for immune-based
therapy [27–30]. Their direct antitumor effects can be attrib-
uted to their cellular cytotoxicity and cytokine-producing ca-
pacities. NK cells can also indirectly contribute to tumor
control by communicating with other immune cells (e.g., DCs,
NKT cells, and T cells), leading to an efficient adaptive anti-
tumor response [31–33]. In this review, we focus on the role of
NK cells in DC-based cancer vaccination strategies, providing
a comprehensive overview of current in vivo preclinical and
clinical DC vaccination studies. We discuss different strategies
to improve DC vaccine preparations through engagement of

NK cells and we provide a summary of relevant NK cell pa-
rameters for immune monitoring.

DC- AND NK CELL–BASED IMMUNOTHERAPY
OF CANCER
DCs are widely recognized as key antigen-presenting cells,
critical for the induction of cellular immunity and central or-
chestrators of the immune system, bridging innate and adap-
tive immunity [34]. In this perspective, it has become clear that
NK cells and DCs are in close communication, supporting the
development of an efficient antitumor immune response. DC-
mediated activation of NK cells contributes to the develop-
ment of potent innate immunity, whereas, in turn, activated NK
cells provide signals for DC activation, maturation, and cyto-
kine production, promoting adaptive immunity (Fig. 1)
(extensively reviewed elsewhere [31, 34 –37]). Current un-
derstanding supports the idea of exploiting NK–DC immune
interactions in cancer immunotherapy (Fig. 1). A number of
(combined) therapies, for example, cytokine [38], monoclonal
antibody [39], and drug [40] therapy, qualify as acting on both
immune cell types. Also, tumor cell vaccines that target both
the hosts’ NK cells and DCs may be successful [41–44]. Over-
all, improvement in tumor cell recognition by NK cells (cyto-
toxicity) and DCs (phagocytosis and antigen presentation),
including stimulation of NK–DC interaction to advance sus-
tained T cell immunity, should be considered in the design of
novel immunotherapeutic protocols.

Several NK cell–based immunotherapeutic strategies have
been developed, comprising both direct and indirect targeting
of NK cell functions. Two main approaches can be distin-
guished, that is, adoptive transfer of NK cells [45–47] and in
vivo modulation of endogenous NK cells [28, 29, 35, 48, 49],
to bring about antitumor effects. Focusing on the latter, the
most powerful immunoregulatory approach would be to attract
NK cells to the site of interest, to target both their cytotoxic and
their immunoregulatory functions, and to break tumor-medi-
ated immune suppression or escape (Fig. 1). Following the ex-
panding knowledge on NK–DC crosstalk, several groups have
advocated the need to harness these immune interactions in the
design of active specific immunotherapy [48, 50, 51]. In view
of this, DC-based vaccination would be an obvious strategy to
bring about NK cell activation (Fig. 1).

DC-based therapy originates from the unique capacity of
DCs to present captured antigens to T cells, which is essential
for generating specific T cell immunity [51–54]. Loading of
DCs with tumor-associated antigens (TAAs) has therefore be-
come an attractive therapeutic tool in order to generate tumor-
specific T cells. The immunological outcome of DC
vaccination strategies is predominantly evaluated based on in-
duction of specific T cell responses. Indeed, most (pre)clinical
trials provide evidence of tumor-specific CD8� and/or CD4�

T cell responses. However, a discrepancy between these im-
munological responses and clinical outcome remains [55].
Studies that could demonstrate clinical tumor regression with-
out detecting specific T cell generation prompted the investi-
gation of other mechanisms that could be attributed to the
observed effect [56, 57]. Given the importance of NK–DC
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crosstalk in the development of an immune response, specific
monitoring of NK cells and their responses is emerging as a
valuable avenue in DC vaccine protocols. Vaccine DCs can
stimulate the cytotoxic activity, cytokine secretion (IFN-�, tu-
mor necrosis factor [TNF]), and migration of NK cells by sol-
uble (e.g., interleukin [IL]-12, IL-15, IL-18, type I IFN, CXC
chemokine receptor ligand 9 [CXCL9], CXCL10, CXCL11,
C-C chemokine ligand 5 [CCL5]) and contact-dependent (e.g.,
NKp30, NKG2D) signals, contributing to the development of
potent innate immunity (Fig. 1). In turn, activated NK cells can
further stimulate vaccine and host DCs, contributing to recruit-
ment, activation or maturation, and lysis of DCs to advance
sustained antitumor T cell immunity and limit inappropriate T
cell tolerization (Fig. 1A). Additionally, enhanced killing of
antigen-expressing target cells by NK cells can directly reduce
tumor burden and provide (extra) tumor cell material for up-
take by DCs and antigen presentation to T cells (Fig. 1B). Fur-
thermore, both NK cell regulatory and lytic activities can
facilitate robust T cell activation in direct (e.g., IFN-�, killing)
and indirect (e.g., T helper 1 [Th1] DC polarization, lysis of
immature DCs [iDCs] to prevent inappropriate T cell toleriza-
tion) ways, whereas production of Th1 cytokines by T cells, in
turn, can further promote NK cell activation (Fig. 1C).

NK CELLS IN PRECLINICAL DC-BASED VACCINATION
Fernandez and colleagues were the first to address NK–DC
crosstalk in cancer, uncovering that DCs support the antitumor
activity of NK cells [58]. They demonstrated, in mice, signif-
icant NK cell–mediated tumor growth delay upon adoptive
transfer of DCs and confirmed the NK–DC interaction in vitro
by showing DC-induced improvement in NK cell–mediated
cytotoxic and IFN-�–producing capacity. Ensuing from these
data, they emphasized that DC-based immunotherapy may not

only promote T cell– dependent antitumor immunity, but it
may also directly trigger NK cells in vivo. At the same time,
Cayeux et al. [59] demonstrated that DCs, either peptide
pulsed, antigen loaded, or gene modified, generated specific
cytotoxic T lymphocytes (CTLs) and rejected in vivo tumor
challenge, together with an increase in splenic NK cells and
lysis of DCs by IL-2–activated NK cells, inferring that anti-
gens released from lysed DC vaccines could in turn be taken up
by host antigen-presenting cells to further enhance immunity
[59].

A plethora of research publications on this novel topic of
NK–DC interaction rapidly followed, although up until now
the effectiveness of DC-based vaccines in clinical settings has
rarely been accompanied by NK cell data. Some groups have
put forward the potential of DC vaccination to stimulate NK
cell functions and supported the idea that DC vaccine efficacy
is likely to be dependent on NK cell stimulatory capacity [31,
60–62]. Although, in general, DC-based vaccines are aimed to
elicit antitumor T cell responses, in fact, a range of mouse in
vivo studies demonstrated that immunization with activated
DCs leads to significant antitumor immunity in an NK cell–
dependent manner, regulated via direct NK cell effects and/or
a critical interplay among NK cells, T cells, and DCs. Table 2
provides a comprehensive overview of preclinical DC vacci-
nation studies exploring the involvement of NK cells. Rou-
tinely, bone marrow– derived DCs were loaded with tumor
antigens (peptide, protein, lysate) via pulsing or viral transduc-
tion and administered through various routes. In some cases, a
surrogate tumor antigen, such as ovalbumin (Ova) or �-galac-
tosidase (�-gal), was used to verify antigen specificity. The in-
volvement of NK cells was principally evidenced by in vivo
antibody-mediated NK cell depletion or the use of beige NK
cell–deficient mice (Table 2).

Table 1. Prognostic and predictive NK cell parameters
NK cell parameter Association Malignancy

Extensive NK cell tumor infiltration, high
frequency of circulating NK cells

Favorable outcome Lung cancer [154, 155], colorectal cancer
[143, 156–158], gastric cancer [159],
renal cancer [142, 160], AML [138]

NK cell cytolytic activity (typically against K562
target cells)

Inversely correlated with disease
progression and relapse rate

Head and neck cancer [161, 162], hepatic
cancer [163], AML [144, 164–168],
melanoma [81, 169], various
malignancies [170]

NK cell IFN-� secretion potency Favorable outcome Leukemia [167, 171], GIST [146, 172]

Dull (altered) NK cell–activating receptor
phenotype (e.g., NCR, NKG2D)

Active disease and poor survival
outcome

AML [13], MDS [173], MM [174]

Predominant expression of NKp30c isoform
(over the NKp30a and NKp30b isoforms)

Shorter survival time GIST [175]

Impaired DC-stimulating capacity of NK cells Disease progression AML [14]

Low membrane or high soluble NKG2D ligand
expression (i.e., MIC-A or MIC-B or ULBP-1 to
ULBP-4)

Lower susceptibility to NK cell–
mediated killing

Hematological malignancies [176, 177],
MM [178], prostate cancer [179],
colorectal cancer [158], various
malignancies [180, 181]

Missing one or more KIR ligands versus all ligands Protection against relapse Leukemia, MDS [182]

Abbreviations: AML, acute myeloid leukemia; GIST, gastrointestinal stromal tumor; IFN, interferon; KIR, killer cell
immunoglobulin-like receptor; MDS, myelodysplastic syndrome; MIC, MHC class I chain-related; MM, multiple myeloma;
NCR, natural cytotoxicity receptor; NK, natural killer; NKG2D, NK cell receptor D; ULBP, UL-16-binding protein.

1258 NK Cells in DC-Based Cancer Vaccination



TAA-loaded DC vaccines were most frequently studied in
the B16 murine melanoma model (Table 2). Immunization of
mice with melanoma antigen–transduced DCs [63–66] or tu-
mor lysate–pulsed DCs [67] resulted in an NK cell– and T cell–
mediated complete or partial protection against tumor
challenge. The outcome was typically measured by the ab-
sence or significant control of pulmonary metastases. TAA-
loaded DC immunization has also led to efficient NK cell– and
T cell–dependent antitumor immunity in other tumor models,
resulting in protection against tumor challenge and prevention
or retardation of established tumor growth [68, 69]. Addition-
ally, it was demonstrated that, in combination with preventive
anti-CD25 depletion to block Treg cells, the DC-mediated an-
titumor effect was more beneficial, allowing rejection of a
much higher tumor burden and the development of long-last-
ing tumor protective immunity [68]. This is in agreement with
the work of Ghiringhelli and colleagues, demonstrating that
Treg cells inhibit NK cell functions [20]. The approach of DC–
tumor cell fusions exploiting the whole tumor cell antigenic
profile has also shown potent NK cell stimulatory capacities,
resulting in NK cell–dependent protective immunity against
tumor challenge [70 –72] and long-term systemic immunity

[72] (Table 2). Interestingly, several groups documented the
ability of nonantigen-loaded DCs (lacking TAAs), alone or
with an adjuvant, to exert protection against tumor challenge,
to prevent the development of tumor metastases, to establish
long-term survival, and to clear established tumor in an NK
cell–dependent manner [73–84] (Table 2). Also, in control ex-
periments of DC vaccination studies, the nonantigen-loaded
DC control was able to induce NK cell–mediated immunity
[64, 66, 68, 78, 85, 86].

In an alternative (nonantigen-loaded) strategy, DCs are
modified to express high amounts of defined proinflammatory
cytokines (e.g., IL-12, IL-15, IFN-�, IFN-�, IL-18, IL-2) [53].
Cytokines play a pivotal role in the polarization and skewing of
adaptive immunity and hence in DC-mediated T cell activa-
tion. Importantly, these cytokines could also play a key role in
the activation of NK cells. Monitoring of NK cells following
cytokine-secreting DC vaccination was performed in only four
mouse studies, all evaluating DCs modified to secrete IL-12
(Th1-skewing cytokine and important NK cell activation sig-
nal) [86–88], including one additionally testing IL-15–secret-
ing DCs (T cell– and NK cell–activating signal) [89].
Vaccination with IL-12– and IL-15–secreting DCs resulted in

Figure 1. How NK cells can contribute to the antitumor efficacy of DC-based vaccination. Vaccine DCs can activate NK cells to
(A) further stimulate vaccine and host DCs to advance sustained antitumor T-cell immunity, to (B) directly kill tumor cells, reducing the
tumor burden and providing tumor cell material for further processing, and to (C) facilitate robust T-cell activation.

Abbreviations: iDC, immature dendritic cell; mDC, mature dendritic cell; NK, natural killer cell; Th1, T helper 1; Treg, regulatory T
cell.
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Table 2. Preclinical DC-based cancer vaccination models evaluating involvement of NK cells
DC product Tumor model Outcome NK cell monitoring Comments Reference

Antigen-loaded DCs
Human melanoma Ag
gp100 AdV-DCs

s.c. B16 melanoma CD4� T- and NK cell–dependent
complete protection against tumor
challenge

No functional NK cell-
directed assays

Anti-NK1.1 Ab, beige
mice

[63]

MART-1 or mock
AdV-DCs

s.c. B16 melanoma 1 NK cell–mediated Ag nonspecific
protection against tumor challenge in
CD8�KO mice (70%), mediated by
interaction of lytic NK cells and IFN-
� producing CD4� T cells

1 NK cell cytolytic activity
against B16 cells

Anti-NK1.1 Ab in
CD8�KO mice

[64]

MART-1 AdV-DCs s.c. B16 melanoma Complete or partial protection against
tumor challenge, dependent on CD8�

T, CD4� T, and NK cell
collaboration

1 IFN-�–secreting splenic
(partly) NK cells upon
MART-1 peptide
stimulation;1 splenic NK
cell lytic activity against B16
cells

Anti-NK1.1 Ab, beige
mice

[65]

Necrotic tumor lysate
pulsed DCs

s.c. B16F10 melanoma NK cell–dependent protection against
lung metastases upon tumor challenge

1 LAK cell lysis of YAC-1
cells;1 IFN-� mRNA;1
in vitro NK cell IFN-�

Anti-NK1.1 Ab, beige
mice

[67]

SIINFEKL-encoding
delta51-VSV-DCs

s.c.f.p. B16F10 melanoma NK and CD8� T cell–dependent
specific and nonantigen-specific
protection against lung metastases
upon tumor challenge

1 CD69� and IFN-��

splenic NK cells
Anti-NK1.1 Ab [66]

�-gal antigen
pulsed, protein pulsed,
or gene modified DCs

i.v. �-gal–expressing
tumors

Moderate rejection of tumor
challenge

1 NK1.1�/Ly49C� cells;
no1 LAK cell lysis of
YAC-1 cells;1 LAK cell
lysis of DCs

No in vivo NK cell
depletion or reconstitution

[59]

Ova or mock AdV-DCs i.p. Ova� EG-7 lymphoma Specific T- and NK cell–dependent
protective immunity against tumor
challenge (78%)

1 splenic NK cell lytic
activity against YAC-1 cells

Anti-NK1.1 Ab [85]

Tumor-derived gp96-pulsed
DCs

s.c. LLC Retardation of established tumor
growth and protection against tumor
challenge

1 splenocyte lytic activity
against LLC, MBL-2 and
YAC-1 cells

Anti-NK1.1 Ab [69]

C1498-extracted peptide or
non-Ag-loaded LPS-mDCs

i.p. C1498 AML Natural NK cell- and partial NK and
CD4� T cell–mediated prevention of
leukemia outgrowth; survival
advantage if CD25� T cells are
depleted

1 NK cell lytic activity
against C1498 and YAC-1
cells

Anti-NK1.1 Ab [68]

Peptide-loaded iDCs or
mDCs

i.v., i.p., s.c. OVA257–264, E749–57 mDC- but no iDC-mediated
protection against tumor challenge by
in vivo NK cell- and TRAIL-
mediated elimination of iDCs

1 CTL activity by
neutralizing NK cells or
TRAIL

Anti-NK1.1 Ab, anti-
TRAIL Ab and deficient
mice

[91]

DC or tumor cell fusions
Irradiated DC–tumor cell
cocultures

s.c. CT26 colon carcinoma Protective immunity against tumor
challenge

1 splenocyte lytic activity
against YAC-1 cells

No in vivo NK cell
depletion or reconstitution

[71]

Irradiated DC–tumor cell
cocultures

s.c. CT26 colon carcinoma NK cell–dependent protective
immunity against tumor challenge
(100%)

1 CTL and NK cell
cytolytic activity;1 IFN-�
mRNA

Anti-asialo-GM1 [70]

Syngeneic DC–allogeneic
fibroblast fusions
transfected with tumor-
derived genomic DNA

s.c. B16 melanoma NK cell–dependent protective
immunity against tumor challenge
and long-term systemic immunity
against parental tumor

1 splenocyte lytic activity
against YAC-1 and B16 cells

Anti-asialo-GM1 [72]

Non-Ag-loaded DCs
Non-Ag-loaded DCs or D1 i.t. AK7 mesothelioma Significant NK cell–dependent tumor

growth delay
1 cytolytic activity;1 IFN-
� production

Anti-NK1.1 Ab, beige
mice

[58]

Non-Ag-loaded mDCs i.v., i.p., s.c. CT26 colon carcinoma;
LL/2 lung carcinoma

Protection against tumor lung
metastases upon tumor challenge:
correlated with NK cell activity;
CD4� T cell requirement for
induction of NK cell antitumor
response; DC-derived IL-12 and IL-
15 independent

1 LAK cell lysis of YAC-1
and CT26 cells;1 NK cell
lung infiltration upon tumor
challenge

Anti-asialo-GM1, beige
mice

[80]

Non-Ag-loaded LPS-mDCs s.c. A20 B cell lymphoma NK cell–dependent protection against
lethal dose A20 cells

1 NK cell lytic activity of
YAC-1 and A20 cells;
NKG2D mediated

Anti-asialo-GM1 or
TM�1 Ab

[73]

Non-Ag-loaded iDCs s.c., i.c. B16 melanoma CD4� T and NK cell–dependent
(CNS) antitumor immunity against
tumor challenge

1 splenic NK cell lytic
activity against B16 cells;1
DLN NK cell expansion;1
i.t. CNS NK cell infiltration

Anti-NK1.1 Ab in
CD8�KO mice

[77]

Non-Ag-loaded
CpG-mDCs

f.p. MO5 melanoma NK cell- and CTL-dependent
protection against tumor challenge

1 NK cell expansion;1
DLN NK cells;1 CD69�

popliteal NK cells;1 IFN-
�� popliteal and splenic NK
cells;1 splenic NK cell
lytic activity against MO5
cells

Anti-NK1.1 Ab [74]

�-GalCer-pulsed or
unloaded LPS-mDCs

i.v. B16 melanoma Protection against tumor challenge;
long-term CD4� T cell–dependent
activation of NK cells (pulsed �
unpulsed DCs)

1 CD69� and IFN-��

splenic NK cells dependent
on recipient T cells and DCs;
continuous NK cell
generation

Anti-asialo-GM1 and
NK1.1 Ab, IFN-��/�

mice

[78]

�-GalCer-pulsed DCs i.t. CMS4 liver sarcoma NK cell–dependent tumor rejection
and established long-term survival

1 serum IFN-�;1 hepatic
NK cell lytic activity against
YAC-1 cells

Anti-asialo-GM1 [79]

(continued)
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combinatorial NK cell– and T cell–dependent tumor eradica-
tion in all studies [86–89] and induced long-term protection
against rechallenge with tumor cells [86] (Table 2). Rodriguez-
Calvillo et al. [88] showed that tumor rejection was completely
reliant on IFN-� and IL-12. In an equivalent in vitro study with
human DCs, the cytolytic activity and cytokine-secreting ca-
pacity of autologous NK cells was improved only if DCs were
transfected to express human IL-12. Later on, that study was
followed by a phase I clinical study in patients with metastatic
gastrointestinal carcinomas, resulting in activated NK cells in
five of 17 patients [90] (Table 3).

Several of the in vivo animal studies analyzed potential
mechanisms of DC vaccine–induced antitumor effects in more
detail, demonstrating the requirement of either the lytic capac-
ity, cytokine-secreting properties, or both of NK cells and/or T
cells (Table 2). For example, Ribas and colleagues demon-
strated that effective DC-induced antitumor immunity was me-
diated by lytic NK cells and IFN-�–producing CD4� T cells
[64]. Mechanistically, these preclinical studies support the
complete or partial CD4� T cell [64, 68, 77, 78, 82, 83], CD8�

T cell [66, 69, 74, 75, 89], or CD4�CD8� T cell [65, 85, 86]
requirements for DC vaccine–induced NK cell–mediated anti-

Table 2. (Continued)
DC product Tumor model Outcome NK cell monitoring Comments Reference

Non-Ag-loaded CpG
activated pDCs

i.t. B16 melanoma;
MCA205 sarcoma

Inhibition and regression of tumor
growth via sequential activation of
NK cells, conventional DCs and
CD8� T cells; IFN-�- and perforin-
dependent NK cell–mediated T cell
crosspriming

1 CCR5-dependent i.t. NK
cell infiltration;1 CD69�

i.t. NK cells;1 type I IFN-
dependent NK cell lytic
activity against YAC-1 and
B16 target cells;1 contact-,
IFN-�-, and
IL-12—dependent in vitro
NK cell IFN-� release

Anti-NK1.1 Ab or anti-
asialo-GM1, ccr5�/�

mice, OX40L�/� mice,
IFNg�/� and perforin�/�

mice

[75]

Unpulsed Dex from
iDCs

i.d. B16F10 melanoma NK cell–dependent protection against
tumor challenge

1 IL-15R�–dependent DLN
NK cell proliferation;1
CD69� NKG2D-mediated
DLN NK cells;1
splenocyte lytic activity
against YAC-1 cells

Anti-NK1.1 Ab [81]

Non-Ag-loaded iDCs �
5-FU

s.c. MC38 colorectal cancer No in vivo results 1 splenic NK cell TNF-�
expression;1
TNF-�–mediated splenic NK
cell lytic activity against
YAC-1 and MC38 cells

Magnetic in vitro NK cell
depletion, no in vivo NK
cell depletion or
reconstitution

[76]

Delta51-VSV-DCs s.c.f.p. B16F10-OVA Prophylactic and therapeutic type I
IFN- and IL-15–dependent NK cell-
mediated tumor protection

In vitro and in vivo1 IFN-
�� splenic NK cells

IFNAR�/�, IL-15�/�,
IL-15R��/� mice; no in
vivo NK cell depletion or
reconstitution

[84]

Non-Ag-loaded
LPS-mDCs

i.v. Sarcoma Protection against tumor challenge;
long-term endogenous DC/CD4� T
cell–dependent NK cell antitumor
reactivity

1 CD69� and IFN-��

splenic NK cells, dependent
on IL-2 secreted by CD4� T
cells;1 CXCL10-dependent
NK cell recruitment to T
cell-rich splenic areas

Anti-asialo-GM1, anti-
NK1.1 Ab, NOG mice

[83]

Non-Ag-loaded virally
(rSeV)-activated DCs

Bolus and
i.v.

RM-9 prostate cancer CD4� T and NK cell–dependent
prevention against lung metastasis

1 splenocyte lytic activity
against YAC-1 cells

Anti-asialo-GM1 [82]

Cytokine-transduced DCs
IL-12-AdV-DCs i.t. CT26 colon carcinoma IL-12–dependent CD4� T and NK

cell–mediated tumor eradication;
IFN-�–dependent therapeutic effect

1 cytolytic activity against
YAC-1 cells

Anti-asialo-GM1, anti-
IFN-� Ab

[88]

IL-12-AdV-DCs i.p. B16 melanoma NK cell–mediated protection against
hepatic metastases

In vitro and in vivo1
splenic NK cell IFN-� and
1 lytic activity against
YAC-1 cells;1 serum IFN-
�; no in vivo NK cell
memory and NK cell
expansion

Anti-asialo-GM1 [87]

IL-12 or mock AdV-
DCs

i.t. CMS4 liver sarcoma NK, CD4� T and CD8� T cell-
mediated tumor rejection and
established long-term survival (IL-
12DC � mockDC)

1 hepatic NK cell lytic
activity against YAC-1 and
CMS4 cells;1 serum IFN-�

Anti-asialo-GM1 [86]

IL-12 or IL-15
SV40-DCs

i.t. CT26 colon carcinoma Tumor remission upon IL-12 (40%)
and IL-15 (73%) transduced DC
immunization; CD8� T and NK cell–
dependent IL-15–mediated antitumor
immunity

No functional NK
cell–directed assays

Anti-asialo-GM1 [89]

Abbreviations: 5-FU, 5-fluorouracil; �-GalCer, �-galactosylceramide; Ab, antibody; AdV, adenovirus-transduced; Ag,
antigen; AML, acute myeloid leukemia; �-gal, �-galactosidase; beige mice, lack NK cell function; CNS, central nervous
system; CpG, DNA sequence TLR9 ligand; CTL, cytotoxic T lymphocyte; D1, splenic immature dendritic cell line; DC,
bone marrow-derived dendritic cell; Dex, DC-derived exosomes; DLN, draining lymph nodes; f.p., footpad; gp,
glycoprotein; i.c., intracranial; i.d., intradermal; iDC, immature DC; IL, interleukin; i.p., intraperitoneal; i.t., intratumoral;
KO, knockout; LAK, lymphokine-activated killer; LLC, Lewis lung cancer; LPS, lipopolysaccharide TLR4 ligand; MART-
1, melanoma antigen recognized by T cells; MBL-2, murine lymphoma cell line; mDC, mature DC; MO5, B16F10
melanoma derivative; NK cell, natural killer cell; NOG mice, nonobese diabetic severe combined immunodeficient
IL2R�null mice lacking lymphocytes; pDC, plasmacytoid DC; rSeV, recombinant Sendai virus; SV40, simian virus 40;
TAA, tumor-associated antigen; TLR, Toll-like receptor; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand;
VSV, vesicular stomatitis virus-transduced; YAC-1, NK-sensitive mouse T cell lymphoma.
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‘
Table 3. Clinical DC-based cancer vaccination trials with implementation of NK cell monitoring
DC product Trial design Route Tumor model NK cell monitoring Results and conclusions Reference

Tumor peptide-pulsed DCs Phase I, n � 7 i.d. Glioma No NK cell tumor
infiltration

Systemic T cell–mediated
cytotoxicity (4/7)

[96]

�-GalCer-pulsed CD1d-
expressing DCs

Phase I, n � 12 i.v. � i.d. Metastatic malignancy (breast,
colon, liver, peritoneal, lung,
renal, and prostate carcinomas,
melanoma)

1 mean PB NK cell levels,
followed by transient2;1
in vivo CD69� NK cells;1
in vivo IC IFN-�� NK cells;
1 serum IFN-� (10/10);1
serum IL-12 (6/9);1 K562
killing by PBMC (5/11)

NKT cell–directed therapy
inducing a secondary NK
cell response

[106, 107]

�-GalCer-pulsed DCs Phase I, n � 5 i.v. Advanced cancer (myeloma,
anal, and renal cancer)

2 PB NK cell numbers;
unchanged PB NK cell
CD69, NKp30, NKp44,
NKp46, IC IFN-�
expression

NKT cell expansion and
activation without PB NK
cell–related changes

[105]

CEA-encoding fowlpox vector-
loaded DCs

Phase I, n � 9 i.d � s.c. CEA� tumors (colorectal,
lung, and urachal cancer)

NK cell number and
frequency:1 (5/9), stable
(2/9),2 (2/9). Lytic
activity:1 (4/9), stable (2/
9),2 (3/9); variable NK
cell receptor changes

S/NE patients (5/9) with1
NK activity correlated with
NKp46 and NKG2D
expression; PD patients
(4/9)

[92]

MAGE-Ag-loaded Dex Phase I, n � 4 s.c. � i.d. MAGE A3� or MAGE A4�

nonsmall cell lung carcinoma
Variable NK cell frequency
changes;1 K562 lytic
activity (2/4)

Dex may stimulate innate
immunity

[104]

MAGE3 peptide-pulsed Dex Phase I, n � 15 i.d. � s.c. Melanoma (stage III/IV) 1 K562 lytic activity;1
IFN-� secretion;1
intratumoral NK cell
recruitment (1/1);1 NK
cell number and frequency;
1 NKG2D� NK cells
related to recovery of K562
lytic activity

Restoration of PB NK cell
activity (7/14) upon 4
inoculations with Dex;
tumor regression and
ongoing therapy (n � 2,
week 30) exert remaining
boosted NK cell effector
functions

[56, 81, 102]

IL-12 gene-encoding AdV-DCs Phase I, n � 17 i.t. Metastatic gastrointestinal
carcinomas (pancreatic,
colorectal, primary liver
malignancies)

1 K562 lytic activity (5/
15);1 serum IFN-� and1
lytic activity (4/5)

PR (1/17) and SD (1/17);
no correlation between
serum IFN-� and clinical
response or toxicity

[90]

MART-1 AdV-DCs Phase I/II, n � 10 i.d. Metastatic melanoma 1 IC granzyme B (7/10);
�1.5-fold1 CD25� (5/10)
and1 CD69� (2/10) NK
cells

In a subset of immunized
patients, DC vaccination
may have also led to
activation of PB NK cells,
next to T cell stimulation

[93]

Autologous heat-shocked
UV-C–treated tumor
cell-loaded DCs

Pilot study, n � 18 s.c. Non-Hodgkin’s lymphoma 1 CD56dimCD16� and1
CD16 MFI PB NK cells in
responders (6/18);1
NKp46� NK cell in
responders (4/6)

CR (3/18), PR (3/18), SD
(8/18), PD (4/18);
correlation of clinical
response with2
CD4�CD25�FOXP3�

Treg cells and1
CD56dimCD16� NK cells

[98]

Autologous WT1-mRNA
electrotransfected DCs

Phase I/II, n � 10 i.d. AML Unchanged PB NK cell
frequencies and numbers;
HLA-DR� NK cells: �40%
in responders (4/5) and
�40% nonresponders (5/5)

Superior levels of activated
NK cells in responders

[97]

CEA peptide-loaded OPA-DCs Phase I/II, n � 10 s.c. Colorectal cancer 1 NK cell frequency (6/8);
1 K562 lytic activity (2/8);
1 CD69� NK cells (66.7%
post highly pure DC
injections)

SD (1/8) with1 NK cell
frequency and1 lytic
activity; PD (7/8) with
normal NK cell
proliferation but failure of
response

[95]

AFP peptide-pulsed DCs Phase I/II, n � 5 i.d. Hepatocellular carcinoma 1 CD69� NK cells (4/5);
1 CD25� NK cells (4/5);
CD56dimCD16� NK cells
show greater degree of
activation

Increased PB NK cell
activation and decreased
Treg frequencies

[94]

Autologous tumor lysate–
IFN-�/TNF-�/poly(I:C)-
matured DCs �
cyclophosphamide � GM-CSF
� pegIFN-�-2a

Pilot study, n � 24 i.n. � i.d. Metastatic cancer (colorectal,
melanoma, hepatocellular, and
renal cell, cancer,
cholangiocarcinoma, and
carcinoid malignancies)

1 K562 lytic activity (11/
17); modest1 NK cell
frequency (6/17)

Increased PB NK cell
activity correlated with
serum IL-12
concentrations, but not with
clinical response

[100]

Autologous tumor lysate-pulsed
DCs � low-dose IL-2

Phase I/II, n � 10 s.c. Renal and breast cancer 1 K562 lytic activity (6/
10);1 CD56dimCD16� NK
cells (6/10)

SD (1/10) with1 K562
cell lytic activity and2
CD4�CD25� T cells; PD
(9/10); no correlations with
clinical response

[101]

Autologous tumor lysate-pulsed
DCs

Phase I/II, n � 31 i.d. Breast cancer 1 NK cell frequency Prolonged 3-year
progression-free survival
duration

[99]

Abbreviations: �-GalCer, �-galactosylceramide; AdV, adenovirus-transduced; AFP, �-fetoprotein; Ag, antigen; AML, acute myeloid
leukemia; CEA carcinoembrionic antigen; CR, complete response; DC, autologous dendritic cell; Dex, DC-derived exosomes; IC,
intracellular; i.d., intradermal; IFN, interferon; IL, interleukin; i.n., intranodally; i.t., intratumoral; MAGE, melanoma-associated antigen;
MART-1, melanoma antigen recognized by T cells; NK cell, natural killer cell; OPA-DC, monocyte-derived DC matured with OK432
(Streptococcus pyogenes preparation), low-dose prostanoid and interferon-�; PB, peripheral blood; PBMC, peripheral blood mononuclear
cells; PD patients, patients with progressive disease; pegIFN-�-2a, pegylated interferon-�-2a; PR, partial response; SD stable disease; S/
NE patients, patients with stable and no evidence of disease; TNF-�, tumor necrosis factor �; Treg cells, regulatory T cells; WT1, Wilms’
tumor protein 1.
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tumor effects (Table 2). To a further extent, some immuniza-
tion protocols could induce long-term activation of NK cells
via continuous generation of NK cells, rather than a true mem-
ory response [78, 83], whereas transfer of activated spleno-
cytes from DC-immunized mice to naïve mice was shown to
exert a similar NK cell–mediated protective antitumor immune
response [64]. In the illustrated studies, mostly matured DCs
were used, described to be more resistant to NK cell–mediated
killing. In this context, Hayakawa et al. [91] demonstrated in
vivo that immature peptide-pulsed DCs were eliminated by
NK cells via a TNF-related apoptosis-inducing ligand
(TRAIL)-dependent pathway. Moreover, NK cell depletion or
neutralizing TRAIL led to enhanced CTL activity and a higher
tumor rejection rate upon live tumor challenge. Concomi-
tantly, immunization with mature peptide-pulsed DCs showed
high protection and, in contrast to iDCs this effect was not im-
proved when NK cells were depleted or when TRAIL was neu-
tralized [91].

NK CELLS IN CLINICAL DC-BASED
CANCER VACCINATION
In general, the preclinical studies described above demonstrate
that NK cells are necessary but not sufficient to induce adap-
tive T cell responses following DC vaccination, suggesting
critical interplay among NK cells, T lymphocytes, and DCs.
These findings provide sound evidence that DC-based strate-
gies designed to engage both NK cell and T cell immunity
could markedly improve current DC vaccine efficacy for the
treatment of tumors (Fig. 1). In practice, though, only a few
groups have implemented evaluation of NK cells in their clin-
ical DC trials. Table 3 provides an exhaustive overview of DC-
based tumor vaccination trials implementing NK cell
monitoring, either planned or post hoc.

Monitoring of NK cells was most frequently studied in tu-
mor antigen–loaded DC immunization trials (Table 3). Evalu-
ating viral vector–transduced DC vaccination, Osada et al. [92]
demonstrated, in patients with a carcinoembryonic antigen–
positive tumor, that NKp46 and NKG2D expression correlated
with patients’ NK cell cytolytic activity and that NK cell cyto-
lytic activity correlated with clinical outcome. Moreover, they
postulated that NK cell responses may predict clinical outcome
more closely than T cell responses. Butterfield et al. [93] eval-
uated a melanoma antigen recognized by T cells (MART)-1–
transduced DC vaccine that was designed to activate MART-
1–specific CD8� and CD4� T cells. Based on preclinical work
from the same lab [65], they additionally performed NK cell
analysis and could demonstrate, 2 weeks postvaccination, in-
creased intracellular granzyme B content in NK cells in seven
of 10 patients. These exploratory studies indicated that, in a
subset of patients, the DC vaccine may have led to activation of
circulating NK cells. Peptide-pulsed DC vaccination was
shown to induce NK cell activation in some patients in two
studies, demonstrated by increased peripheral blood NK cell
frequency, activation status (CD69, CD25), and lytic activity
[94, 95]. Bray et al. [94] also demonstrated a parallel decrease
in Treg frequencies. A third study did not detect NK cell
changes as assessed by NK cell tumor infiltration post-DC

therapy [96]. In a recently published phase I trial by our own
group [97], evaluating a therapeutic Wilms’ tumor I antigen–
targeted DC vaccine in patients with acute myeloid leukemia,
we could demonstrate the induction of complete and molecular
remission in 50% of patients. Clinical responses were corre-
lated with both innate and adaptive immune responses post-
vaccination. Four of five patients who responded to the DC
vaccine had a highly activated NK cell phenotype, in compar-
ison with none of the nonresponders. Extensive NK cell mon-
itoring in a subsequent phase II trial is ongoing.

All studies with tumor lysate–pulsed DC vaccination,
alone [98, 99] or as a part of combination therapy [100, 101],
led to NK cell changes (Table 3). Di Nicola and colleagues
found a positive correlation between an increased frequency of
CD56dimCD16� NK cells and clinical response post-DC vac-
cination [98]. Strengthening the clinical observations of others
[94, 101], they also found a positive correlation between a de-
creased frequency of CD4�CD25�FOXP3� Treg cells and
clinical response. The other studies also demonstrated favor-
able NK cell changes (increased NK cell frequency and lytic
activity) in some patients, but failed to make NK cell–related
correlations with clinical outcome [99–101].

Two groups investigated a cell-free DC-based vaccine
preparation consisting of melanoma-associated antigen–
pulsed autologous DC-derived exosomes (Dex; exosomes are
nanometer-sized membrane vesicles invaginating from multi-
vesicular bodies and secreted from different cell types [102,
103]) (Table 3). Both could demonstrate an increase in NK cell
lytic activity in half of the patients receiving Dex [56, 104].
Escudier and coworkers also showed that NK cells were capa-
ble of recognizing autologous tumor cells following Dex ther-
apy and, for one patient, recruitment of NK cells inside tumor
areas could be documented. Based on these results, they pur-
sued exploring the NK cell–stimulating capacity of Dex vac-
cination with preclinical and clinical studies, including
additional ex vivo experiments [81] of patient samples taken
during their phase I study [56]. In line with the murine data,
they confirmed in vitro NKG2D-mediated NK cell activation
by human Dex. From the phase I study, they additionally
showed that Dex boosted recirculation of NK cells and re-
stored NKG2D expression and the cytotoxic capacity of NK
cells in half of the immunized patients. In two patients with tu-
mor regression and continuing treatment, NK cell effector
functions remained boosted at later time points.

Secondary NK cell responses were monitored in two phase
I studies following NKT cell–directed therapy with �-galac-
tosylceramide (�-GalCer)-pulsed DCs in a mixed patient
group with metastatic malignancies (Table 3) [105–107]. The
glycolipid antigen antitumor compound �-GalCer is a specific
NKT cell ligand with the potential to sufficiently activate NKT
cells and induce secondary immune effects, including T cell
and NK cell activation [107]. Both groups could demonstrate a
transient decrease in peripheral blood NK cells. However,
Nieda and colleagues demonstrated that �-GalCer–pulsed
DCs induced a significant secondary NK cell response [106,
107], whereas Chang et al. [105] could not detect significant
differences for any of the NK cell parameters measured.
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From the clinical trials discussed above, we can conclude
that DC-based cancer vaccination can have a significant im-
pact on primary and secondary changes in the NK cell com-
partment. The results strongly indicate that increased DC
vaccine–induced NK cell activity, in terms of phenotype, lytic,
and/or regulatory functions, points to a more beneficial out-
come [56, 81, 95, 97] and show that some DC-mediated NK
cell changes are correlated with clinical response [92, 98] (Ta-
ble 3). However, the limited number of (uniform) trials (e.g.,
mixed patient groups) and the diversity of DC vaccines (prep-
aration, routes of administration, vaccine doses, and intervals)
and of NK cell immunomonitoring assays do not allow the
drawing of solid conclusions. For example, some studies dem-
onstrated an increase [81, 95, 98–100] in peripheral blood NK
cell frequency after DC vaccination, whereas others saw no
[97] or variable [92, 104] changes or a decrease [105–107]. In
this context, scrutiny of changes in NK cell frequency and
function in blood, lymphoid, and tumor tissues is needed to
fully judge the impact of DC vaccines on NK cells in vivo in
humans. In accordance with the preclinical data of Martin-
Fontecha and colleagues [108], DC-mediated transient NK cell
recruitment to lymphoid tissue, where NK–DC interactions are
likely to take place, could account for the peripheral decrease
in NK cells observed in a number of clinical trials [105–107].
Further exploration of NK cell engagement and consistent
monitoring in DC-based trials is therefore of utmost impor-
tance to learn more about the relevance of NK cells in diverse
DC-based cancer vaccination approaches.

IMPROVEMENT OF DC VACCINES VIA NK
CELL ENGAGEMENT
Given the limited clinical benefit so far, increasing attention is
being paid to the amelioration of the therapeutic efficacy of DC
vaccines. The list of approaches is growing and several have
been identified as highly innovative [53, 54, 62, 109]. As high-
lighted in the present review, a promising strategy to improve
DC-based vaccination is through ex vivo instruction of DCs to
preferentially activate NK cells. Based on the current knowl-
edge on NK–DC crosstalk, DC preparations could be opti-
mized for a variety of parameters to harness DCs for NK cell
activation during immunotherapy for cancer. Activated NK
cells can, in turn, lead to further stimulation of vaccine and host
DCs (Fig. 1).

According to the DC subset and differentiation or matura-
tion protocol used, DCs can have different effects on NK cells
[110, 111]. It has been demonstrated that DC generation with
inclusion of IFN-� [112–116] or IL-15 [117–119] in differen-
tiation cocktails and the use of Toll-like receptor (TLR) ago-
nists in maturation cocktails [115, 117, 120–124] hold promise
in enhancing the NK cell–activating capacity of DC vaccines
and their reciprocal crosstalk and T cell activation. As illus-
trated in a human in vitro study [116], IFN-�–treated mono-
cyte-derived DCs (IFN-DCs) induced specific CD8� T cell
responses against melanoma peptides only in the presence of
NK cells. IFN-DCs were also shown to recruit NK cells [113]
and to directly activate NK cells, as measured by CD69 expres-
sion and IFN-� production [112]. Depending on their matura-

tion status, DCs are sensitive to NK cell–mediated killing [59,
91, 125], which can affect the survival and immunogenicity of
the DC vaccine.

The mode of transfection or transduction and the antigen
preparation are critical for the DC activation status and for
communication with different immune cells. Numerous anti-
gen preparations (peptide, protein, cell lysate, apoptotic tumor
cells, nucleic acids) and loading methods (pulsing, viral trans-
duction, electroporation, lipofection, gene transduction) have
been investigated to optimize T cell–stimulating capacity, but
some were also examined for their NK cell–activating compe-
tence (Table 2). For example, the use of apoptotic tumor cell–
loaded DCs was demonstrated to induce an NK cell–
dependent T cell response [126, 127]. Considering the mode of
delivery, Vujanovic and colleagues [124] demonstrated, in a
recent human trial, that adenoviral transduction, like TLR4 li-
gand/IFN-� maturation, increased the expression of trans-
membrane TNF and IL-15 on DCs, resulting in enhanced NK
cell activation, IFN-� secretion, proliferation, and antitumor
activities [93, 124]. They showed, in vitro, that adenovirus-
transduced DCs, as compared with protein- or peptide-loaded
DCs, are the most successful at inducing NK cell activation
[94]. It was confirmed, in mouse models, that adenovirus-
transduced DCs induced significant NK cell antitumor activity
in vivo [85, 124]. Analogous results were found for prophylac-
tic and therapeutic vesicular stomatitis virus–transduced DC
vaccination in mice [66, 84] (Table 2).

Recruiting immune cells to the sites of interest (tumor and
immune cell–enriched sites) and bringing them in proximity of
each other is believed to be fruitful for immune activation [48,
128]. In this regard, the route of vaccine administration is an
important determinant (Tables 2 and 3) [52]. A number of pre-
clinical and clinical studies demonstrated that defined DC
preparations were able to elicit the recruitment of NK cells
through specific mechanisms. A first observation by Martin-
Fontecha et al. [108] showed, in mice, that s.c. injection of ma-
ture DCs led to rapid recruitment of NK cells into the lymph
nodes, providing IFN-� for Th1 priming. In line with these
findings, others have demonstrated the induction of NK cell in-
filtration in lymph nodes [83, 129] as well as in tumor [75] fol-
lowing immunization of mice with TLR ligand–activated DCs,
resulting in NK cell and T cell activation as well as tumor re-
gression. The NK cell recruiting capacities of diverse human
DC vaccines have also been examined in multiple in vitro stud-
ies. Mature IFN-DCs [112, 113], DCs loaded with reovirus-
infected melanoma cells [130], and DCs matured with
bacterial fragments [123] were shown to secrete distinct NK
cell–attracting chemokines (i.e., the CXCR3 ligands CXCL9,
CXCL10, CXCL11 and the CCR5 ligand CCL5), mediating in
vitro migration and stimulating NK cell activation, NK cell–
mediated cytotoxicity, and IFN-� production. In parallel, the
chemokine receptor profile of NK cells (CCR5, CCR7,
CXCR1, CXCR3, CX3CR1) can be differentially regulated by
DC vaccines to promote NK cell trafficking [131].

A more direct approach is the transfection or transduction
of DCs with NK cell stimulatory molecules, such as genes en-
coding IL-12, IL-15, or other NK cell–stimulating factors (so-
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called “designer” DCs). This strategy has already been
demonstrated to be effective in activating NK cells and T cells,
for example, by vaccinating metastatic gastrointestinal cancer
patients with nonantigen-loaded IL-12–secreting DCs [90]
(Table 3). Also, cotransfection (by electroporation) of TAAs
with IL-12–encoding genes into mature human DCs induced
an increase in activated NK cells and TAA-specific CTLs in
vitro [131].

Finally, NK cells themselves can be used to improve the
therapeutic efficacy of the DC vaccine [31, 50]. The generation
of DC preparations in the presence of NK cells or NK cell–
related factors was carried out by several groups in the preclin-
ical setting [126, 132–135]. Using this strategy, ex vivo–
generated DCs are brought into contact with NK cell–related
signals with or without adjuvant, already bringing DCs to an
activated status and priming the DCs for Th1 polarization.

In conclusion, these data underscore why future research
efforts should also focus on optimizing the NK cell–activating
properties of DC vaccines, in addition to improving their T cell
stimulatory and Treg inhibitory capacities (Fig. 1). The NK
cell–activating character of DC vaccine preparations can be
imprinted at multiple levels: (a) DC differentiation and matu-
ration, (b) source of antigen and delivery mode to DCs, (c) NK
cell–trafficking potential, (d) direct DC modulation, and (e)
with support of other immune cells such as NK cells them-
selves. DC vaccination trials should carefully evaluate how
NK cell–mediated surveillance against tumor cells can be in-
corporated into DC-based therapy.

NK CELL IMMUNOMONITORING
From a variety of cancer immunotherapeutic approaches (e.g.,
hematopoietic cell transplantation [136 –139], cytokine bio-
therapy [38, 140, 141]), it could be perceived that NK cell ac-
tivation can contribute to the overall antitumor response. An
array of both common and experimental NK cell parameters
that have been implemented at the clinical and preclinical
level, respectively, are listed in Table 4. Classical NK cell im-
munomonitoring includes evaluation, prior to and after
therapy, of NK cell frequencies and numbers, regularly com-
plemented by multiparametric phenotypic analysis (Table 4).
In general, the activity of peripheral blood NK cells is tested,
although NK cells residing in lymphoid tissue or infiltrated in-
side [7, 8, 12, 142] or surrounding [6, 143] the tumor have also
been assessed for monitoring. Functional assays are routinely
focusing on NK cell–mediated cytotoxic activity against NK-
sensitive target cells (K562; standard assay for the majority of
studies) and NK-resistant cells (Daudi, Raji) in the presence or
absence of the cytotoxicity-promoting cytokine IL-2. NK cell
cytolytic activity was demonstrated to be a valuable prognostic
marker for several malignancies (Table 1). Importantly, some
studies performed killing assays against autologous primary
tumor cells to evaluate therapy efficacy [102, 144], which is
likely to be of high relevance in the setting of eliminating re-
sidual tumor cells to prevent relapse. Commonly relying on the
established chromium release killing assay, some clinical stud-
ies sought to provide more detailed information on the poten-
tial mechanisms of cytotoxicity using single-cell assays (Table

4). Another functional characteristic that has also been as-
signed as a predictive parameter is NK cell IFN-� production
(Table 1). Higher IFN-� production is an indicator of immu-
nostimulatory resident NK cells, which is especially interest-
ing in view of DC-based approaches. Other NK cell–related
cytokines (e.g., TNF-�, GM-CSF, IL-5, IL-10, IL-13, IL-15)
may be considered as interesting for therapy-related effects.
For example, GM-CSF is a known DC differentiation factor
and IL-10 is an acknowledged immune-inhibitory cytokine,
whereas IL-15 favors the proliferation and survival of NK
cells and T cells and is involved in NK–DC crosstalk [124,
145]. Of particular interest for DC-based therapy is the ex-
amination of the ability of NK cells to activate, maturate,
attract, and promote phagocytosis of DCs (Table 4). Only a
few studies have evaluated such functionalities in an exper-
imental setting [11, 42, 112, 113, 123, 135, 146]. NK cell–
mediated killing of iDCs is also an attractive parameter to
follow [14]. Ideally, it could provide useful information on
which patient subsets are more likely to respond to DC-
based therapy [147]. Finally, indirect NK cell–related pa-
rameters are the subject of research, because a range of
transformed cancer cells has been shown to downregulate or
secrete soluble molecules (e.g., ligands for the activating re-
ceptor NKG2D) in order to evade NK cell immunosurveil-
lance [16]. In line with this, evaluation of tumor cell
sensitivity to NK cell–mediated killing would be a signifi-
cant predictive marker for therapy effectiveness.

Since the perception of the clinical significance of NK cell
activity, there has been a need for accurate data generation and
analysis [148, 149]. Today it is clear that NK cell biology is
more complex than initially considered. Consequently, NK
cell activity cannot merely be monitored by plain cytotoxicity
assays with NK-sensitive target cells or simple phenotypic
analyses [48]. As depicted in Table 4, an assortment of supple-
mentary phenotypic and functional NK cell–related parame-
ters have already been applied. Notwithstanding, guiding
principles for significant parameters should be developed and
standardized, ultimately providing useful information on out-
comes and therapies. Just recently, Björkström et al. [150] and
Bryceson et al. [151] provided precise, up-to-date protocols for
NK cell receptor repertoire analysis and functional analysis of
human NK cells with flow cytometry. Importantly, similar to
the assessment of T cell responses [152], monitoring NK cell
parameters must be done with prudence. Functionally diverse
NK cell subsets may act in a distinctive manner per malig-
nancy and per therapy, and the use of various technical proto-
cols may result in significant variable outcomes. For example,
we demonstrated variation in the quantification of IFN-� se-
creted by human NK cells following tumor cell stimulation us-
ing different methods [153].

FUTURE PERSPECTIVES
DC-based vaccines are highly potent NK cell–stimulating can-
didates. Unlike the growing body of evidence acquired through
experimental research (Table 2), there is a relative scarcity of
data reporting NK cell function in DC trials (Table 3) [48, 50].
Herein, we provide an overview of mouse and human in vivo
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studies that investigated the influence of NK cell participation
in antitumor immunity following DC-based vaccination strat-
egies. In summary, these studies underscore a substantial role
for both the cytotoxic and the regulatory functions of NK cells
in the development of DC-mediated adaptive antitumor immu-
nity, advocating for clear implementation of NK cell monitor-
ing in cancer immunotherapy, in particular for DC-based
therapy. Careful consideration of defined NK cell parameters
and protocols is needed. Ultimately, this will contribute to a
more complete understanding of therapy efficacy, generating
valuable information that could be exploited in the develop-
ment of novel adjuvants to improve anticancer immunothera-

pies. With the need for surrogate markers that could predict
clinical outcome, research on NK cell activation as a prognos-
tic factor warrants further intensification. In conclusion, a clear
understanding of NK cell functions and mechanisms is essen-
tial to envision therapeutic breakthroughs in DC vaccine de-
sign. Hence, the development of DC-based vaccination
strategies should implement NK cell–stimulating potency both
in the preclinical phase and in clinical trials.
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Table 4. Human NK cell parameters for immunomonitoring
NK cell parameter Comments

Phenotypic

NK cell frequency, number CD56�CD3�(NKp46�) Standard phenotype for NK cell quantification
(e.g., in peripheral blood �majority of studies�
or NK cell tumor infiltrate [154–159])

NK cell subsets CD56dimCD16bright, CD56brightCD16dim/� Common subdivision of NK cell types

NK cell activation status CD69, HLA-DR, CD25, CD107a [7, 94, 95, 97,
144]

Common activation membrane markers

NK cell receptor repertoire DNAM-1, NKG2A, NKG2D, NKp46, NKp30,
NKp44, KIRs, CD158a/b [12, 13, 18, 92, 136, 146,
150, 169, 173, 175, 183]

Common NK cell receptors

NK cell chemokine receptor repertoire CCR2, CCR5, CCR7, CD62L, ChemR23, CX3CR1,
CXCR1, CXCR3, CXCR4, S1P5 [123, 131, 184]

Research level

Functional

NK cell-mediated cytotoxicity NK-sensitive K562 target cells; NK-resistant cells
(Daudi, Raji) 	 IL-2; autologous primary tumor
cells [102, 144]

Standard assay for the majority of studies:
K562 killing assay (mostly chromium release
or flow cytometric cytotoxicity assays);
single-cell assays [151]: CD107a [6, 136,
169], NKG2D [81], perforin or granzyme B
[93], annexin V expression; antibody-
dependent cell cytotoxicity [157]

NK cell cytokine production IFN-�, GM-CSF, IL-5, IL-10, IL-13, IL-15, TNF-� Standard determination of the prototypic NK
cell cytokine IFN-�; intracellular [6, 7, 105–
107] or secreted [11, 102, 137, 146, 167, 169,
171, 172, 179] in ex vivo cocultures;
monitoring of other cytokines at research level

NK cell migratory capacity NK cell–attracting chemokines, e.g., CXCL9-
CXCL11 (CXCR3L), CCL19, CCL21 (CCR7L),
CCL3-CCL5 (CCR5L); NK cell–secreted
chemokines, e.g., CCL3 (MIP-1�), CCL4 (MIP-1�),
CCL5 (RANTES)

Research level [112, 113, 123, 184]

DC activation or maturation capacity of
NK cells

DC expression of MHC and costimulatory
molecules, proinflammatory cytokines, Th1-
polarizing capacity, phagocytosis

Research level [11, 42, 135, 146]

NK cell–mediated DC killing Killing of immature DCs Predictive parameter for acute myeloid
leukemia [14]

Indirect NK cell–related

Cytokine serum concentrations NK cell–related cytokines (usually IFN-�); NK
cell–activating cytokines (usually IL-12, but also
IL-2, IL-18, IL-15, type I IFN)

Informative, not NK cell specific [90, 100,
106, 107, 169]

Tumor cell expression of NK cell–related
immune evasion or suppression
molecules

Membrane-bound NKG2DL [158, 169, 176, 177];
soluble NKG2DL [11, 169, 173, 176–181, 185]

Predictive parameter for different
malignancies

Abbreviations: CCL, C-C chemokine ligand; CCR, C-C chemokine receptor; CXCR, CXC chemokine receptor; DC,
dendritic cell; DNAM-1, DNAX accessory molecule 1; FCM, flow cytometry; IFN, interferon; IL, interleukin; KIR, killer
cell immunoglobulin-like receptor; MHC, major histocompatibility complex; MIP-1, macrophage inflammatory protein 1;
NK cell, natural killer cell; NKG2DL, NK cell receptor D ligand; RANTES, regulated upon activation normal T cell
expressed and presumably secreted; Th1, T helper 1; TNF-�, tumor necrosis factor �.
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