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ABSTRACT Earlier theories of electrolytic conductance are
reviewed; all of these, with the exception of the Arrhenius-
Ostwald theory, are based on physical models. Their theory
failed to describe the conductance of strong electrolytes because
it did not include the effects (then unsuspected) of long-range
forces on mobility. Thermodynamic derivations are indepen-
dent of model; applied to the postulated equilibrium A+ + B-
s± A+B- between free ions and nonconducting paired ions, the
thermodynamic pairing constant K. equals a /(a±?, and AG,
the difference in free energy between paired ions (activity =
ap) and free ions (activity = as), equals (-RTln K.). Converting
to the molarity scale, K. = (1000 p/) [(1- y)/c'9(y+?]. Here
p is the density of the solvent of molecular weight M, c is stoi-
chiometric concentration of electrolyte (mol/liter), -y is the
fraction of solute present as unpaired ions, and y-+ is their ac-
tivity coefficient. The corresponding conductance function A
= A(c;oRAG) involves three parameters: 4, the limiting
equivalent conductance; R, the sum of the radii of the cospheres
ofthe ions; and AG. Conductance data for cesium bromide and
for lithium chloride in water/dioxane mixtures and for the alkali
halides in water are analyzed to determine these parameters.
Correlations between the values found for R and AG and
properties characteristic of salt and solvent are then dis-
cussed.

The purpose of this contribution is to discuss the dependence
of equivalent conductance A on concentration c and the in-
formation concerning ion-ion and ion-solvent interactions that
is derivable from conductivity data. By definition, A(c) is 1000
s/c; s is the observed specific conductance of the solution
(corrected for solvent conductance). For all electrolytic solu-
tions, s approaches zero as c goes to zero, in such a way that the
ratio (which increases with increasing dilution) approaches a
constant Ao = A(0).

Arrhenius was the first to propose a theoretical explanation
of the observed results: neutral molecules of an electrolyte AB
dissociate into current-carrying ions A+ and B-, the equilibrium
AB -,- A+ + B- shifting more and more to the right as dilution
increases, in accordance with the law of mass action. This hy-
pothesis led to the Ostwald dilution equation; for weak elec-
trolytes, the data were reproduced by the 2-parameter equation
A-' = Ao-' + cA/KdAo2 where Kd is the dissociation con-
stant.
The Arrhenius hypothesis that the ratio, y = [A+]/c = [B-]/c,

of the concentration of free ions to stoichiometric concentration
equals the ratio A/Ao leads, however, to a linear law for low
concentrations: A = Ao-cAO/Kd. Kohlrausch found that, for
typical strong electrolytes, the equivalent conductance ap-
proached Ao according to the empirical equation A = Ao-
Sc"/2. This so-called "anomaly of strong electrolytes" finally
found its explanation in the Debye-Huckel-Onsager theory
(DHO theory).
The specific conductance of the dissolved electrolyte is the

ratio of current density to field strength X; current density
equals 2injeivi esu/cm2sec; here, nj is the number of con-
ducting ions of species i, with charge ej and average velocity

vi. Single-ion conductance Xi equals .7vi/X. (.7 is the Faraday
equivalent.) Therefore, A = A2;(n,/c)(vi/X). Arrhenius as-
sumed that the mobility Ui = vjX of the ions was independent
of concentration and that A changed with concentration solely
because the ratio (nj/C) was concentration dependent. Debye,
on the other hand, assumed that the electrolyte was completely
dissociated into ions in solution and that the mobility of the ions
was concentration-dependent, as a consequence of the long-
range electrostatic forces between ions. For very low concen-
trations, the DHO hypothesis leads to the equation
A = Ao(1 - aoc'/2) - floC1/2 = Ao(1 + AX/X) + AAAe [1]
for the limiting tangent to the conductance curve, in complete
agreement with the empirical findings of Kohlrausch. The
coefficients ao and /o are predicted by the DHO theory for the
relaxation term AX/X and the electrophoretic term AAe and
are independent of model.
The theory of conductance around 1930 presented a dis-

turbing dichotomy: weak electrolytes were adequately de-
scribed by the Arrhenius-Ostwald equations, and the limiting
behavior of strong electrolytes was exactly predicted by the
DHO theory. MacInnes and Shedlovsky (1) suggested that both
theoretical approaches should be applied: that is, the fraction
of solute that contributes to conductance depends on concen-
tration, and also the mobility of the ions is concentration-de-
pendent. Their value for the dissociation constant of acetic acid
in water agreed exactly with the Harned and Ehlers value (2)
which had been derived by thermodynamic analysis of elec-
tromotive force data. Long before 1930, Kraus had shown that
the conductance curves for typical salts such as sodium chloride
in liquid ammonia (D = 22 at -330C) were quite similar to the
curve for acetic acid in water, although A(c) for sodium chlo-
ride in water conformed to the DHO theory. Sodium chloride
is a weak electrolyte in ammonia and a strong electrolyte in
water?! The dilemma was (to first approximation) resolved by
Fuoss and Kraus (equation 7 in ref. 3); they proposed that, for
electrolytes in general, A(c) decreases as concentration in-
creases, both because the fraction of solute that contributes to
conductance decreases with increasing concentration and be-
cause the mobility of the ions decreases on account of increasing
effects of interionic forces. For strong electrolytes, the ion pair
[proposed by Bjerrum (4)] assumed the role of the Arrhenius
neutral molecule. Their model was the same as the DHO model
(rigid charged spheres of diameter a in a continuum, the
"primitive model"). For the association equilibrium A+ + B-
;=± A+B-, their conductance equation is A = -y(Ao -SC/2Y1/2),
where y = [A+]/c = [B-]/c and the association constant is KA
= (1 - y)/cy2y 2. Here y+ is the activity coefficient on the
molarity scale (mol/liter).

This equation [or the Shedlovsky modification (equation 8
in ref. 5; ref. 6)] was used for about two decades; for electrolytes

Abbreviation: DHO, Debye-Huckel-Onsager.
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whose conductance curves approach the limiting tangent (Eq.
1) from below, it reproduced the observed values within about
0.1%. But the equation could not describe conductance curves

that approach the tangent from above because 0 < y < 1. An
explanation for the latter type was found in the "higher terms"
of the relaxation field and the electrophoretic velocity. Eq. 1

is a first approximation obtained by mathematical approxi-
mations that drop all terms in the fundamental differential
equations (7) that would lead to terms of order higher than C1/2
in A(c). Integrations (8, 9) to second approximation gave a
conductance equation of the form

A = Ao-SC1/2 + Ec In c + Jc-J'c3/2 + HT [2]
where HT represents terms of order higher than C3/2 in con-
centration. For strong electrolytes, the positive term Jc is nu-
merically greater than the negative terms (Ec In c, c < 1, so In
c < 0) and (-J'c3/2); therefore, theoretical function 2 lies above
the limiting tangent. Instead of the above series expansion,
which reproduces observed conductance curves for 1-1 elec-
trolytes in water only up to about 0.01 eq/liter, retention of the
higher terms by explicit integrations (10) led to a conductance
equation that fitted the data up to about 0.1 eq/liter in water.
Symbolically, the equation is A = 'y[Ao(1 + AX/X) + AAe]
where AX/X and AAe are explicit functions of concentration.
Removing (mathematically) the paired ions from the ionic
population permits use of the linearized Poisson-Boltzmann
equation as the starting point in the derivation of AX and AAe.
Of course, there is an upper limit beyond which the pairing
device may no longer be used; this is cmac < 3.2 X 10-7 (D25)3,
where the effects of short range three-ion interactions may no
longer be neglected (equation 12 in ref. 11).

Until 1978, nearly all theoretical work on conductivity was
based on the primitive model. One consequence of this ap-
proach was the isodielectric rule: a given electrolyte (a fixed)
should have the same association constant in chemically dif-
ferent solvents that have the same dielectric constant (12).
Numerous violations of the isodielectric rule were discovered
(13, 14); the only possible deduction was that the association
constant is not simply a function dependent only on contact
distance and dielectric constant but, rather, it depends also on
short range ion-solvent interactions which are system-specific.
A new model was proposed (15) in which solvent-separated
pairs were introduced as an intermediate transition state be-
tween unpaired ions and contact pairs; for this model, KA =

KR(1 + KS), where KR describes the diffusion controlled step
A+ + B- z (A+ B-) and KS describes the formation of
contact pairs by a series of interchanges of sites between solvent
molecules and ions. The latter depend of course on short-range
ion-solvent interactions and are different for structurally dif-
ferent solvents. The conductance function derived for the
paired-ion model is a three-parameter equation A = A(c;Ao,
R,ES) where R is the diameter of the Gurney cosphere and ES
is the difference in free energy between solvent-separated pairs
and contact pairs. The equation reproduces observed conduc-
tances within experimental error, and some correlations be-
tween the parameters R and ES and molecular parameters
characteristic of ions and solvent molecules have been found
(15-17). This theory, however, is a theory developed for a

particular model; it would be preferable to have a conductance
theory that is independent of model.
Thermodynamics is independent of model; it was the ap-

proach used by Arrhenius and, as pointed out above, this theory
failed to achieve generality only because it neglected to consider
the effects (then unsuspected) of long-range Coulomb forces
between ions on the mobility and on the postulated equilibrium
between free conducting ions and nonconducting dipolar pairs.

Let us now return to first principles by applying Gibbs ther-
modynamics to the postulated pairing process [A+ + B-
A+B-], for which Ka = ap/(a+)2; ap represents the activity of
the pairs and a± that of the free ions. The activity aj of the jth
component of a system equals fjNj; fj is the rational activity
coefficient introduced by G. N. Lewis and Nj is the mole
fraction of that component. Because conductance is a volume
property, concentrations are conventionally expressed in terms
of c mol/liter rather than as mole fractions. The activity is

aj = cjyj(M/lOOOp) [3]
where yj is the activity coefficient on the molarity scale (18),
M is the molecular weight of the solvent, and p is its density
(g/cm3). For a mixture of two solvents of molecular weights Ml
and M2 and weight fractions w, and W2, M is replaced by the
mole-fraction average molecular weight May = MIM2/(wlM2
+ w2MO). If we neglect the long-range effects of ion-dipole
interactions, Yp = 1. Substituting c(1- y) for the concentration
of pairs, and cy for that of the free ions,

Ka = (lOOOp/M)[(l-0/c yi2] [4]
where y_. equals exp[-T/(1 + KR)]. Here r = 13K/2, K-1 is the
Debye distance, #3= e2/DkT, and R is the distance parameter
derivable from conductance data. For free ions, rij > R; for
them, the long-range effects AX/X and AAe are calculable by
continuum theory. The factor in brackets in Eq. 4 is the con-
ventional conductimetric pairing constant KA = (1 -

y)/C'y2y+2. For the pairing equilibrium,
-RT In Ka = AG = AH - TAS [5]

(R is the gas constant.) Summarizing at this point: given the
conductimetric pairing constant KA, the free energy change
for the postulated equilibrium can be determined. This opens
the way to a search for correlations between AG, AH, and AS
on the one hand and basic properties of solutes and solvents on
the other.
We now consider the conductance function A(c) from which

the parameters Ao, R, and AG are to be derived by giving to
the computer a set of conductance data (cj, Aj; j = 1, 2, ....
N) for N data points and the explicit function A(c), together
with programs* designed to find the values of these parameters
which minimize = Yj[Aj(calc.) - Aj(obs.)]2. For reasons that
will be explained below, the symbolic conductance equation
is expanded into

A = -y[Ao(1 + AXE/X) + AA, + AAH + AAe] [6]
In Eq. 6, AXE is the part of the relaxation field generated by
purely electrostatic interactions between free ions; AA, =
Ao(AXv/X) is the part of the relaxation field term due to the
perturbation of that field by the electrophoretic flow and is
equal, by the Onsager reciprocal relations, to the change in
electrophoretic current caused by the perturbation potential;
this term is included in the numerical calculation with AAe,
which is proportional to the electrophoretic current (both
AoAXv/X and AAe have the same coefficients, lOC1"2TY1/2);
AAH is a hydrodynamic-hydrodynamic interaction term de-
rived by Sandig and Feistel (19). For convenience in pro-
gramming, the terms of Eq. 6 are regrouped as follows:

A = y[Ao(l+ AXE/X) + HXV + HY]

* Listings of the FORTRAN programs and examples of their use are
available on the writer's receipt of a postal money order ($2.00 from
USA or Canada; $4.00 from abroad) payable to Department of
Chemistry, Yale University (New Haven, CT 06520), to cover postage
and reproduction costs.

Chemistry: Fuoss

[7]



Proc. Natl. Acad. Sci. USA 77 (1980)

where HXV = Ao(AX0/X) =_-OC1/2'y1/2[1 + F1(T, KR)] (i.e.,
independent of AO) and HY = AAe + AAH. The relevant
equations for the computer programs are given in the Ap-
pendix.

Calculation of AXE/X, AXv, AAe has already been pre-
sented (20). Briefly summarized, the equation of continuity was
solved for the perturbation ftf in the pair-wise distribution
function fit = njnji = non, exp(-e,4'/kT), subject to the
boundary conditionsf(o) = 0, f;1(R) = 0; the result was then
substituted in the Poisson equation to obtain s1, the perturbation
of the potential due to the asymmetry of the ionic atmosphere
generated by the external field X, subject to the boundary
conditions V{'(co) = 0, (rW'//r -1,61R = 0. The electropho-
retic term AAe was obtained by integration of the Navier-
Stokes equation using the Oseen hydrodynamic tensor to cal-
culate velocities. In the 1978 derivation, the 1932 approximation
div[V2(r2)] = 0 was used.t Sandig and Feistel (19) calculated
the leading term of the thereby neglected c In c term in A(c);
their value is (+0.5 1K,3o/16 c'/2)c In c; this of course comes
from a term proportional to the negative exponential integral
E,,(x) =-0.577216-In x + x + . . .,x = KR. The term AAH
in the revised Eq. 7 includes these previously neglected terms;
some small terms of order c and C3/2 have been dropped, but
the significant part of AAH is now included. (Other terms of
order c, C3/2, and higher have also been neglected: see section
5 of ref. 20.)

I next present the results obtained by analysis of conductance
data for cesium bromide and for lithium-7 chloride in water/
dioxane mixtures (21). Table 1 gives values of the parameters
4 KA, GS = AG/RT, and 108R (cm) for these salts in mixtures
identified by their dielectric constants D listed in the first col-
umn. The average value of a (standard deviation expressed as
percentage of AO) is 0.02%; for 9 of the 28 systems, the data are
reproduced by Eq. 7 to 0.010% or better. Values of the pa-
rameters were obtained by the 3-PARAMETER program for
CsBr in the first five systems listed and for the first two listed
for LiCI. The data for all the systems were also analyzed by
program SCAN. The O-R curves showed minima that were
quite sharp for some and rather shallow for others. For these
curves, there are, of course, two values RI and R2 (R1 < Rmin
< R2) which correspond to the same value of v; the precision,
PR, with which R can be determined is given by (01,2 -
cfmin) % /(R2 - R1), shown in the last column of Table 1. The
sharpest minima were obtained for the solutions in water (D
= 78.35), for which many data points from replicate runs,
covering a wide range of concentration, were available. For
these solutions (and for the five others for which the 3-param-
eter program converged), the values of Ao and K calculated by
using the value of R corresponding to a (min) agreed exactly
with the values obtained by the 3-parameter program. The data
for the mixtures were from single runs of five to eight points;
as the PR values show, the minima in the a-R curves for these
systems are much less sharp; the consequence is, of course, that
the uncertainty in R is rather large.

For CsBr in water, R is 3.86 A; the sum of the Pauling radii
for the ions is 3.85. For these large ions, the field strength at the
surface evidently is so low that it has little effect on the solvent.
For LiCl, R = 5.50; the sum of the Pauling radii for this salt is
2.41. The difference, 3.09, is slightly greater than 2.76, the di-
ameter of a water molecule; this result suggests that the lithium
ion is hydrated in solution, all nearest neighbors being water

Table 1. Parameters for salts in dioxane-water mixtures
D AO KA Gs 108R a, % 103PR

Cesium bromide
78.35 155.37 0.60 -3.50 3.86 0.003 10.2
74.75 142.82 0.59 -3.49 3.69 0.004 3.9
71.90 133.42 0.54 -3.35 3.43 0.002 1.0
70.28 128.45 0.67 -3.54 3.83 0.010 2.8
59.91 102.00 1.13 -3.97 3.89 0.002 4.0
55.58 93.20 1.21 -3.99 3.59 0.006 0.3
46.37 77.23 3.48 -4.94 4.12 0.018 0.5
45.91 76.58 3.14 -4.83 3.84 0.028 1.6
43.70 73.39 4.32 -5.12 4.19 0.014 1.1
41.74 70.68 5.00 -5.24 4.20 0.018 0.5
38.59 66.90 6.85 -5.51 4.25 0.014 1.6
30.48 58.01 22.7 -6.58 5.22 0.006 0.5
24.17 52.18 76.2 -7.68 6.50 0.019 0.3
20.11 48.64 169 -8.38 6.76 0.021 0.4
16.73 45.81 482 -9.36 8.15 0.073 1.4
16.54 45.89 537 -9.46 8.88 0.061 0.8
14.08 43.31 1250 -10.24 10.65 0.017 0.2
13.83 43.41 1430 -10.37 9.60 0.017 0.3
13.43 42.71 1615 -10.47 8.80 0.041 1.0

Lithium-7 chloride
78.35 115.03 0.87 -3.87 5.50 0.006 25.9
62.25 81.49 1.62 -4.34 5.64 0.006 12.1
49.99 64.66 2.16 -4.50 4.65 0.013 1.4
41.37 55.58 6.58 -5.50 6.38 0.035 1.4
27.18 44.40 30.0 -6.80 5.83 0.030 6.0
21.97 40.98 52.5 -7.26 7.00 0.047 2.3
18.13 38.84 206 -8.54 8.20 0.023 1.5
18.07 38.81 205 -8.53 7.15 0.026 2.3
16.23 37.83 372 -9.10 9.15 0.012 1.1

molecules. The ion pair for this salt is a solvent-separated pair.
As the dielectric constant of the solvent decreases, R increases
systematically. This behavior suggests that R is the sum of the
radii of the Gurney cospheres of the two ions; the lower the
dielectric constant, the farther will the charge on a given ion
affect the properties of the solvent. This definition ofR confirms
the use of R as the lower limit in the boundary conditions for
calculating long-range interactions (16).
The free energy for all the systems is negative and becomes

more negative asD decreases. The free energy is the sum of two
terms, AH and -TAS. Because the enthalpy contains the work
done in separating a contact pair to "infinity," this part of the
enthalpy is negative and increases numerically as D decreases.
The enthalpy also contains a positive term due to the replace-
ment of a nearest-neighbor solvent molecule by the partner ion
in the last step in the formation of a contact pair. Because two
unpaired ions can be represented by many configurations,
whereas a contact pair corresponds to a small number of con-
figurations (the partner ion must occupy one of the z nearest-
neighbor sites), the entropy decreases so -TAS is positive.
Because Table 1 shows that R depends on D, AS does also. For
these systems, a plot of AG/RT (or of log KA) against 1ID is
linear in the range D <.35; from the slope, the distance pa-
rameter for the equivalent primitive model (for which AH =
-e2/aDkT and AS = 0) is 6.2 A.

Table 2 gives the values of the parameters for the alkali ha-
lides (except for potassium fluoride for which no data could be
found). For sodium and potassium chlorides and for cessium
bromide and iodide, precision data covering a wide concen-
tration range are available in the literature; for these four salts,
the 3-parameter program converged. For the 15 other systems,
the available data covered a rather short range of concentra-

t In ref. 7, V(r2) was defined as the bulk velocity at the point located
by vector r2. Footnote 2 on p. 2700 of ref. 7 stated that "we here ne-
glect the hydrodynamic motion of the fluid at dV2 caused by the
presence of a moving J-ion at dVI. This approximation amounts to
dropping terms of the order c log c in the final results."
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Table 2. Parameters for the alkali halides
Salt AO KA Gs 108R a, % Ref.

LiF 94.12 1.97 -4.69 4.72 0.020 22
LiCl 115.12 0.75 -3.72 5.17 0.011 21
LiBr 116.89 0.71 -3.55 5.31 0.010 22, 23
Lil 116.03 0.54 -3.39 5.52 0.015 21
NaF 105.49 0.85 -3.85 5.07 0.008 24
NaCl 126.53 0.82 -3.82 5.52 0.015 25
NaBr 128.41 0.73 -3.70 5.66 0.023 24
NaI 127.17 0.60 -3.50 5.87 0.012 22
KCI 149.90 0.53 -3.37 4.52 0.011 25
KBr 151.74 0.44 -3.20 4.66 0.021 24
KI 150.61 0.40 -3.10 4.87 0.016 26
RbF* 132.78 0.30 -2.21 3.8 0.005 22
RbCl 153.64 0.24 -2.57 3.29 0.009 27
RbBr 155.45 0.23 -2.53 3.43 0.004 28
Rbl 154.01 0.24 -2.58 3.64 0.004 29
CsF* 132.79 0.49 -3.30 4.8 0.008 22
CsCl 153.05 0.62 -3.54 3.50 0.012 30
CsBr 155.39 0.54 -3.39 3.64 0.006 31
CsT 154.18 0.50 -3.32 3.85 0.003 31
* Values obtained by the scanning program.

tions, and the highest concentrations were for the most part
considerably lower than 10-7D3. It can be shown (32) that A'
= Ao + Ar2 + BT3, where A' is defined by
A' = [A(obs) + flOC1/2(1 + 0.5r In 2r)]/

[1 - aoc'12 + (r2/3) In (2T)] [8]
In Eq. 8, r2 is proportional to concentration. The values of R
and KA are determined in principle by the difference (A'- Ao);
obviously, if the concentration is small, this difference is small
and the precision in determining R and KA from such data is
poor. For most of the 15 systems mentioned above, the o-R
curves were practically horizontal (i.e., a wide range of R values
fitted the data equally well). Above, I noted that the R value
for CsBr matched the sum of the Pauling radii of the two ions,
and that the R value for LiCI was nearly equal to the sum of the
Pauling radii plus the diameter of a water molecule. In order
to obtain values of Ao and KA from the data for systems that
showed a very shallow minimum on the a-R plots, values of R
were preset at the sum of the Pauling radii for the cesium and
rubidium salts, at (a+ + a- + 2.76) for the lithium and sodium
salts, and at (a+ + a- + 1.38) for the potassium salts. This is
equivalent to assuming that the cesium and rubidium pairs are
contact pairs, that the lithium and sodium pairs are solvent
separated, and that, on average, half of the KX pairs are solvent
separated. This choice is supported by the values of the single
ion conductances, which at 250C are X(Li+) = 38.7, X(Na+) =
50.1, X(K+) = 73.5, A(Rb+) = 77.8, and X(Cs+) = 77.3 (33).
The pairing constants and the values of AG/RT for cesium

chloride, bromide, and iodide are practically indentical; the
difference in the conductance curves is due to the difference
in limiting conductances and to different values of AX/X and
AAe at a given concentration (these terms depend on KR, and
R is different for different salts). The rubidium halides are less
associated than the cesium halides; the values of KA are nearly
the same for these salts. The values of AG/RT for the potassium
and sodium halides become less negative in the sequence flu-
oride, chloride, bromide, iodide; this is the expected sequence
because the electrostatic part of the enthalpy term should de-
crease as the halide ion becomes larger. For the lithium halides,
the fluoride has the greatest value of KA among the alkali ha-
lides; KA decreases as the halide ion becomes larger. The rate
of increase of KA with decreasing size of the anion is much more
rapid than for the sodium and potassium halides. For a given

halide ion, KA increases in the sequence KA(Li+) > KA(Na+)
> KA(Cs+) > KA(K+) > KA(Rb+). Excluding the anomalous
position of the cesium salts, the order corresponds to the order
of increasing size of the cation, again as expected, due to the
decrease in AH. The cesium ion has the greatest polarizability
of the alkali ions. The enhanced pairing of the cesium halides,
compared to that of the potassium and rubidium halides, may
well be the consequence of the attractive force between the
dipole induced by the halide ion in the cesium ion and the ha-
lide ion.

APPENDIX
The conductance equation is

A ='y[Ao(l + RXE) + HXV + HY].
Expressed as functions of t = KR, 1 = e2/DkT, q2 =
RXE = -K/6(1 + q)(1 + t)(1 + qt)

+ 132K2[(ln t)/12 + FH2 + fK(FH3)]
HXV = -#loc/2Ty1/213K[(H2)/16 - 0.125 In t]
HY = -_#oC/2ly'/2jj/( + t) + /3K[(ln t)/16

+ (H1)/2 - 0.03608 + t/16]j.
Interpolating polynomials for the functions H1, H2, FH2, and
FH3, valid over the range 0 < t < 0.8, are given in the appendix
of ref. 15.
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