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Abstract
All nervous systems are subject to neuromodulation. Neuromodulators can be delivered as local
hormones, as cotransmitters in projection neurons, and through the general circulation. Because
neuromodulators can transform the intrinsic firing properties of circuit neurons and alter effective
synaptic strength, neuromodulatory substances reconfigure neuronal circuits, often massively
altering their output. Thus, the anatomical connectome provides a minimal structure and the
neuromodulatory environment constructs and specifies the functional circuits that give rise to
behavior.

Introduction
Neuromodulation adds extraordinary richness to the dynamics that networks can display. It
also adds confounds of many kinds that require that we relinquish our wish for simple and
linear answers to how brain circuits work. In this review, my goal is to summarize many of
the take-home lessons from old and new work on neuromodulation that can inform the
trajectory of future work on circuits, large and small.

Historians say that we should study history to avoid repeating the mistakes of the past.
Remarkable advances in anatomical methods, genetics, optogenetics and optical recordings
are providing extraordinary opportunities for understanding circuit structure and function in
brains, large and small. The present era of circuit exploration is tremendously exciting. At
the same time, I see numerous examples of today’s researchers effectively “reinventing the
wheel”, albeit elegantly enough for publication in our elite journals, partially because the
new work is done with state-of-the art techniques, and partially because the pioneering work
on modulation and dynamics of small circuits has been partially obscured by the mists of
time. Those interested in how circuit dynamics arise from the properties of neurons and their
connections should read Getting ’s prescient 1989 review (Getting, 1989).

Studies of some of the substances that we now term neuromodulators have a long and
venerable history. The pharmacologists who worked 80 and 100 years ago already knew that
there were multiple receptors for acetylcholine and norephinephrine (Dale, 1935), and that
these were pharmacologically separable. By the early ‘70’s it was already clear that different
classes of neurons released different neurotransmitters (Barker et al., 1972; Carraway and
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Leeman, 1973; Chang and Leeman, 1970; Kerkut and Cottrell, 1963; Kerkut and Walker,
1966; Otsuka et al., 1967; Walker et al., 1968), and that there were a large number of
signaling molecules used in the brains of all animals including ACh, dopamine,
norepinephrine, GABA, glycine, glutamate, serotonin, histamine, octopamine, and
neuropeptides.

Although the diversity of signaling molecules was fascinating neurochemists of the day,
many of the earliest workers interested in the neuronal circuits that gave rise to behavior saw
no relevance of what they called “pharmacology” or “neurochemistry”. Instead, many of the
early circuit electrophysiologists came from the traditions of engineering and electronics,
and sought to develop a connectivity diagram (or connectome in today’s parlance) that
would be the biological equivalent of an electronic circuit diagram, taking advantage of the
identifiable neurons in invertebrate sensory and motor circuits (Burrows, 1975a, b;
Calabrese and Peterson, 1983; Getting, 1981; Heitler and Burrows, 1977; Kristan and
Calabrese, 1976; Kristan et al., 1974; Mulloney and Selverston, 1974a, b; Stent et al., 1978;
Stent et al., 1979; Willows et al., 1973; Wilson, 1961; Wilson, 1966).

I was once told by one of the leaders in the field that the neurotransmitter that mediated a
synaptic connection was irrelevant, and the only thing that mattered was the sign of the
synapse, excitatory or inhibitory. Although today’s anatomists must know that
neuromodulatory neurons can release their cotransmitters at a distance from their targets
(Blitz et al., 2008; Brezina, 2010; Jan and Jan, 1982), the underlying assumption of today’s
electron microscope connectome projects (Briggman et al., 2011; Chklovskii et al., 2010;
Denk et al., 2012; Lichtman and Denk, 2011; Seung, 2011) is that the conventional close-
apposition synapses provide most, if not all, of the information needed to characterize the
circuit, the same assumption that was made 35 years ago the small-circuit physiologists.

The Early Era of Neuromodulation
In their preface, Kaczmarek and Levitan (1987) wrote that their book, Neuromodulation:
The Biochemical Control of Neuronal Excitability, was intended to create a working
understanding between electrophysiologists and biophysicists on one hand and
neurochemists on the other hand, to understand the modulation of neuronal excitability and
its consequences for neural processing. By 1987 it was clear that:

1. Neuronal intrinsic properties, action potential waveforms and membrane currents
could be altered by manipulating the intracellular concentrations of second
messengers such as cAMP (DeRiemer et al., 1985; Hockberger and Connor, 1984;
Kaczmarek et al., 1986; Levitan, 1978; Siegelbaum et al., 1982).

2. Exogenous application of muscarinic agonists, amines and neuropeptides can
increase or decrease the amplitude of a variety of voltage-dependent currents
(Adams and Brown, 1980; Brown and Adams, 1980; Camardo et al., 1983; Dunlap
and Fischbach, 1981).

3. Exogenous application of neuromodulators could alter the strength of synapses
(Dudel, 1965; Glusman and Kravitz, 1982; Klein et al., 1982; Klein and Kandel,
1978), with implications for experience-dependent changes in behavior (Kandel
and Schwartz, 1982).

Neuromodulation was part of a paradigm shift in the study of small circuits-
the first “beyond the connectome realization”

By the end of the 1980’s there was an almost complete paradigm shift in the study of small
circuits for six reasons:
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1. It saw the end of the hope that similar motor patterns found in different species
would be generated by similar circuits (Getting, 1989). By this time, enough was
known about the specifics of rhythmic pattern generation in different animals to
show that the details of each circuit was different, but there were certain canonical
principles, or “building blocks” across preparations (Getting, 1989).

2. It brought the realization that it was going to be extremely difficult to obtain data
sufficient to constrain detailed models of all but the simplest circuits (Selverston,
1980). This remains one of the most thorny problems in understanding biological
circuits today. Because the output of all biological circuits results from the
interaction of many non-linear elements, computational models are needed to
understand them. How realistic do these models need to be, and what data are
needed to constrain these models? How will modulation alter these processes?

3. It gave us the beginnings of the cellular mechanisms underlying neuromodulation
of excitability (DeRiemer et al., 1985; Dunlap and Fischbach, 1981; Kaczmarek et
al., 1986; Levitan et al., 1979).

4. It was the beginning of the understanding that neuronal dynamics and
neuromodulatory mechanisms reconfigure circuits so that they could no longer be
viewed as “hard-wired” (Eisen and Marder, 1984; Getting, 1989; Marder, 1984;
Marder and Hooper, 1985), but capable of variable outputs under modulator
control.

5. It brought the realization that circulating hormones and local neurohormones could
alter behavior by acting at every level from sensory neuron (Pasztor and Bush,
1987), to central circuits (Harris-Warrick and Kravitz, 1984; Hooper and Marder,
1984; Marder and Hooper, 1985), to neuromuscular junctions and muscles (Lingle,
1981; Schwarz et al., 1980). This raised the possibility that the same modulator
could act at different sites within a circuit to keep outputs coordinated, or that
different modulators could compensate for changes at one site with changes
elsewhere, or that modulators can effectively change the gain of one portion of a
circuit or process without altering others (Brezina, 2010).

6. It demonstrated the prevalence of cotransmission in neurons of all kinds, including
diffuse modulatory projection neurons that can liberate their transmitter at some
distance from receptors (Adams and O’Shea, 1983; Bishop et al., 1987; Jan and
Jan, 1982; Kupfermann, 1991; Nusbaum and Marder, 1989a; Siwicki et al., 1987).

Diffuse projections, hormones, and local hormones determine the
modulatory tone of the brain

One of the most remarkable features of biological systems is that they are endlessly
adaptable while usually maintaining their functional integrity. Moreover, many brain
disorders, such as schizophrenia, depression, and epilepsy, are likely associated with some
degree of dysfunction in modulatory control systems. Many of the other contributions in this
issue will deal with the modulation of disparate regions of the vertebrate brain by the diffuse
aminergic projections, local interneurons with peptide cotransmitters, and peptidergic
systems that are important for pain regulation and other physiological processes. In their
outstanding review in this issue, Taghert and Nitabach (2012) describe much of the
wonderful recent work in flies and worms describing the roles of neuropeptides in specific
behaviors. Consequently, in this review I will focus on “take-home messages” that have
come from the study of neuromodulation primarily using crustacean and molluscan systems,
and I draw heavily on specific examples from the crustacean stomatogastric nervous system.
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Intrinsic versus Extrinsic Modulation
It can be useful to distinguish between neuromodulation that is intrinsic to the system or
circuit being considered, and modulation that is delivered from an extrinsic source (Cropper
et al., 1987; Katz, 1995; Katz and Frost, 1996; Morgan et al., 2000). In the former case, the
modulatory substance is released by one of the circuit components, while in the latter case
the modulatory substance is released from a source not directly part of the circuit at hand
(Fig. 1). In the simplest case, a neuron that releases a cotransmitters that alters the
excitability of its postysynaptic targets is intrinsic (Cropper et al., 1987; Katz and Frost,
1995a, b; Weiss et al., 1992; Weiss et al., 1978), while a neurohormone that is liberated by a
neurosecretory structure and travels through the circulation is unambiguously extrinsic
(Christie et al., 1995). While at some level this is an artificial distinction, it points out
neurons can alter the configuration of the networks with which they are active in complex
and rich ways (Katz and Frost, 1995a, b). Moreover, if the cotransmitters liberated from the
same neuron are differentially released as a function of the dynamics of presynaptic activity
(Brezina et al., 2000a; Karhunen et al., 2001; Peng and Horn, 1991; Peng and Zucker, 1993),
this can alter the extent to which these substances influence postsynaptic function under
different conditions.

Circuits are multiply modulated
Neuromodulation of circuit function has been studied for more than 40 years in crustaceans
and mollusks. The crustacean stomatogastric ganglion (STG) contains ~30 neurons and the
crustacean cardiac ganglion contains only 9 neurons. Both are central pattern generating
circuits that generate fictive motor patterns when removed from the animal, and both are
modulated by a large number of different substances (Blitz and Nusbaum, 2011; Cruz-
Bermudez and Marder, 2007; Johnson et al., 2011; Marder and Bucher, 2007; Stein, 2009;
Wiwatpanit et al., 2012).

Figure 2 summarizes a partial list of what is known about the neuromodulatory control of
the crab STG. These data were accumulated over the years by many laboratories using a
combination of immunocytochemistry and biochemical techniques. Most recently, mass
spectrometry has allowed the identification and characterization of many individual
members of a number of different peptide families (Dickinson et al., 2009; Ma et al., 2009a;
Ma et al., 2009b; Ma et al., 2009c; Stemmler et al., 2010). Many of the same substances are
released both by descending modulatory neurons and by neurosecretory structures as
hormone.

It is unlikely that the STG is unusual in the number of its modulatory inputs. A large number
of neuromodulators are known to have important functions in the Aplysia feeding circuits
(Brezina and Weiss, 1997; Furukawa et al., 2003; Koh and Weiss, 2007; Li et al., 2001;
Proekt et al., 2005; Sweedler et al., 2002; Vilim et al., 2010; Wu et al., 2010), another
system in which the search for modulators has been intense. And certainly, the number of
important peptide modulators known in C. elegans and Drosophila is also large (Bargmann,
2012; Taghert and Nitabach, 2012). In contrast, there are relatively few vertebrate circuits,
in which there have been determined attempts to find all of the modulatory inputs to the
circuit. But, whether there are 5 or 12 or 25 modulators that can influence the output of a
given circuit in the brain, no circuit is likely to be modulated by only one or two substances,
no matter how tempting it is to think that a single substance is solely responsible for
controlling a significant piece of the brain.
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Neuromodulators and neuromodulatory neurons alter circuit dynamics
The exogenous application of neuromodulatory substances and the stimulation of
modulatory projection neurons can significantly alter circuit output (Blitz et al., 2004; Blitz
et al., 1999; Blitz et al., 1995; Blitz et al., 2008; Dando and Selverston, 1972; Dickinson et
al., 2001; Dickinson and Marder, 1989; Dickinson et al., 1990; Dickinson and Nagy, 1983;
Eisen and Marder, 1984; Flamm and Harris-Warrick, 1986a, b; Hooper and Marder, 1984;
Hooper and Marder, 1987; Nagy and Dickinson, 1983; Nagy et al., 1988; Nusbaum and
Marder, 1988; Nusbaum and Marder, 1989a; Nusbaum and Marder, 1989b; Saideman et al.,
2006; Saideman et al., 2007).

When the effects of descending modulatory projection neurons on the STG are removed by
either cutting or blocking the input nerve to the STG, the fast pyloric rhythm either stops
completely or slows down (Fig. 3, control). Under these conditions, exogenous application
of a large number of different substances can elicit a triphasic motor pattern (Fig. 3),
although each substance produces a different form of the rhythm. These data were initially
interpreted as showing that the same neuronal circuitry can be reconfigured differently by
each of a large number of neuromodulators. That interpretation still holds. But these data
also make a second point: there are a large number of different neuromodulators that can
activate the network. To some extent these constitute degenerate mechanisms that can, as a
first approximation substitute for each other, if it is more important that a rhythm exist than
its exact form. This is especially the case, if the neuromuscular junctions activated by these
motor neurons act as a temporal filter (Brezina, 2010; Hooper and Weaver, 2000; Morris
and Hooper, 1998). Modulators may also stabilize motor patterns (Zhao et al., 2011).

In addition to the fast pyloric rhythm, the STG also expresses two slower rhythms, the
gastric mill rhythm and the cardiac sac rhythm. These rhythms require descending
modulatory inputs for their expression. Figure 4A shows a cartoon comparing the effects of
stimulating three different proctolin-containing modulatory projection neurons on the
pyloric and gastric rhythms of the crab. While each of these neurons contains and releases
proctolin, the cotransmitter complement of these three neurons is different (Blitz et al.,
1999), and stimulation of these neurons elicits different motor patterns from the STG. A full
gastric rhythm is elicited by MCN1, MPN increases the frequency of the fast pyloric
rhythm, while MCN7 activates still a different rhythm.

Not only can modulators alter the motor patterns produced by a single circuit, but they can
also combine elements from two circuits into one. The schematic shown in Figure 4B shows
that the neuropeptide, Red Pigment Concentrating Hormone (RPCH) strengthens synapses
from the IVN neurons to STG network neurons and creates a single, conjoint rhythm from
neurons that ordinarily are part of the cardiac sac and gastric rhythm (Dickinson et al.,
1990). This is one of many examples of circuit switching in the STG, in which neurons
switch from being part of the pyloric or gastric circuits (Weimann and Marder, 1994;
Weimann et al., 1991).

While some aspects of the effects of a cotransmitter-containing projection neuron may be
recapitulated with bath application of one of its substances, it is unlikely that exogenous bath
applications will reproduce the concentration profiles that are produced by neural
stimulation. In contrast, there are substances that only reach the neuropil of the STG as
circulating hormones (Saideman et al., 2006; Weimann et al., 1997). In this case, bath-
applications at realistic concentrations are far more likely to elicit responses similar to those
evoked in vivo.
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Determining the cellular mechanisms underlying circuit modulation
One of the goals of much of the work on the modulation of the STG has been to determine
the mechanisms that account for the changes in circuit performance elicited by modulators
on the basis of the modulator’s action on specific cellular and synaptic targets (Eisen and
Marder, 1984; Flamm and Harris-Warrick, 1986a, b; Hooper and Marder, 1987; Marder and
Eisen, 1984a). In these experiments pharmacological blockade of the glutamatergic
inhibitory synapses was combined with photoinactivation of specific dye-filled neurons
(Miller and Selverston, 1979) to isolate individual neurons for study.

These studies demonstrated: a) electrically coupled neurons could respond differently to the
same modulatory substance (Marder and Eisen, 1984a), b) a given neuron could be a direct
target for multiple modulatory substances (Flamm and Harris-Warrick, 1986b; Hooper and
Marder, 1987; Marder and Eisen, 1984a; Swensen and Marder, 2000), c) multiple circuit
neurons were simultaneous targets of the same neuromodulator (Flamm and Harris-Warrick,
1986b; Harris-Warrick and Johnson, 2010; Hooper and Marder, 1987), d) all circuit neurons
are the subject of modulation (Harris-Warrick and Johnson, 2010; Swensen and Marder,
2001).

The effects of dopamine on membrane currents and receptors in STG neurons has been
extensively studied (Clark and Baro, 2006, 2007; Clark et al., 2008; Harris-Warrick et al.,
1995a; Harris-Warrick et al., 1995b; Harris-Warrick and Johnson, 2010; Peck et al., 2006;
Zhang et al., 2010). An unexpected result from this work is that dopamine modulates several
currents in the same neuron, and that the same current can be modulated differently in
different target neurons (Fig. 5A).

Every synapse is subject to neuromodulation
The dynamics of circuit modulation in the STG also involves modulation of synaptic
strength (Dickinson et al., 1990; Eisen and Marder, 1984; Harris-Warrick and Johnson,
2010; Johnson et al., 2011; Johnson and Harris-Warrick, 1990; Kloppenburg et al., 2000;
Thirumalai et al., 2006; Zhao et al., 2011). Figure 5B shows that the same synapse is subject
to modulation by dopamine, serotonin, and octopamine. Additionally, the extent of the
modulation is altered as a function of synaptic depression (Johnson et al., 2011). This shows
that there is an interaction between neuromodulation and other use-dependent processes that
also influence synaptic strength during ongoing circuit activity.

The interaction between basal neuromodulatory tone and phasic activation
of neuromodulatory inputs

Many of the same substances are delivered by specific modulatory projections into the STG
and also are released into the hemolymph from neurosecretory structures such as the
pericardial organs (Figure 2). This same dual function is a general feature of many nervous
systems (Keller, 1992). The concentration of neuromodulators in the hemolymph are in the
nanomolar range, while release from nerve terminals can produce substantially higher
concentrations, at least for short periods of time in response to bursts of presynaptic activity
(Rodgers et al., 2011a; Rodgers et al., 2011b). Neurons in the STG show DA receptors at
non-synaptic regions (Oginsky et al., 2010), consistent with their role as signaling a tonic
modulatory tone. Moreover, tonic low concentrations of DA seem to be important for
maintaining circuit basal function, while phasic, higher concentrations produce shorter-term
modulation (Rodgers et al., 2011a; Rodgers et al., 2011b).
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How can highly modulated circuits be stable in the face of parameter
changes brought about by modulation?

One of the most puzzling questions arising from extensive neuromodulation is how the
integrity of the modulated circuits is maintained, although so may circuit parameters can be
altered? If one tries to build a computational model of either a single neuron, or a circuit, it
can be quite hard to find a set of parameters that are consistent with the desired output.
Indeed, random assignment of parameters to a single neuron or a circuit will lead to
significantly more failures than successful models (Prinz, 2010; Prinz et al., 2003a; Prinz et
al., 2004; Taylor et al., 2009). Nonetheless, there are many different sets of parameters that
can produce similar output patterns (Goldman et al., 2001; Prinz et al., 2004; Taylor et al.,
2009). There are circumstances in which neuromodulators are used to qualitatively
transform the behavior of a circuit, such as during transitions from sleep to wakefulness
(McCormick, 1989, 1992; McCormick and Bal, 1997), or when a hormonal pathway is used
to trigger eclosion (Kim et al., 2006) or molting (Webster et al., 2012). There are also
neuromodulatory influences that reshape networks during ongoing behavior, and the sets of
parameters that are produced by neuromodulator action must be consistent with stable and
appropriate cellular and circuit function (Goldman et al., 2001).

Understanding how circuits can be stable in the face of ubiquitous neuromodulation is an
important and deep problem. Why don’t the circuits important for behavior become “over-
modulated” more often, and what mechanisms might protect against over-modulation? The
answers to this question may be partially idiosyncratic to each circuit, but I suggest some
general mechanisms that may play a role in maintaining functional circuit performance
during modulation.

Stability Mechanism #1- Modulators that Coordinately Act on Opposing Processes
Harris-Warrick and Johnson (2010) suggest that the pattern of dopamine modulation of STG
neurons at the cellular level (Fig. 5) is ideally suited to maintain stable function.
Specifically, by acting on both inward and outward currents, dopamine actions can keep
individual neurons, and therefore the network, within their operating range (Harris-Warrick
and Johnson, 2010).

Stability Mechanism #2- Voltage-dependence of modulator actions
The importance of the voltage-dependence of the NMDA receptor for the induction of LTP
is well-appreciated, but the ability of the NMDA receptor to induce oscillations in the spinal
cord is less well-known (Sigvardt et al., 1985). The neuropeptide proctolin elicits a voltage-
dependent inward current similar to that evoked by NMDA (Golowasch and Marder, 1992).
This current is blocked at hyperpolarized membrane potentials by extracellular Ca2+, and
has a reversal potential about 0 mV. Consequently, the peak inward current activated by
proctolin is close to threshold (Golowasch and Marder, 1992).

Because of its voltage-dependence, the current activated by proctolin increases the
amplitude of the oscillations generated by bursting neurons without producing a
depolarization of the baseline (Fig. 5A). The same effect is seen with muscarinic agonists
such as pilocarpine or oxotremorine (Marder and Paupardin-Tritsch, 1978; Swensen and
Marder, 2000). In contrast, nicotine which activates a conventional nicotinic receptor
(Marder and Eisen, 1984b; Marder and Paupardin-Tritsch, 1978), depolarizes the baseline of
the oscillator (Fig. 5B), and can result in a depolarization block. Thus, the voltage-
dependence of the current elicited by proctolin and muscarinic agonists has a built-in brake
that maintains the integrity of the burst generating mechanism in the pyloric pacemaker
neurons.
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Stability Mechanism #3- Convergence of many modulators onto the same voltage-
dependent current

In addition to proctolin and muscarinic agonists, a large number of other peptides including
Crustacean Cardioactive Peptide (CCAP), RPCH, TNRNFLRFamide, SDRNFLRFamide,
Cancer borealis Tachykin-Related Peptide (CabTRP1a) activate the same voltage-dependent
current (Swensen and Marder, 2000), and act on some of the same neurons (Fig. 7A).
Because these modulators converge onto the same current, they occlude each other’s actions
(Fig. 7B) (Swensen and Marder, 2000). Thus, if a neuron is already highly activated by one
of these modulatory substances, a second of them will be relatively ineffective.

Stability Mechanism #4- Saturation of postsynaptic action: bigger synaptic inputs do
necessarily produce larger effects on target neuron activity

Modulators can enhance the amplitude of synaptic currents many-fold. For example, RPCH
produces several-fold increases in the amplitude of the inhibitory LP to PD synapse in the
pyloric network of the lobster, Homarus americanus (Thirumalai et al., 2006). Although this
synapse is the major feedback to the pacemaker of the pyloric rhythm, this increase in
synaptic strength does not necessarily change the frequency of the pyloric rhythm
(Thirumalai et al., 2006) because the effect of the inhibitory input to an oscillator often
saturates as synaptic strength is increased (Prinz et al., 2003b). This saturation means that
the network’s activity is de facto protected against over-modulation of the feedback synapse
to the oscillator.

Stability Mechanism #5- Modulators act coordinately on multiple targets to keep systems
functionally “matched”

In motor systems central pattern generating networks drive muscles, and it is the muscle
movement that is important for behavior. Brezina and colleagues (Brezina et al., 2005;
Brezina et al., 2000b; Brezina and Weiss, 2000; Zhurov and Brezina, 2006) have argued that
coordinate modulation of muscles, neuromuscular junctions and the central pattern
generating circuitry ensures that the presynaptic activity generated in the motor neurons is
appropriately matched to their muscle targets. This general principle, of correlated and
coordinated modulation of multiple sites in a sensory-motor circuit is likely to be a general
principle, found in many nervous systems (Taghert and Nitabach, 2012).

Can modulator action be robust and predictable despite variability in
underlying conductances?

Much computational and experimental evidence shows that there can be considerably
variability across animals or across neurons in the parameters that control neuronal
excitability and network function even when the circuit output is maintained (Calabrese et
al., 2011; Goaillard et al., 2009; Nerbonne et al., 2008; Norris et al., 2011; Prinz et al., 2004;
Roffman et al., 2011, 2012; Schulz et al., 2006; Schulz et al., 2007; Sobie, 2009; Swensen
and Bean, 2005; Tobin et al., 2009). This raises the question of whether it is possible for
neuromodulation to be reliable across individuals, if each of them has a nervous system with
different underlying parameters.

The answer to this question is complicated. First, even for modulators that have robust
actions, there can be significant differences in their responses to threshold concentrations
(Weimann et al., 1997). Second, many modulators show state-dependent actions (Nusbaum
and Marder, 1989b; Szabo et al., 2011), so that the activity or prior history of activity of the
network determines the extent or sign (Spitzer et al., 2008) of modulator action. Third,
modulator action may depend critically on other modulators (Brezina, 2010; Dickinson et
al., 1997). That said, many networks with different underlying parameters can respond
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reliably to the same modulators (Grashow et al., 2009), although in this study, a small
proportion of networks responded anomalously (Grashow et al., 2009). These data are
reminiscent of what we see in the human population with pharmacological agents that
produce anomalous responses in a small subset of people. Thus, although there are
significant individual differences in circuit structures across individuals, the particular sets
of network parameters found in the healthy population may be enriched for sets of
parameters that permit reliable neuromodulatory control under most conditions.

Summary and Conclusions: Modulation and Connectomes
The discerning among you have already made the connection between the early belief that a
connectivity diagram would be sufficient to bring understanding of how a circuit worked,
and the some of the more lofty justifications made for the recent attempts to establish
connectomes using anatomical methods (Briggman and Bock, 2012; Briggman and Denk,
2006; Briggman et al., 2011). Detailed anatomical data are invaluable. No circuit can be
fully understood without a connectivity diagram. But, the experience of the small circuit
community (Bargmann, 2012; Brezina, 2010; Getting, 1989; Jang et al., 2012; Marder and
Bucher, 2007; Marder and Calabrese, 1996) demonstrates unambiguiously that a
connectivity diagram is only a necessary beginning, but not in itself, an answer.

What then is the answer? The full answer will require a connectivity diagram that is
supplemented with a complete description of all of the cotransmitters present in each
neuron. It will require detailed information about the properties of the receptors to all of
those substances. It will require having methods to record simultaneously the electrical
activity of many circuit elements, to understand circuit dynamics. It will require systems that
allow us to go back and forth from in vitro and in vivo preparations. It will require
computational models that will help us to understand how behavior at one level emerges
from the properties of a lower level.

But most critically, it will require a return to appreciating the benefits of working on
disparate animal species. Each animal has devised extraordinary and baroque circuit
mechanisms that employ neuromodulation to achieve important behavioral flexibility in the
context of its environment, neuronal complement, and biomechanical constraints. Many of
the circuit configurations that we will uncover may be weird and specific solutions to
particular needs of that species. It will only be by looking for general principles across
species that we will find the more general rules that govern the robust and stable
neuromodulation needed for functional circuit activity in all animals.
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Figure 1.
Intrinsic and Extrinsic Modulation. Extrinsic modulation comes from outside the circuit or
modulated target. Intrinsic modulation refers to neurons that are part of a circuit and release
modulators that can alter the properties of other circuit elements. Drawing loosely after Katz
and Frost (Katz and Frost, 1996).
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Figure 2.
Partial Summary of Neuromodulation of the crab stomatogastric ganglion (STG). The STG
sits anterior to the heart within an artery that brings modulatory amines and peptides from
neurosecretory structures such as the pericardial organs (bottom list). 25 pairs of descending
modulatory neurons bring a host of substances into the neuropil of the STG (right). The
number of family members of the neuropeptides are shown in parentheses. Figure was made
by D. Bucher, summarizing work from the Li and Stemmler labs and numerous
collaborators.
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Figure 3.
Multiple neuromodulators can activate different forms of the pyloric rhythm. In each panel
the top two traces are intracellular recordings from the Lateral Pyloric (LP) and Pyloric
Dilator (PD) neurons. The bottom trace is an extracellular recording from the lateral
ventricular nerve (lvn) that carries the axons of the LP, PD, and Pyloric (PY) neurons.
(Marder and Weimann, 1992).
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Figure 4.
Modulatory reconfiguration of circuits. A) Three different proctolin-containing modulatory
neurons each evoke different changes in STG motor patterns. (Blitz et al., 1999; Nusbaum et
al., 2001). B) Bath application of RPCH constructs a conjoint rhythm from previously
separate cardiac sac and gastric mill circuit elements. Modified from Dickinson et al (1990).
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Figure 5.
Aminergic modulation of pyloric circuit elements. A) The actions of dopamine on ionic
currents in the indicated neurons are shown. From (Harris-Warrick, 2011). B) Graded IPSPs
evoked in the postsynaptic PD neuron by depolarization of the LP neuron in control (black
traces), dopamine (red), octopamine (blue) and serotonin (green). Modified from Johnston et
al (2011).
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Figure 6.
Effects of modulatory substances on a bursting pacemaker neuron, A) Intracellular
recordings from the isolated Anterior Burster (AB) neuron in control and proctolin.
Modified from Hooper and Marder (1987). Notice the increase in amplitude without change
in baseline. B) AB neuron in response to nicotine and pilocarpine.
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Figure 7.
Multiple modulators act on the same neuron and converge onto the same current. A) Puff
applications of the modulators indicated onto intracellularly recorded LP neuron. (Swensen
and Marder, 2000). B) Voltage-clamp recordings of inward currents evoked by proctolin and
CabTRP1a. Top traces, puff of proctolin elicited an inward current. When CabTRP1a was
placed in the bath, eliciting a steady-state inward current, a puff of proctolin produced only a
very small additional inward current. Bottom traces, reverse experiment. (Swensen and
Marder, 2000).
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