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Abstract

The study of cognitive development hinges, largely, on the analysis of infant looking. But analyses of eye gaze data require
the adoption of linking hypotheses: assumptions about the relationship between observed eye movements and underlying
cognitive processes. We develop a general framework for constructing, testing, and comparing these hypotheses, and thus
for producing new insights into early cognitive development. We first introduce the general framework – applicable to any
infant gaze experiment – and then demonstrate its utility by analyzing data from a set of experiments investigating the role
of attentional cues in infant learning. The new analysis uncovers significantly more structure in these data, finding evidence
of learning that was not found in standard analyses and showing an unexpected relationship between cue use and learning
rate. Finally, we discuss general implications for the construction and testing of quantitative linking hypotheses. MATLAB
code for sample linking hypotheses can be found on the first author’s website.
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Introduction

The study of infant cognitive development hinges largely on the

analysis of infant looking behavior [1]. Since Fantz’s [2] landmark

demonstration of visual memory in 2-month-old infants, research-

ers have used his habituation technique, and other eye-movement

methods, to ask deep theoretical questions about the ontogeny and

development of human cognition. But analysis of eye-movements,

like analysis of other high-dimensional cognitive measures (e.g.

fMRI, EEG) carries particular challenges [3]. In order to connect

observed eye-movements to underlying cognitive processes, one

must define a linking hypothesis that relates them [1,4].

Every experimental paradigm used in the study of infant

cognition commits – even if only implicitly – to a particular linking

hypothesis. For instance, in habituation studies [2,5], decreased

looking is hypothesized to indicate encoding, and recovery from

decreased looking is hypothesized to indicate discrimination of a

novel stimulus from a previously encoded stimulus. In violation of

expectation studies [6,7], increased looking is hypothesized to

indicate noticing a surprising event. In intermodal preferential

looking studies [8,9] a difference in looking time to one sound-

object mapping over another is hypothesized to indicate a

difference in their associations. But, critically, all of these linking

hypotheses are qualitative; they assert that a relationship exists but

do not specify its quantitative, metric properties.

Why should we prefer quantitative linking hypotheses? Quan-

titative linking hypotheses are important for moving from asking if

a phenomenon occurs to asking how and why. First, quantitative

linking hypotheses allow researchers to clearly and unambiguously

specify the assumptions and mechanisms in their theories. As

theories grow in complexity, correctly deriving their (sometimes

counterintuitive) predictions can become quite difficult. Formal-

izing these theories makes such predictions tractable [10,11].

Second, without quantitative linking hypotheses, it can often be

impossible to distinguish competing theoretical accounts of the

data in a given experiment. This problem has fueled many debates

among developmentalists about whether eye-movement patterns

observed in a given experiment are best given ‘‘rich’’ (conceptual)

or ‘‘lean’’ (perceptual) theoretical explanations [12–14]. Third,

quantitative linking hypotheses allow researchers to test the same

theoretical model across experiments, integrating multiple datasets

within one self-consistent framework [1,14–16]. The memory [17],

vision [18], and cognitive architecture [19] literatures provide

excellent examples of the importance of this kind of theory

building, which has remained elusive in the developmental

literature (although, see [20]).

Developmentalists who measure eye-movements face several

challenges in the construction of quantitative linking hypotheses.

First, control of eye-movements is complex, and saccades are likely

to be moderated by multiple systems [1,21,22]. Even in viewing

natural scenes, for instance, fixation patterns are moderated not

only by multiple components of visual salience [18], but also by

higher-order scene statistics [23] and task goals [22,24]. Quanti-

tative linking hypotheses, then, must be capable of dealing with

multiple interacting components.

Second, when fixation duration is used as an indication of

learning, as in many preferential looking paradigms, it is unclear

whether their relationship is a simple linear one. For instance,

some experiments may find a robust novelty preference, while
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others find a robust familiarity preference in a similar paradigm

[25,26]. A number of authors have consequently proposed that

learning and looking may be linked non-monotonically, with a

preference for familiarity appearing first, and a preference for

novelty developing with further experience [27–30]. Any linking

hypothesis used in such paradigms must be flexible enough to

accommodate this kind of complexity.

Third, while all experimental psychologists must contend with

variability among participants, for developmentalists this problem

is particularly pronounced. Development, especially during

infancy, is a time of rapid change, and two participants at the

same age may be at markedly different points in their develop-

mental trajectories. Thus, the same linking hypothesis may not be

appropriate for all infants. While the issue of averaging over

qualitatively different types of participants is well-known in both

the adult [31,32] and developmental [33] literatures, it is rarely

tackled directly. When it is, researchers typically perform a median

split on the measure of interest to accommodate individual

differences [34,35]. But one cannot know apriori whether the data

is best analyzed as one group, or two, or three or more. A system

for generating and testing quantitative linking hypotheses must be

able to deal gracefully with this kind of complexity.

This paper proposes a framework for the construction and

analysis of quantitative linking hypotheses for data from eye gaze

experiments. We build on a growing body of statistical tools – non-

parametric Bayesian models – to produce a principled, rigorous,

empirically successful analysis that meets the challenges reviewed

above. This framework allows linking hypotheses to be composed

of multiple interacting components, for each of these components

to have any functional form, and for qualitatively different groups

of infants to be automatically and adaptively identified. To

demonstrate the utility of this framework, we analyze data from a

set of experiments investigating the role of social and non-social

cues in infant multi-modal learning [36]. This analysis shows how

quantitative linking hypotheses provide leverage in understanding

the development and operation of infant learning mechanisms. We

show that, across conditions, infants cluster coherently into several

different types of learners, that these different types of learners are

affected differently by the presence of a social cue, and that the

non-social cue impairs learning by competing for attention. We

conclude with a discussion of how this framework could be

extended to deal with other kinds of data, to compare competing

theories within an experiment, and to aggregate data across

experiments.

The rest of the paper is organized as follows. First, we describe

the general framework for the construction and analysis of

quantitative linking hypotheses. Next, we present a specific

instantiation of this framework constructed to analyze a set of

studies investigating the relationship between attentional cues and

learning in 8-month-old infants [36]. Third, in order to empirically

validate the framework, we show that this analysis performs as

expected in a set of simulation studies comparable to those in

which the infants participated. Fourth, we apply the analysis to

empirical data and show how this novel framework provides

insight into cognitive processes that was unavailable in the

standard analyses. Finally, we conclude with a discussion of how

this analysis can be applied and extended for use in other infant

experiments, and how it can be used to discriminate among

competing theories.

Analysis

General Framework
We begin by describing the framework in which we propose to

use quantitative linking hypotheses to analyze infant eye move-

ment experiments. Here we describe, at a conceptual level, how

these tools meet the challenges reviewed above, and how their

output can be interpreted. Full technical details can be found in

Graphical Model Details S1.

Consider a typical infant eye-tracking experiment. In such an

experiment, each infant is exposed to stimuli that encode some

structure of theoretical interest. The researcher measures this

structure’s influence on infants’ looking behavior. For instance, in

studies of early numerical cognition, researchers expose infants to

displays of dots varying along a number of dimensions (e.g.

cumulative contour, area, etc.), but consistent in one: number of

dots [37,38]. Consistent structure along this one dimension

subsequently leads infants to prefer displays of a different number.

In studies of categorization, infants are exposed to visual objects

that vary along many dimensions, but are consistent in dimensions

that define a particular category [39,40]. This consistency in

structure leads infants to look longer at objects from a different

category. In infant word-learning experiments, infants are exposed

to consistent pairings between words and objects [9,41]. Infants

subsequently discriminate between word-object mappings consis-

tent with training stimuli, and those that are inconsistent. In all of

these cases, however, the researcher is not interested directly in the

change in the observed looking behavior, but rather in the

cognitive processes it implicates [42,43]. Quantitative linking

hypotheses let us describe these processes directly.

For each infant on each trial, the researcher observes some eye-

gaze data (D). The researchers goal is to determine the model (M )

that is most likely given the observed eye movements (P(M DD)).
This problem can be formalized as a problem of Bayesian

inference. The researcher can specify several possible models, each

of which makes different predictions about the gaze data likely to

be observed (P(DDM)). The researcher may also prefer simpler

models apriori in accord with Ockhams razor (P(M)). These

properties can then be combined via Bayes’ rule to infer the model

that best describes the infants cognitive processes (Equation 1).

P(M DD) !P(DDM)P(M)

! P
i

P(di Dhi)P(hi Dei,si,zi)

� �
P(sDs)P(s)P(zDa)P(aDc)

ð1Þ

Thus, we develop a graphical model (Fig. 1) for connecting

hypothesized cognitive models to observed eye gaze data through

formal linking hypotheses. On each trial of an experiment, an

infant (i) is exposed to some experimental stimuli (e) and produces

observed eye movements (d ). This observed gaze data is encoded

as proportion of dwell time over a set of hypothesized areas of

interest (AOIs). The inference framework discovers the set of

underlying cognitive processes (s) that operate on the stimuli to

generate the observed data. This process is essentially a regression

problem: Bayesian inference finds the relationship between

predictor variables (s,e) and observed outcomes (d ). However,

because gaze data is a distribution over AOIs rather than a single

continuous variable, we connect these predictors and outcomes

using a Dirichlet distribution (h) (see Graphical Model Details S1).

In the introduction, we identified three challenges to quantita-

tive linking hypotheses: 1) multiple processes may drive eye-

movements, 2) linking functions may be complex, and 3) a given

sample of infants may be heterogeneous. This framework meets all

Quantitative Linking Hypotheses
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three challenges. Because s can encode any hypothetical cognitive

model, the effect of multiple processes can be estimated

simultaneously without forcing a dichotomy [16,44]. However, if

a process has little effect on observed eye movements, the prior on

parameter values (s) allows the model to discover this as well [45].

Second, the relationship between cognitive processes and observed

eye movements need not be a simple linear one. As infants learn

about novel objects, for instance, they may transition from no

preference to a familiarity preference to a novelty preference

[27,29]. In this framework, any functional link can be encoded in

the cognitive model (s). For simplicity, and to make minimal

assumptions, we propose to do so through arbitrary degree

polynomials [46,47]. Here, again, the prior on model parameters

(s) is used to discover the most parsimonious form of the linking

function, penalizing complex polynomials.

Finally, infants in a sample may not come from a single

homogenous group, but may actually represent two or more

different groups, (e.g. slow and fast learners: [20,48,49]). This

framework automatically and adaptively determines the number of

groups of infants and the infants who belong to each group; each

distinct group of infants may be best represented by a different

cognitive model. The estimation of unique groups is performed

using the Chinese restaurant process [50,51], which has been used

successfully to determine unique groups in adult experiments [52].

Clusters are discovered in this process by treating participants by

analogy to customers in a Chinese restaurant. As each customer

enters, he sits at each occupied table (z) with probability

proportional to the number of occupants, but also chooses a

new table with some small probability (a). This implements a rich-

get-richer scheme in which groups that account for the behavior of

many infants become favored, and the most parsimonious number

of groups is discovered. A hyper parameter (c) obviates a direct

decision about the probability of choosing a new table.

In addition to tackling these difficult problems, this framework

provides one more major advantage over traditional methods: all

gaze data are treated as potentially relevant. Hypothesized

cognitive processes should fit both training (or habituation) and

test trials, off-screen looks should not be discarded, and side biases

should not preclude infants from analysis [53,54]. When all of

these strengths are taken together, this framework can provide a

much richer understanding of the processes that account for infant

behavior (see e.g. [52,55]). Using quantitative linking hypothesis in

this framework, we can ask not only whether structure in the

stimuli affected infant behavior, but also deeper questions about

how and why this change took place. Credible intervals on the

model parameters (s) allow us to directly infer and describe the

infant cognitive processes that we intend to study [56]. In the next

section, we apply the model to data from a set of experiments

investigating the role of attentional cues in infant learning [36].

Case Study: Attentional Cues and Infant Learning
The previous section outlines a general framework for

quantitative linking hypotheses that is applicable across a wide

range of studies of infant cognition. In order to demonstrate its

utility in a specific case, this section describes its application to a set

of experiments investigating the role of attentional cues in infant

multi-modal learning. In each of the experiments, 8-month-old

infants were exposed to videos in which sounds and objects’ on-

screen locations were reliably related. When objects appeared in

the top-left and bottom-right boxes, one sound was heard. When

other objects appeared instead in the top-right and bottom-left

boxes, a different sound was heard (Fig. 2). Subsequently, infants

were exposed to test trials in which all four boxes were blank, but

one of the sounds from training was played. If infants had learned

the sound-location regularities, they were expected to preferen-

tially attend to the locations that had co-occurred with each sound.

Wu and Kirkham [36] asked whether attentional cues might

change the way that infants learn multi-modal regularities. In the

Face condition (Fig. 2a), a female face appeared in the center of

Figure 1. Graphical Model for Infant Eye Movements. A graphical
model for inferring the cognitive processes (s) responsible for
generated eye movements (d) under particular experimental conditions
(e). This model adaptively groups infants into like clusters (c,a,z) and
implements a sparsity prior to prevent overfitting (s).
doi:10.1371/journal.pone.0047419.g001

Figure 2. Training and Testing Trials. Training and testing trials
from [36]. In the Face condition (a), a centrally-located face directed
infants’ attention to one of the boxes. In the Square condition (b), a red
flashing square highlighted one of the boxes. In the No Cue condition
(c) only the multi-modal regularity was present. On test trials (d), all
boxes remained empty while infants heard one of the sounds from
training. The actor in the photograph has given written informed
consent, as outlined in the PLoS consent form, to publication of her
photograph.
doi:10.1371/journal.pone.0047419.g002

Quantitative Linking Hypotheses
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the screen, and turned to one of the lower boxes in which an object

appeared. In the Square condition (Fig. 2b), a red flashing square

instead highlighted the same box. Finally, in the No Cue condition

(Fig. 2c), infant multi-modal learning was assessed in the absence

of either attentional cue. Analyses of looking preferences on test

trials showed that infants reliably learned the multi-modal

regularity only in the presence of the Face cue. Thus, Wu and

Kirkham [36] concluded that infants learn differently from social

and non-social cues, and that the former can increase the

likelihood of learning multi-modal regularities by 8 months of age.

These findings provide insight into the role of attentional cues in

infant learning: different cues can have a very different effect.

These findings also suggest a number of follow-up questions: is the

difference between the two cues qualitative (e.g. one helps, the

other does not), or is it a difference of degrees? Are infants

homogenous in their response to the cues? If not, are infants who

attend more strongly to the cues the same infants who show

stronger multi-modal learning? Do infants orient attention to the

Face in the same way that they orient attention to the Square?

These questions might be addressed empirically in numerous

follow-up experiments. However, it is possible that the answers

reside in the current data but are opaque to common analytical

tools (e.g. ANOVAs). In the following section, we formalize a set of

quantitative linking hypotheses for these cued multi-modal

learning experiments. With this richer analysis, we can leverage

the existing data to answer questions about the mechanistic

underpinnings of the observed differences in these experiments.

Quantitative Linking Hypotheses. To analyze the data

from these experiments, we develop quantitative linking hypoth-

eses for them in accord with the graphical model proposed above

(Fig. 1). Thus, we specify formally the connection between the

observed eye-movement data (d), observable experimental condi-

tions (e), and the unobservable, hypothesized cognitive processes

(s). By analogy to regression, the data are the dependent variable,

the experimental conditions are the independent variables, and the

cognitive processes parameterize these independent variables. On

each trial of the experiment – whether training or testing – infants

saw a black screen containing four boxes, one in each corner of the

screen (Fig. 2). Thus, we define five areas of interest (AOIs): one

for each of the four boxes, and a fifth to capture all other looks

(including off-screen looks). The total data (d ) for an individual

infant is thus the entire set of gaze proportions observed on each

trial of the experiment. Formally, this is a matrix in which rows

correspond to trials, columns correspond to AOIs, and each cell is

the proportion of looking to a particular AOI on a particular trial.

This whole matrix is the outcome to be predicted from the

experimental conditions (e) and the hypothesized cognitive

processes (s).

Next we formally specify the experimental conditions to which

infants were exposed on each trial. These are the observable

variables through which the unobservable cognitive processes are

hypothesized to lead to gaze patterns. While all four boxes were

empty on test trials, on training trials two of the four boxes

contained cartoon pictures of animals (Fig. 2a–c). These are

coded with a binary indicator variable salient that specifies

whether a box (b) contains a picture. Further, in the Face and

Square conditions (Fig. 2a and 2b), one of the boxes was

highlighted by an attentional cue. We similarly define an indicator

variable cued that specifies whether a particular box is cued.

salientb ~
1 box b contains stim

0 otherwise

�

cuedb ~
1 box b is cued

0 otherwise

� ð2Þ

In addition to the visual stimuli, each trial also played a sound.

We hypothesize that sounds do not directly affect looking

preferences, but rather may alter looking patterns through the

experience of learning sound-location contingencies (for evidence

see [36] Experiment 6). In order to formalize this learning process

(below), we encode each infant’s experience with these contingen-

cies in the experimental conditions (e). Thus, we also define the

variable contingentt to encode an infant’s cumulative looking

proportion in a given box (b) in the presence of a particular sound

(n) from trial 1 to trial t{1. This looking history can then be used

to predict looking on trial t. So, on trial t that plays sound nt and

on which the infant’s proportion of looking in box b is dt,b, where

d(i,j) is Kroneckers delta function that returns 1 if its arguments

are equal and zero otherwise:

contingentt,b(nt)~
Xt{1

r~1

d(nr,nt):dr,b ð3Þ

Last, we define the cognitive processes that act on these

experimental condition variables to produce the observed gaze

data. First, infants may have a baseline preference for some screen

locations over others. For instance, significant proportions of

infant participants are routinely excluded for exhibiting a bias for

one side of the screen [53,54]. Instead of excluding these infants,

we include a preference constant pb for each AOI in the model.

This allows the contributions of the other variables to be

considered once baseline preferences have been controlled.

Second, in accord with the experimental conditions described

above, an infant’s preference for a particular box may be altered

by the presence of an object in that box (salient), or the presence of

a cue highlighting that box (cued ). We let the strength of these

factors be linearly scaled by parameters l and c respectively. These

function like slope terms in linear regression.

Finally, in these experiments, the question of interest is whether

infants learn to associate sounds and objects/locations through co-

occurrence. We thus define the effect of association between a

sound and a location as a change in preference for that location

over exposure to that contingency. More specifically, we let

association between a sound and location be a function of time

spent fixating that location in the presence of that sound

(contingent). To avoid making apriori assumptions about the

association function (e.g. that it is linear, or monotonic), we let

assoc between box b and sound n on trial t be an arbitrary degree

polynomial function of cumulative looking time to b in the

presence of sound n. Since polynomials can approximate any

functional form (e.g. splines [46,47]), this is a general solution. As

in testing for higher-order terms in standard regression, higher-

order polynomial coefficients are pushed down to zero if they do

not contribute to predictive power by the priors in the model (s).

Equation 4 formalizes this definition, letting O be the highest order

non-zero term, and bo be the polynomial coefficient for each term

o.

Quantitative Linking Hypotheses
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assoct,b(n)~
XO

o~1

bo
:contingentt,b(n)o ð4Þ

By formally specifying the observable experimental conditions

and hypothesized cognitive process that act on these experimental

conditions, we have specified quantitative linking hypotheses for

the observed data. In summary, an infant’s expected preference for

each AOI b on trial t was modeled as an exponentiated linear

combination of the above factors. The vector of preferences (h) for

all AOIs on trial t was passed through a Dirichlet distribution to

predict the observed distribution of dwell time on that trial (dt).

This is formalized in Equations 5.

ht,b ~exp½pbzl:salientt,bzc:cuedt,bzassoct,b(nt)�
dt *Dirichlet(ht)

ð5Þ

As in a regression analysis, we can now determine the

quantitative effect that each of the hypothesized factors has on

the pattern of eye-movements generated by each infant. We can

use the differences in these parameters across conditions to

understand whether and how different cues affect infant multi-

modal learning. In order to determine the values of these

parameters for each group of infants in each experimental

condition, we perform Bayesian inference in the graphical model

specified above using a Markov Chain Monte Carlo sampling

algorithm. This sampling algorithm allows us to approximate the

true distribution for each of these parameters, producing a set of

credible intervals (similar to confidence intervals) that can be used

to determine the likelihood that parameters are non-zero, as well

as their likely range [57,58]. Full technical details can be found in

Inference Details S2.

Before we analyze the experimental data, however, we first

present a set of simulation studies designed to demonstrate the

robustness of the graphical model and the inference procedure.

Because we propose a non-standard analytic framework, we must

demonstrate that it behaves as expected. The simulations in the

next section confirm that the inference procedure can recover

correct parameter values when ground-truth is known.

Methods

Ethical Statement
All infant experimental procedures were approved by the

School of Social Sciences, History and Philosophy Ethics

Committee at Birkbeck, University of London (protocol 2324).

Informed consent was acquired in writing from the parents of all

infants.

Simulations
While this framework is built on well-established theoretical

principles, it is still critical to certify empirically that it behaves as

expected [59]. Thus, we first validate the analysis empirically in a

set of simulation studies. Recall that this analysis works by

specifying a model that generates the observed data and then

inferring its parameters. We can test this inference process by

generating data from a model using known parameters. If the

inference process works properly, we should be able to recover

these same parameters.

We considered three impediments to applying quantitative

linking hypotheses to infant looking data: 1) the possibility of

multiple groups of infants, 2) the contribution of multiple factors,

and 3) the potential for non-monotonic linking functions. The

following simulations show the framework’s capacity to solve all

three of these problems. In each analysis, we expose simulated

infants to a series of trials comparable to those seen in the Face and

Square conditions.

Simulation 1. Developmental researchers typically use dif-

ferences in eye-gaze behavior at different ages to understand how

cognitive processes develop [60,61], but stable group differences

can be found even at a single age [48,49]. In Simulation 1, we

tested the analysis on data generated from a mixture of a known

number of groups. In all cases, the analysis robustly determined

the correct number of groups and clustered infants correctly.

Infants in Wu & Kirkham’s [36] study were simulated by

constructing training and testing trials identical to those in the

original experiments. Simulated infants were exposed to four

consecutive blocks each consisting of six training trials and a test

trial. On each training trial, objects appeared in two of the boxes

(top-left and bottom-right, or top-right and bottom-left), and the

lower box was cued. The appearance of objects in each

configuration also co-occurred on each trial with a sound unique

to that configuration. Each of the two configurations was seen

three times in each block of training trials, and order was pseudo-

randomized within a block. After all six training trials, infants saw

one test trial on which the screen was empty, but one of the two

sounds was heard. These seven trials together comprised one

block, and simulated infants were exposed to four blocks total.

Each sound was tested twice across the four test trials.

Thirty simulated infants were generated for each of four group

numbers (1, 2, 3, and 4) 30 times. On each run for a particular

group size, the number of infants in each group was determined by

a draw from a Multinomial distribution with an equal probability

for each group. For instance, for group size 3, the number of

infants in each group was drawn from Multinomial(
1

3
,
1

3
,
1

3
).

Parameters for each group were assigned by drawing values without

replacement from cued{c : (0,1,2,3), salient{l : (0,1,2,3), and

contingent{a1 : (0,:2,:4,:6). Thus, all true association functions

were linear. Baseline preferences for each AOI were assigned by

drawing values uniformly from ½{2,{1� for each on-screen

location and from ½:5,1:5� for the off-screen location. Values were

chosen to be comparable to those found in analyses of the real

experimental data (below), and to ensure that groups within a run

were sufficiently different. Inference on each run was performed by

sampling 1,000 times for each individual infant and then 5,000

times for all infants together. The first 2,500 samples of the group

chain were discarded to ensure sufficient burnin (See Inference

Details S2 for details of the MCMC sampling algorithm).

Simulation 2. Developing quantitative linking hypotheses for

eye movement data is difficult partly because multiple cognitive

processes are likely to contribute to the observed data [1,21,22]. In

the previous section, we considered three potential contributors: 1)

preference for boxes containing objects (salient), 2) preference for

cued boxes (cued ), and 3) learning sound-location co-occurrence

regularities (contingent). In Simulation 2, we parametrically

manipulated the contribution of each factor to simulated infant

gaze data, and showed that correct values could be recovered

through inference.

Individual infants were exposed to training and testing trials

identical to those described in Simulation 1. What varied was

simulated infants’ sensitivity to cues, salience, and rates of

associative learning. Six unique values were chosen for each

parameter in half-steps compared to the steps in Simulation 1:

cued{c : (0,:5,1,1:5,2,2:5), salient{l : (0,:5,1,1:5,2,2:5), and

Quantitative Linking Hypotheses
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contingent{a1 : (0,:1,:2,:3,:4,:5). As in Simulation 1, all associ-

ation functions were linear. Baseline preferences for each AOI

were again assigned by drawing values uniformly from ½{2,{1�
for each on-screen location and from ½:5,1:5� for the off-screen

location. Each possible combination of cued, salient, and

contingent parameters was tested once, resulting in 216 total

simulations. Each simulation was run with 10 simulated infants in

one group. Inference was performed by sampling 2,000 times for

each individual infant and then 50,000 times for all infants

together. The first 5,000 samples of the group chain were

discarded to ensure sufficient burnin.

Simulation 3. The previous simulations show that our

framework can successfully recover correct association functions

when the true functions are linear and have a positive slope, i.e.

when increased learning leads to increased looking [49]. This

linking hypothesis is implicit in many studies of infant learning, but

it is far from the only one employed. Often, increased learning is

hypothesized to lead to decreased learning, as in habituation

[2,5,62]. But sometimes the function linking looking and learning

is proposed to be more complex. For instance, Hunter and Ames

[27] argued that the function may be non-monotonic, with

learning leading first to increased looking and subsequently to

decreased looking (see also [29,30]). In Simulation 3, we generate

data from true models with four kinds of learning functions: 1)

linear increasing, 2) linear decreasing, 3) u-shaped up, and 4) u-

shaped down. We show that inference can recover all four kinds

successfully.

Individual simulated infants were exposed to training and

testing trials identical to those described in Simulations 1 and 2

above. For each simulation, parameters for cued and salient, as

well as baseline preferences were chosen randomly with replace-

ment from the same set of values as in Simulation 2. In this

simulation, we manipulated the associative learning functions used to

generate the data. Two functions encode simple linear linking

hypotheses: 1) learning increases looking (assoc~:5x), and 3)

learning decreases looking (assoc~{:5x). Two additional func-

tions encoded non-monotonic linking functions: 1) learning leads

first to increased and then decreased looking

(assoc~{:2x2z:5x), and 2) learning leads first to decreased

and then increased looking (assoc~:2x2{:5x). Thirty simulations

were run for each of these possible learning functions with 10

infants in each run. Inference was performed by sampling 2,000

times for each individual infant and then 50,000 times for all

infants together. The first 5,000 samples of each group chain were

discarded to ensure sufficient burnin.

Experiment
Having validated the proposed framework on simulation data,

we apply the quantitative linking hypotheses proposed above to

data from three experimental conditions in [36]. Instead of

comparing the effects of different attentional cues using raw test

preferences, as in standard analyses (e.g. ANOVAs), inferring

cognitive model parameters for each condition lets us analyze the

effects of different cues directly on attention and learning. Infants

were exposed to two different kinds of cues as well as a no cue

baseline condition. However, because the cues can be encoded in

the same linking hypotheses, their effects can be compared directly

as quantitative changes in attention and learning parameters (see

also, [63]).

In each condition, infants were exposed to a series of training

trials in which two objects appeared in opposite diagonal boxes on

the screen (Fig. 2). When objects appeared in the top-right and

bottom-left boxes, one sound was heard. When objects appeared

instead in the top-left and bottom right boxes, a different sound

was heard. Each condition consisted of four blocks of six such

training trials. Within a block, each of the two location-sound

regularities occurred an equal number of times in pseudo-random

order. After six training trials, infants saw one test trial on which

they heard one of the sounds from training, but all of the on-screen

boxes were empty (Fig. 2d). In addition to this common design

and procedure, infants in each condition were exposed to a

different attentional cue during training trials. In the Face

condition, an on-screen face appeared and turned to look at the

lower on-screen object(Fig. 2a). In the Square condition, a

flashing red square surrounded the lower on-screen object

(Fig. 2b). Finally, the No Cue condition, in which no attentional

cue was present, served as a baseline for comparison (Fig. 2c).

Inference for parameters was performed for 26 8-month-olds in

the No Cue condition, 29 8-month-olds in the Face condition, and

30 8-month-olds in the Square condition (see [36] for full

participant details).

Linking hypotheses were defined for each condition as described

above. In the No Cue condition, the value of the cued indicator

function was set to 0 for each AOI on each trial. Instead of

excluding it apriori, this acts as a further test of the model priors in

regularizing non-contributing parameters. Inference for model

parameters was performed separately for each experimental

condition.

Results and Discussion

Simulations
Simulation 1. Across all 120 simulations (30 runs at each of

the four group sizes), the correct number of clusters was identified

in all but one. On one run at group size 4, the analysis identified

only three clusters. Nonetheless, it is possible that even if the

correct number of clusters was identified, the proportion of infants

in each cluster was incorrect. To determine the proportion of

infants misclassified, we computed the number of infants assigned

to an incorrect group on each sample from the posterior

distribution (see [64] for a derivation of this distance metric).

The number misclassified was averaged across all 1,000 posterior

samples for each run, and the 30 runs for each group size were

averaged together. Fig. 3 shows the average proportion of infants

assigned to the wrong group at each group size. Group assignment

was perfect when the number of true groups was 1 or 2, and less

than a quarter of one percent (v:0025) of infants were

misclassified at the higher group numbers. These results clearly

show that the analysis is capable of dealing with heterogeneous

groups of infants.

Simluation 2. Across all factors, correct parameter values

were recovered well at each ground-truth level (Fig. 4). In general,

when parameters were estimated incorrectly, this was due to

underestimation, as evidenced by the negative constant in each

graph of Fig. 4. This suggests that the Type I error rate should be

low. The poorest estimation occurred in the case of inferring

values for the association parameter a1. True positive values were

particularly likely to be underestimated when the values of other

parameters were zero. That is, when infants’ initial preferences

were unaffected by experimental conditions, and were thus more

uniform, changes in preferences due to learning were more

difficult to pick up. Nonetheless, the high r2 for best-fit lines for

each factor (cued : r2~:981, pv:001; salient : r2~:988, pv:001;

contingent : r2~:970, pv:001) indicate that inference was

successful in recovering true parameter values.

Simulation 3. Fig. 5 shows the true learning function and 30

inferred functions for each condition. To determine how well the

inference process found non-linear functions when they were true,

Quantitative Linking Hypotheses
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and rejected nonlinear functions when they were not true, we

examined the 95% credible intervals for parameters generated for

each function type. When the true parameter for a function was

non-zero, the 95% credible interval should correspondingly not

cross zero. If the interval did cross zero, this would be a Type II

error. In contrast, when the true parameter value for a function

was 0, the 95% credible interval should cross zero. If this was not

the case, we would have made a Type I error. Because extensive

sampling is computationally expensive, we added a .001 buffer

around zero. Table 1 shows the proportion of simulations run for

each learning function for which each of the two association

parameters (linear – a1, quadratic – a2) were found to be nonzero.

Discrimination was perfect for the quadratic term, indicating that

the inference process can find u-shaped learning functions when

they are the true generating functions. Further, the Type II error

rate was also within acceptable margins. Only on 2.5% of all

simulations did the 95% credible interval for the linear parameter

overlap zero.

Simulation Discussion. Thus, in three simulations, we

validated the model and inference process in experimental settings

like those in the empirical data of interest. In Simulation 1, we

showed that this analysis finds the correct number of clusters when

infant participants are heterogeneous. In Simulation 2, we showed

that correct quantitative values can be recovered for the

hypothesized cognitive processes, even when multiple processes

interact to produce the observed eye movements. Finally, in

Simulation 3, we showed that this analysis can recover non-

monotonic learning functions when they are correct, and can

avoid positing complex learning functions when they are incorrect.

These simulations license the application of the proposed

framework on experimental data.

Figure 3. Infants Misclassified in Simulation 1. Proportion of infants misclassified in Simulation 1. As less than a quarter of one percent of
infants were assigned to the wrong group in the worst case, we can be reasonably sure that the inference process is robust.
doi:10.1371/journal.pone.0047419.g003

Figure 4. Parameter Values for Simulation 2. Best fit lines for true
and inferred parameter values for each of the three factors
hypothesized to affect infant gaze patterns in the experimental data.
Inference for parameter values proved to be highly reliable.
doi:10.1371/journal.pone.0047419.g004
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Experiment
Having validated the graphical model framework in three

simulations, we apply it to empirical data from Wu & Kirkham

[36]. Inference yields full posterior distributions for all cognitive

model parameters, estimating the contribution of each factor in

the context of all other factors. However, because the questions of

interest relate specifically to attention and learning, we focus on

two key factors: attention to the cue (c) and the association

function (assoc). The other factors – preference for particular

screen locations (pb) and preference for boxes with stimuli

(salient)– work to reduce noise in analyzing these key factors.

Fig. 6 shows estimated parameter values for both factors for

infants in each experimental condition.

We first note that in no condition was the sample of infants best

described coming from a single homogeneous group. Two distinct

groups were identified in the Face and No Cue conditions, and

four groups were found in the Square condition. Thus, even within

one condition, infants learned and used cues differently. Second,

all learning functions were linear; credible intervals for all

association coefficients §2 overlapped 0 in all conditions. Thus,

Fig. 6 shows the first-order association coefficient (a1) for each

group.

Next we consider each condition in turn, letting the No Cue

condition be our baseline for comparison. The sample of infants in

the No Cue condition was best described as coming from two

clusters: The first cluster, accounting for 72.3% of infants across

MCMC samples, was characterized by slow learners, having a

median association coefficient (a1) of .158. The smaller cluster,

accounting for the remaining 27.7% of the infants across MCMC

samples, described faster learners, having a median association

coefficient of .357. In their original analysis, Wu and Kirkham

[36] did not find reliable evidence of learning on average for

infants in this condition. Our new analysis likely found evidence of

learning for two reasons. First, the analysis in [36] considers

infants’ looking preferences on only the four test test trials, but the

model-based analysis is informed by looking behavior on all 28

experimental trials for each infant. Further, more than 3
4

of the

infants in this sample were found to be relatively slow learners, and

thus a less sensitive analysis showing learning would have to be

carried by a small proportion of the infants. Finally, we note that

the median cue parameter (c) values for both clusters were 0. This

result shows that in real empirical data, this modeling framework

can correctly discover parameters that do not contribute to

prediction of gaze patterns, avoiding Type I errors.

When 8-month-old infants encountered the same multi-modal

regularities in the presence of a social cue, their learning behavior

was reliably different. As in the No Cue condition, infants in the

Face condition were best described by two clusters. The first,

accounting for 69.4% of the sample, contained infants who

learned more slowly (median a1 = .229) and whose attention was

directed by the cue (median c = .493). The second cluster,

accounting for 30.6% of the sample, contained infants who

learned more quickly (median a1 = .324) and whose attention was

not directed by the cue (median c = .009). Thus, counter-

Figure 5. Learning Functions in Simulation 3. True functions (solid black) and 30 inferred functions (dashed gray) for each tested kind of
learning function. The inference process was quite successful in recovering the properties of the true generating functions.
doi:10.1371/journal.pone.0047419.g005

Table 1. Non-Zero Learning Parameters in Simulation 3.

Learning Function a1=0 a2=0

Linear Positive: (:5x) 1.0 0

Linear Negative: ({:5x) .933 0

U-shaped up: (:2x2{:5x) .967 1.0

U-shaped down: ({:2x2z:5x) 1.0 1.0

Proportion of association parameters estimated to be nonzero for each learning
function in Simulation 3.
doi:10.1371/journal.pone.0047419.t001
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intuitively, those infants who responded most to the cue did not

learn as quickly; the fast learners in the Face condition learned at

the same rate as the fast learners in the No Cue condition (as seen

in their overlapping a1 credible intervals). However, the slower

learners in the Face condition did learn more quickly than the slow

learners in the No Cue condition. Thus, the Face cue accelerated

learning for the large group of slower-learning infants.

Infants cued to these same multimodal regularities by a red

flashing square fell into four distinct clusters. The first cluster,

accounting for 33.9% of the sample, contained infants who

learned quickly (median a1 = .349), and whose attention was

directed by the red square (median c = .436). A second, small

cluster accounting for 10% of the sample consisted of slow learners

(median a1 = .084) whose attention was not directed by the cue

(median c = 0). Finally, the sample also contained two clusters of

non-learners (median a1 = 0 and 2.005), accounting for 27.8%

and 28.2% of the sample respectively. The attention of infants in

both groups was directed by the cue, the second more strongly

than the first (median c = .398 and 1.33). Thus, the Square

condition contained a small cluster of infants who learned just as

quickly as in previous conditions, but the remaining 66.1% of the

infants learned more slowly than any of the infants in the previous

conditions, and over half of the infants showed no learning at all.

Thus it appears, as Wu and Kirkham [36] suggested, that the cue

competed with the regularity for attention, and even those infants

who resisted the draw of the square learned more slowly. Even the

gaze of the fastest learners, in contrast to those in the Face

condition, was drawn by the cue. Perhaps these fast learners were

able to learn in spite of the cue rather than because of it, as seen in

the Face condition?

Experiment Discussion. Not only do these results confirm

the main findings from Wu and Kirkham’s [36] coarser analysis,

they also provide deeper insight into how attentional cues guide (or

interfere with) infant multi-modal learning. First, they provide

clear evidence that not all infants respond to attentional cues in the

same way. Within each cue condition, infants were best described

by multiple clusters, some driven more by attentional cues than

others. Second, they show that individual infants learn at different

rates, and that infants who use attentional cues are not always

those who learn fastest. For instance, the addition of the Face cue

did lead to improved learning in general relative to the No Cue

condition, but it did so exclusively for slower learners. Also, infants

who attended most strongly to the Square cue showed no evidence

of learning at all. Thus, even when cues are reliable, they may not

accelerate infant learning; in some cases they may even inhibit it.

Finally, we note that these results show evidence of learning in

conditions in which it was not found in the analysis reported in

[36]. This greater sensitivity is likely due to three contributing

factors. First, the analysis in [36] considers infants’ looking

preferences only on test trials – a small fraction of the data. In

contrast, this model-based analysis infers underlying cognitive

processes that account for all of the available looking data. Second,

the analysis in [36] assumes that infants in each sample come from

one homogenous group. However, the analyses here show that this

may be incorrect, and that better conclusions can be drawn by

separating infants into distinct clusters [31–33]. Finally, the

analysis in [36], and in the majority of other infant experiments,

is performed at the level of raw looking preferences. Thus,

underlying learning processes may be hidden by other processes

that also control eye movements. This model-based analysis

isolates the contribution of the variables of theoretical interest,

yielding greater power to detect their effects.

Conclusion

Infancy researchers have made tremendous progress by using

eye gaze data to ask questions about early cognition and

development. The majority of this work has used qualitative

linking hypotheses, but we propose that even faster and more

rigorous progress can be made through model-based analyses

using quantitative linking hypotheses [1,4]. In addition to

providing insight into cued attention and learning, the present

analyses also have potential implications for two more general

issues raised in the introduction. We follow the discussion of these

issues with a conclusion about possible extensions of this

framework.

Competing Hypotheses
One strength of quantitative linking hypotheses is that they

facilitate direct comparison of competing theories for the same

data. In the previous sections, we argued that changes in looking

preferences over the course of these experiments arise from

associations between heard sounds and fixated locations, and

modeled this learning with the assoc function. Alternatively,

preferences could change over time through habituation; infants’

preferences could change as a function of looking to a location

Figure 6. Parameters Inferred for Empirical Data. Posterior distributions for cue (c) and association (a1) parameters for infants from [36]. Each
circle indicates a cluster, and its size indicates the proportion of infants in that condition in that cluster. Circles are centered at median parameter
values, and dashed lines indicate 68% credible intervals, akin to +1 SE.
doi:10.1371/journal.pone.0047419.g006
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independent of the concurrent sound. For instance, Wu and

Kirkham [36] speculated that infants in the Square condition may

have learned a general preference for the cued locations even

though they did not learn specific sound-location relations. This

hypothesis can be tested directly against the association hypothesis

by encoding both in s and examining the posterior parameters.

Thus, we introduce a habituation function to encode learning a

preference for fixated locations independent of the sounds being

heard. This habit function operates like the assoc function, being

an arbitrary degree polynomial function of cumulative looking

time to a particular location (Equation 6). However, when this

function was included in the cognitive model for each condition,

95% credible intervals for habit coefficients overlapped 0 in all

cases. Thus, quantitative linking hypotheses can be used to test

competing accounts for the same data. This type of analysis could

have the potential to resolve some of the ‘‘rich’’ vs. ‘‘lean’’

arguments in the infant literature [12–14].
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o~1
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:
Xt{1

r~1
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Non-monotonic Learning Functions
Several theoretical accounts of infant learning posit that infants’

preferences for a stimulus may change non-monotonically over the

course of exposure; infants may show first a familiarity preference

and then a novelty preference [27–29]. Thus, the framework

presented in this paper encodes learning functions as arbitrary-

degree polynomials, allowing them to approximate any functional

form. Further, Simulation 3 showed that the inference procedure

can correctly recover non-monotonic learning functions when they

are appropriate for the data. However, no such functions were

found in the analysis of the empirical data from [36]. Why?

One possibility is that non-monotonic linking functions arise in

a different kind of experiment or at a different age. For instance,

the infants analyzed may simply have not had enough time to pass

through the familiarity-preference portion of the learning function

into the novelty-preference portion [27]. This hypothesis cannot

be ruled out conclusively by the present data. We propose,

however, an alternative possibility. It may be that in some cases,

apparent non-monotonic linking functions may arise from

differences in baseline preferences for different stimuli.

The analyses above include a set of baseline preference

parameters (pb) to control for infants’ apriori preferences for

different locations on the screen. When these parameters were

included, none of the higher-order coefficients for the assoc
functions were found to be nonzero. However, when baseline

preference parameters were not included, non-monotonic learning

functions were found in both the Face and No Cue conditions.

Consequently, we propose that, at least in some cases, observation

of non-monotonic linking functions could be an artifact of different

baseline preferences.There could, of course, be cases in which true

non-monotonic learning functions arise. This framework provides

one approach for documenting them.

Extending the Framework
The framework presented in this paper was designed to infer

cognitive processes from eye gaze data in which the data of interest

are a pattern of dwell times over a set of areas of interest (AOIs).

Consequently, the cognitive model (s) and experimental settings (e)

are connected to the observed gaze data (d) by means of the

Dirichlet distribution (h). However, if the data of interest were in a

different form – for instance if the critical question was about

latencies rather than dwell times – a different linking function

could be used. For such data, a Normal or Exponential

distribution may be more appropriate. Such a model would still

benefit from the adaptive clustering and parameter regularization

offered by this graphical model framework.

We note also that recent years have seen fervent arguments

about the relative merits of Bayesian approaches to cognition [65–

67]. The analysis presented here is agnostic about these issues;

Bayesian data analysis is a statistical technique requiring no

commitment to any particular framework for modeling cognition

[56,58]. In fact this paper describes a simple associative model.

This is an explicit strength of the framework advocated here: any

cognitive model that can be characterized formally can be

encoded in the hidden variable vector s, allowing competing

models to be compared directly. While quantitative linking

hypotheses have been proposed for specific experiments (e.g.

[49,62]), this paper presents a general framework applicable to

many eye movement experiments, as well as for other indirect

behavioral measures. Thus, we hope this framework will facilitate

asking and answering future questions about early cognitive

processes and their development.

Software Package
Software for all simulations reported in this paper is available on

the first author’s website. This software is free and open source,

but was written in MATLAB R2009b, and thus relies on this

proprietary software.
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