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We describe a new method for calibrating optical trapping measurements in which tension is applied
in the direction of the laser beam to a molecule tethered between a surface and an optically trapped
bead. Specifically, we present a generally-applicable procedure for converting from the measured
scattering intensity and the measured stage displacement to applied tension and bead-coverslip sep-
aration, using measurements of the light intensity scattered from an untethered, trapped bead. Our
calibration accounts for a number of effects, including aberrations and the interference of forward-
reflected bead-scattered light with the trapping beam. To demonstrate the accuracy of our method,
we show measurements of the DNA force-versus-extension relation using a range of laser intensi-
ties, and show that these measurements match the expected extensible wormlike-chain (WLC) be-
havior. Finally, we also demonstrate a force-clamp, in which the tension in a tether is held fixed
while the extension varies as a result of molecular events. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4757862]

INTRODUCTION

Optical traps1–4 are capable of applying piconewton
forces and measuring nanometer extensions, which has led
to wide-ranging applications in biological5–16 and soft mat-
ter physics.17–24 Optical traps have proven particularly effec-
tive in elucidating the effects of tension on the behavior of
single molecules tethered between a surface and a trapped
bead6, 7, 25 or between two trapped beads.11, 12, 15, 19, 26, 27 The
dumbbell configuration, in which the molecule of interest
is tethered between two trapped beads, has a simple read-
out and decouples the molecule’s extension from microscope
stage noise.12, 15, 27, 28 However, this configuration also has im-
portant limitations: dumbbells have to be individually con-
structed for each single molecule; they require an apparatus
with beam steering optics; and the minimum, measurable ex-
tension is limited at small extensions by each bead interacting
with the other trapping beam. Surface attachment schemes of-
fer a number of practical advantages: first, a range of meth-
ods is available to tether large numbers of micron-sized beads
to a glass coverslip,29–34 increasing experimental throughput.
Then, once beads are tethered, a relatively simple setup, com-
prised of a translation stage and a stationary optical trap are
the only requirements for optical trapping measurements of
the force and extension of single molecules. In fact, it has
been shown too that surface attachment schemes can be im-
plemented in very-low-noise setups.25, 35–37

In most surface tethered applications to-date, tension has
been applied to surface-tethered molecules by moving the
stage perpendicular to the direction of beam propagation.
Such a geometry yields a simple conversion of the scattering
light intensity to force38 for relatively long tethers. However,
it complicates measurements for intermediate tether lengths,7

because the tether is necessarily at an acute angle to the sur-

face, and it makes measurements on short tethers impossible.
Instead of moving the stage perpendicular to the beam direc-
tion, it is possible to maintain a simple geometry for all ex-
tensions by moving the stage along the direction of the laser
beam, thus applying tension to a surface-tethered molecule
in the axial direction.39–44 Applying an axial force to surface
tethered beads combines the high-yield of surface tethering,
a relatively simple apparatus, and the ability to measure short
tethers and to probe extensions down to zero, which allows for
straightforward drift correction. Another important advantage
of short tethers is that they yield finer spatial resolution.43, 44

In addition, with an axial geometry, it is relatively straightfor-
ward to implement a reliable feedback loop, which maintains
the force at a fixed value, namely a force clamp.

In spite of the advantages of axial pulling, a convenient,
generally-applicable method of converting from the measured
scattered-light intensity and the measured stage displacement
to the applied tension and the bead-coverslip separation is
not yet available in the literature. Such a calibration of ax-
ial forces and displacements must take into account a number
of effects, including aberrations45, 46 and the interference be-
tween the trapping beam and forward-reflected bead-scattered
light.40, 47, 48 References 41 and 42 have previously used opti-
cal traps to apply force in the axial direction. However, their
calibration schemes either depend critically on the use of a
specialized molecular construct,41 or the speed, accuracy, and
simplicity of using the total scattering intensity is replaced by
a methodology that relies on image analysis.42 In this paper,
we present a simple, robust calibration that allows conversion
from the experimental signals—stage displacement and scat-
tering intensity—to calibrated values of the bead-coverslip
separation and applied tension. To confirm the accuracy of
our calibration, we show measurements of the DNA force-
versus-extension relation using a range of laser intensities,
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and demonstrate that these measurements match the exten-
sible wormlike-chain behavior expected. Finally, we realize a
force-clamp, in which the tension in a tether is held fixed as
the extension varies as a result of molecular events.

EXPERIMENTAL SETUP

In the optical trapping set-up used for these experiments,
the 2.5 mm-diameter beam from a high-stability, 3 W, 1064
nm laser (Laser Quantum, Stockport, UK) was incident on an
acousto-optic deflector (AOD) (IntraAction DTD-274HA6),
allowing us to control the laser power.

The acousto-optic deflector acts as an optical isolator by
Doppler shifting the diffracted beam.7, 25 Located between the
AOD and the microscope objective (Nikon CFI × 100, oil im-
mersion, NA 1.25) is a telescope arrangement that expands
the beam diameter by a factor of three, ensuring that the back
pupil of the microscope objective is overfilled, as required
for strong trapping. Beyond the objective, the beam is di-
rected onto a quadrant photo-diode (QPD) (Phresh Photon-
ics SiQu50-M) located in a plane conjugate to the back focal
plane of the microscope condenser lens, optimized for axial
detection.49 In such a conjugate plane, the total intensity in all
four QPD quadrants, I, is linearly proportional to the displace-
ment of a trapped bead from the center of the trap along the
beam direction, for sufficiently small displacements. At the
same time, the difference in intensity between the two left and
the two right quadrants and between the top and bottom quad-
rants is proportional to the displacement of the bead from the
center of the trap in the corresponding directions transverse to
the beam. This method of determining bead position—“back-
focal-plane interferometry” (BFPI)38—also provides a sensi-
tive measure of the force on the bead, because force is propor-
tional to the bead displacement from the center of the trap.

Beads were trapped in a flow cell consisting of a No. 1.5
microscope cover slip and a microscope slide, separated by
a layer of 330 μm-thick, double-sided tape (9490LE, 3 M)
with a 5 mm × 45 mm rectangular cut-out, which forms a
fluid channel. Holes are drilled in the glass microscope slide
at opposite ends of the channel to allow for fluid delivery via
nanoports (N-333, Upchurch Scientific). Fluid is introduced
via 0.01 in. inner diameter tubing from LabView-controlled
syringe pumps (Micro-Liter OEM Syringe Pump, Harvard
Apparatus).

To carry out the measurements described below, we
first prepared DNA-tethered beads as described in detail in
Ref. 34. In brief, we synthesized a 4200 base pair strand
of DNA that incorporates modified nucleotides at each end
of the DNA, so that there was a reactive amine group
at one end, and biotin at the other. We coated the flow
cell with silane-polyethylene glycol N-hydroxysuccinamide
(silane-PEG-NHS) under non-aqueous conditions. Following
thorough rinsing, first with doubly de-ionized water and then
with PBS (0.01 M phosphate buffer, 0.0027 M KCl, 0.137 M
NaCl), we flowed in the modified DNA (100 pM DNA in
PBS) and incubated for 1 h, permitting the single reactive
amine group on the DNA to react with the surface-bound
NHS moiety to form a covalent surface attachment. We
then flowed out the DNA and flowed in a solution contain-

ing 1.09 μm-diameter streptavidin-coated beads at 1% w/v
beads (SpheroTech,Lake Forest IL) in PBS (0.01 M phos-
phate buffer, 100 mM NaCl, 0.1% w/v Tween-20, 1 mg/mL
casein), and incubated for a further period of between 1 h and
overnight. The flow cell was then washed out with 1 mL of
the same PBS buffer without beads. This method leads to a
typical surface coverage of 20 surface-tethered beads in the
microscope field of view, and very few beads in solution.

To carry out the measurements, described below, on a
free (untethered) bead, we applied a force of 40–50 pN for
a minute to detach a surface-tethered bead by disrupting the
biotin-streptavidin bond. The DNAs end-biotin could, and
would, reattach to the streptavidin coated bead, as has been
seen elsewhere.33 To prevent such re-attachment, we moved
the stage to a new location. In this way, we avoided having
any beads in solution, which could interact with the trap dur-
ing our calibration procedure. To manipulate the position of
the trap relative to the tethered beads, we use a piezoelectric
stage (Thorlabs, NanoMax 311) with a built-in strain gauge to
measure the stage displacement.

AXIAL PULLING GEOMETRY

Figure 1 shows a schematic of our optical trapping
geometry. A single molecule, in our case DNA, tethers a
micrometer-sized bead to a glass coverslip. The bead is held
by an optical trap at a bead-coverslip separation, L, directly
over the tethering position. The optical trap applies a force
on the bead proportional to displacement of the bead from
the trap center, �z. Knowing the trap stiffness, κ , we may
immediately determine the force on the bead directed toward
the center of the trap via F = κ�z. The displacement of the
stage along the axial direction is �s. At the starting position,
where the bead is held just touching the stage, all coordinates
are defined to be 0 (�s = �z = L = 0). If the stage is then

FIG. 1. A bead (blue circle) is tethered to a coverslip (purple rectangle) by a
DNA molecule and is optically trapped by a focused laser beam (red). Light
reflected off the bead (yellow with dashed outline) reflects off the coverslip
and interferes with the trapping beam. In the absence of a tether, a free bead,
dashed circle, is located a distance LF from the coverslip. For a tethered bead,
when the stage is displaced a distance �s, the bead is located �z from the trap
center. The method described in this text determines the molecule extension
(L) and the trap displacement (�z) from the known �s and the scattering
intensity, measured at a detector.
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moved away from the bead (�s increases), the tether becomes
extended, and the resultant tension pulls the bead away from
the center of the optical trap. By contrast, if �s is decreased,
the stage hits the bead and starts to push it away from the trap
center. In these circumstances, the bead position is simply �s.

CALIBRATION

The first step in our calibration procedure is to measure
the scattering intensity from a free (untethered) bead while
varying the stage extension, �s. An example of such a mea-
surement is shown as the black dots in Fig. 2(a). For stage ex-
tensions less than 0, the free bead is held against the coverslip
by the trap, resulting in an approximately linear signal with
a large negative slope. For positive stage extensions, Fig. 2
shows that the scattered intensity is overall decreasing with
a damped, sinusoidal modulation for most of the measured
stage displacement. However, for stage displacements greater
than around 4 μm, we observe that the overall intensity pro-
file increases. We can understand this behavior as follows.
The scattering force (Fscatter) shifts the bead from the laser
focus a distance d = −Fscatter/κ , where κ is the axial trapping
strength. Because κ decreases with increasing bead-coverslip
separation more strongly than Fscatter, the shift increases con-
comitantly. For stage displacements up to about 4 μm, this
shift is small. Above 4 μm, however, the shift starts to in-
crease more strongly with increasing bead-coverslip separa-
tion, leading to an increasing scattered intensity in this region.

These data manifest two important complications asso-
ciated with axial pulling. The first is the result of interfer-
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FIG. 2. Scattered intensity for a stuck bead and a free bead. A fit (red line)
using Eq. (1) describes the scatter intensity of a free bead using the values in
Table I. (a) Scattered intensity for a stuck bead (gray dots) and a free bead,
(black dots) plotted versus stage extension. A fit using Eq. (1) (red line)
describes the scattered intensity of a free bead using the values in Table I.
The bead-coverslip separation is determined from the sinusoidal fit to the
observed fringes. (b) The residual of the fit to the intensity for a free bead
shown in (A). No trend is observed, implying the fit sufficiently describes the
data. (c) Length determined from fit in (A) using Eq. (3), shown in blue, and
compared to L = �s, shown in green.

ence. The trapping beam, shown red in Fig. 1, scatters from
the trapped bead. A portion of the backscattered light reflects
from the coverslip in the forward direction—shown yellow
in Fig. 1—and interferes with the trapping beam. The bead-
water and coverslip-water interfaces effectively form a low-
finesse Fabry-Perot cavity. The finesse of this cavity decreases
with increasing stage displacement because of the high diver-
gence of the trapping beam. The sinusoidal modulation can
be conceived as the fringes of this cavity. As a result, the
measured intensity (measured in V), the trap axial stiffness,
κ (measured in pN μm−1), and displacement sensitivity, β

(measured in V nm−1), all show a sinusoidal dependence on
L.40, 47, 48 A second complication is the result of aberrations,
which cause an axial displacement of the trap center and ax-
ial defocusing as the coverslip is displaced. Defocusing de-
creases the trap axial stiffness, κ , affects the displacement
sensitivity, β, and introduces the overall variation in the back-
ground signal, shown in Fig. 2(a).

We refer to the measured signal of a bead in the trap cen-
ter, shown in Fig. 2(a), as the “background intensity,” IBG. We
describe IBG by fitting to the following equation:40

IBG (LF ) = PBG + ABG exp(−λLF )sin (kLF + φBG) ,

(1)
with

PBG = PBG0 + PBG1�s + PBG2�s2 + PBG3�s3, (2)

and

LF = L1�s + L2�s2, (3)

where PBG0 , PBG1 , PBG2 , PBG3 , ABG, λBG, φBG, L1, and L2 are
fitting parameters and LF is the bead-coverslip separation for
a free bead. We find that the wavenumber of the sinusoidal
variation is well-described by k = 4 × 1.33π /(1064) nm, and
note that (1064/1.33) nm is the wavelength of the trapping
light in water, as observed in Ref. 40. The best fit of Eq. (1)
to the measured intensity for a free bead is shown as the red
line in Fig. 2(a), and clearly provides an excellent description
of the measurement. All the fits in this paper, we performed
using the lsqnonlin Matlab function with the Levenburg-
Marquardt algorithm. The standard error of each fitting pa-
rameter was estimated using the Matlab function nlparci.
The corresponding best-fit parameters are given in Table I.
The differences between the measured and fitted intensities,
namely the residuals, are shown in Fig. 2(b). The residuals do
not show any systematic deviation from zero for extensions
greater than zero, confirming that Eq. (1) accurately describes
the background intensity, even though the detailed form of
Eq. (1) is empirical. Interestingly, the free bead position, LF,
does not vary exactly linearly with stage displacement, �s.
The bead’s position is determined by a balance between the
forward scattering force from the trapping beam and the ax-
ial trapping stiffness. Because the axial trapping stiffness de-
creases with increasing stage displacement, the beads equi-
librium position becomes displaced further from the optical
focus. For reasonable stage displacements, this additional dis-
placement is well-described by adding a quadratic term to the
extension, as shown in Eq. (3), and plotted for the fitted values
in Table I in Fig. 2(c).
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TABLE I. Values used for fits described in text. Quoted errors use the standard error. To differentiate between
stage displacement distances bead distances, stage displacement units are denoted μms. Figures in which these
values were used are also shown.

Quantity Notation Value Error (σ ) Units Figure

Modulation wavenumber k 4πnwater
1.064μm

——- μm−1 2,6,7,8,10,13

Bead-coverslip separation L1 0.7896 0.0004 μmμm−1
s 2,6,7,8,10,13

L2 0.0156 0.0001 μmμm−2
s

Scattering intensity PBG0 5.9889 0.0003 V 2,8,10,13
PBG1 −0.2676 0.0007 Vμm−1

s

PBG2 0.0342 0.0005 Vμm−2
s

PBG3 −0.0085 0.0001 Vμm−3
s

Intensity amplitude A 0.0812 0.0002 V 2,8,10,13
Intensity decay length λ−1 1.592 0.006 μm 2,8,10,13
Intensity phase shift φBG 1.989 0.004 rad 2,8,10,13
Displacement sensitivity Pβ0 5.09 0.05 Vμm−1 6,8,10,13

Pβ1 −0.06 0.02 Vμm−1μm−1
s

Pβ2 0.01 0.01 Vμm−1μm−2
s

Sensitivity amplitude Aβ 1.17 0.07 V 6,8,10,13
Sensitivity decay length λ−1

β 1.6 0.2 μm 6,8,10,13

Sensitivity phase shift φβ 3.26 0.09 rad 6,8,10,13
Trap stiffness pκ0 46.7 0.1 pNμm−1 7,10,13

Pκ1 5.9 0.8 pNμm−1μm−1
s

Pκ2 0.4 0.2 pNμm−1μm−2
s

Stiffness amplitude Aκ 9.6 0.2 pNμm−1 7,10,13
Stiffness decay length λ−1

κ 0.9 0.2 μm 7,10,13
Stiffness phase shift φκ 0.3 0.1 rad 7,10,13

We also measured the intensity of a bead stuck to the cov-
erslip as the stage displacement is varied. We emphasize that
the bead-coverslip separation, LF, is the equilibrium distance
from the edge of a bead to the coverslip-water interface for a
free bead only. A stuck bead will simply move with the stage.
The results of this measurement are shown as the gray dots
in Fig. 3(a), together with the intensity of a free-bead (black
dots) and both linear and quadratic fits to the stuck-bead in-
tensity. The residuals of these fits are shown in Fig. 3(b). Ev-
idently, the linear fit well-describes the intensity response for
extensions up to about 200 nm, while the quadratic fit is ef-
fective for extensions up to about 500 nm.50 For simplicity,
we use the linear form for our calibration.

The observation that there is not a sinusoidal intensity
variation in the case of a stuck bead, for which L is constant,
supports the form of Eq. (1), where the sinusoidal variation is
ascribed solely to L. To determine the location at which the
free bead first contacts the wall (L = 0), we use the intersec-
tion of the linear fit shown Fig. 3(a) and Eq. (1), shown in
red in Fig. 2(a).50 The slope of the stuck bead intensity signal
with stage displacement is a measurement of the displacement
sensitivity, β, and provides a useful check on the value of β

determined as described below.
The second step in our calibration procedure is to use

the power spectrum method, described in detail in Ref. 51, to
determine the trap stiffness, κ , and displacement sensitivity,
β, over the full range of stage displacements. The scattered
intensity from a free bead was measured versus time for a
total duration of 2.1 s at successive stage displacements, sep-
arated 25 nm, over the desired range of stage displacements.
Data were acquired at 4 kHz for 2.1 s at each bead-coverslip

separation. Data acquisition at 4 kHz permitted us to fit the
measured power spectrum at each location for frequencies be-
tween 8 and 2000 Hz using a Lorentzian with the correction
for aliasing described in Ref. 51. Lower frequencies in the
power spectrum were not included in the fit in order to avoid
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FIG. 3. Scattered intensity for a stuck bead, compared to that of the free bead
shown in Fig. 2. (a) Scattered intensity for a free bead (black dots) and a stuck
bead (gray dots) plotted versus stage displacement. Linear and quadratic fits
are shown for the stuck bead in black and gray dashed lines, respectively. (b)
Differences between the measured intensity of the stuck bead and the linear fit
(black dots) and between the measured intensity and the quadratic fits (gray
dots).
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FIG. 4. Power spectral densities (PSDs) obtained for bead-coverslip sepa-
rations (from bottom to top) of 0.14, 1.14, 2.01, 3.03, and 4.32 μm, re-
spectively, are shown by gray lines and with exponentially blocked power
spectrums shown as black dots. For clarity, successive data sets have been
displaced one from another by a factor of 19. The Lorentzian fits, following
Eq. (4) corrected for aliasing,51 are shown in black, with red, dashed lines
showing the 1-σ confidence interval determined by the theoretical noise.51

The red marker denotes the position of the corner frequency for each spec-
trum (from bottom to top) 122, 369, 356, 398, and 276 Hz.

the effects of drift.26, 51 Each power spectrum was calculated
for each 2.1 s measurement, as shown in Fig. 4. To determine
the errors by the repetition of measurement, each 2.1 s mea-
surement was divided into 16 equal intervals, within each of
which the power spectrum analysis was performed yielding
16 independent measurements of fc, the corner frequency, and
Dv , the voltage diffusivity, thus permitting us to determine the
standard errors of these parameters.

We fit each experimental power spectrum (measured in
〈V2〉Hz−1) to a Lorentzian function of frequency

PV (f ) = DV / (2π )

f 2
c + f 2

, (4)

where DV is diffusivity (diffusion constant) of the bead (mea-
sured in 〈V2〉Hz−1), f is the frequency, and fc is the cor-
ner frequency of the trap. Five representative power spec-
tra, each obtained at a different bead-coverslip separation, are
shown in Fig. 4. The figure includes the raw power spectra
(gray lines), the corresponding exponentially blocked power
spectra51 (black dots), and the best-fits to a Lorenztian model
(Eq. (4)) (solid black line) with a one standard error confi-

(a)

(b)

FIG. 5. Results of power spectrum calibration with stage displacement
(black dots) as described in text. (a) Voltage diffusivity (black dots) with
errors allows for calibration of displacement sensitivity, β, with depth. (b)
Corner frequency (black dots) versus stage displacement allows for the cali-
bration of trap stiffness, κ , with stage depth.

dence interval (dashed red line). The Lorentzian is appropri-
ately modified to account for aliasing as described in Ref. 51.
Evidently, the Lorentzian model provides a good description
of the experimental data over the full range of frequencies and
bead-coverslip separations shown. This observation is consis-
tent with the results of Refs. 46 and 48, which also found
Lorentzian power spectra over a similar range of frequencies
and bead-coverslip separations. In fact, small deviations from
Lorentzian behavior at high frequencies (∼10 0000 kHz) have
been explored experimentally and theoretically in Ref. 52.
However, such deviations are negligible over the range of con-
ditions relevant to the present study.

From the 16 measurements at each stage displacement,
the mean and standard error of the diffusivity and corner fre-
quency are determined at each stage displacement. These data
are plotted versus stage displacement in Fig. 5. Evidently,
the diffusivity increases several fold as the stage displace-
ment is increased from 0 to 4.2 μm. In addition, it shows
a clear sinusoidal modulation. Near the wall, the corner fre-
quency is reduced because proximity to the surface increases
the drag on the bead. The corner frequency initially increases
with increasing stage displacement up until a stage displace-
ment of about 1.5 μm, it remains approximately constant be-
tween 1.5 and 3 μm but then slowly decreases with further
increase in stage displacement. This trend can also be seen
in the data of Fig. 4 although, because of noise, the corner
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frequency for the data of 3.03 μm is slightly greater than at
2.01 μm. For the corner frequency, intensity oscillations are
apparent at the smaller stage displacements. Because of spher-
ical aberrations, we expect that the axial trapping stiffness de-
creases with increasing bead-coverslip separations. However,
it is clear from Fig. 5 that the corner frequency actually ini-
tially increases with increasing bead-coverslip separation up
until about 2 μm. This is because the fluid friction close to
a surface decreases strongly with increasing bead-coverslip
separation, which overwhelms the effect of a decreasing axial
stiffness.46, 48, 53 Beyond 2 μm, the corner frequency starts to
decrease with increasing bead-coverslip separation, because
in this region the friction becomes a weaker function of bead-
coverslip separation, while the axial trapping stiffness con-
tinues to decrease. The behavior of the fluid friction near a
surface has been explored in detail in Refs. 4, 20, 46, 48,
and 54–59, and is sufficiently well understood that we rely
on these results for our calibration.

The diffusivity and corner frequency are used to deter-
mine the displacement sensitivity, β, and the trap stiffness, κ ,
through the following relations:

κ = 2πfcγ, (5)

and

β2 = DV γ/kBT . (6)

Application of these equations requires knowledge of the ax-
ial drag coefficient, γ , which is given by

γ = γ0

1 − 9R
8h

+ R3

2h3 − 57R4

100h4 + R5

5h5 + 7R11

200h11 − R12

25h12

, (7)

where R is the bead radius, h = L + R is the bead-center-
to-wall distance, and γ 0 = 6πRη is the friction coefficient
of a sphere in an infinite liquid, where η is the viscosity of
water.48 Determination of the stage displacement at which the
bead first contacts the wall, as described above, is essential for
the correct determination of the bead-center-to-wall distance.
We determine κ and β for each stage displacement using the
measured fc and DV using Eq. (7) with kBT = 4.1 pNnm. The
resultant values of β and κ are shown versus stage displace-
ment in Figs. 6(a) and 7(a), respectively. We fit both β and κ

with forms similar to Eq. (1):

κ (LF ) = Pκ + Aκ exp(−λκLF )sin(kLF + φκ ), (8)

with

Pβ = Pβ0 + Pβ1�s + Pβ2�s2, (9)

and

β (LF ) = Pβ + Aβexp(−λβLF )sin(kLF + φβ), (10)

with

Pκ = Pκ0 + Pκ1�s + Pκ2�s2. (11)

In these equations, Pκ0 , Pκ1 , Pκ2 , Aκ , λκ , φκ , Pβ0 , Pβ1 , Pβ2 , Aβ ,
λβ , and φβ are fitting parameters. In Eqs. (8) and (10), LF is
given by Eq. (3). Best fits of Eq. (8) and (10) to our experi-
mentally determined values of β and κ are shown in Figs. 6(a)
and 7(a), respectively. The corresponding best fit parameter
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FIG. 6. Displacement sensitivity (β) versus stage displacement, and evalua-
tion of Eq. (10) as fit using values from Table I. (a) Determined β for a range
of depths with errors, as described in text. Fit given by Eq. (10) shown in
red. (b) Relative error between fit and determined κ shows no trend. (c) His-
togram of relative errors shown in (B) are Gaussian distributed, implying a
satisfactory fit.

values are given in Table I. In both cases, the relative resid-
uals, i.e., the residuals divided by the error, are randomly
(Figs. 6(b) and 7(b)), and normally distributed (Figs. 6(c) and
7(c)), supporting our choice of functional form.

Aberrations and interference between the bead and cov-
erslip originate the non-constant values of IBG, κ , and β as a
function of stage displacement. Increasing the trapping depth
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FIG. 7. Trap stiffness (κ) versus stage displacement, and evaluation of
Eq. (8) as fit using values from Table I. (a) Experimental (solid points) and
model (red line) trap stiffness (κ) versus stage position. (b) Relative error
between fit and determined β shows no trend. (c) Histogram of the relative
residuals, showing a Gaussian distribution.
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causes spherical aberrations,46, 60 which reduce both the trap
stiffness, κ , and the background intensity, IBG, in addition to
affecting displacement sensitivity β.48 Interference gives rise
to a decaying, sinusoidal modulation of κ , β, and IBG. The
amplitude of this modulation decreases with increasing stage
displacement because the back-reflected light has fanned out
further at larger stage displacements, as illustrated in Fig. 1.
The location of a trapped free bead, L, is determined by a
balance of the trapping potential or gradient force and a scat-
tering force in the direction of beam propagation.1 Because
the trap stiffness, κ , decreases at large extensions, the trap-
ping force decreases concomitantly and the location of center
of the trap at L increases more rapidly than linearly with stage
displacement.40, 41 In fact, because the sinusoidal part of the
background intensity depends solely on L, the sinusoidal in-
tensity variation itself provides a convenient absolute calibra-
tion of the bead-coverslip separation, L, in terms of the stage
displacement (Eq. (3)).

GENERALIZED SCATTERING INTENSITY

To implement our calibration procedure, following the
discussions in Refs. 38, 61, and 62, we introduce a linear re-
sponse model to describe the generalized scattering intensity.
Displacement of the bead results in a linear change in scat-
tered intensity. This model is suggested by the linear response
of a stuck bead for 200 nm in Fig. 3. Specifically, the scat-
tered intensity, I, is the sum of the background intensity IBG

and a linear response to bead displacement, �z, of magnitude
ζ . Expanding out the form of IBG, we determine the general-
ized scattering intensity

I = IBG(L) − ζ�z

= PBG + ABG exp(−λL) sin(kL + φBG) − ζ�z, (12)

where L is the separation of the bead edge from the coverslip-
water interface, as shown in Fig. 1. If the bead is not displaced
(�z = 0), the displacement will be the same as the displace-
ment of a free bead (L = LF). For non-zero displacement, the
extension is given by

L = LF − �z, (13)

and we have introduced the linear response, ζ , which specifies
the intensity response when the displacement of the bead from
the center of the trap, �z, increases, but the bead-wall distance
is kept constant, as is the case for stuck bead measurements.
Equation (12) reduces to the scattering intensity of a free bead
for L = LF and �z = 0. Equation (12) may be re-written with
Eq. (13)

I = PBG + ABG exp(−λL) sin (kL + φBG) + ζ (L − LF ).
(14)

By contrast, the displacement sensitivity, β, measured by the
power spectrum method and shown in Fig. 6(a), specifies the
intensity response to changes in bead position at constant
stage displacement. Our formula for the scattered intensity,
Eq. (14), must be consistent with the measurement of β. We
therefore set β equal to dI/dL, which establishes the connec-
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FIG. 8. Displacement response (ζ ) versus stage displacement described in
text, and evaluation of Eq. (16) with values ABG, λ, L, k, and φBG determined
from fitting Figs. 2 and 6, given in Table I, using Eq. (16) with β determined
by Eq. (10). (a) Determined ζ for a range of depths with errors, as described
in text. Fit given by Eq. (10) shown in red. The black dots use the experi-
mental values of β. (b) Relative error between fit and determined ζ shows no
trend. (c) Histogram of relative errors shown in (b) are Gaussian distributed,
implying a satisfactory fit.

tion between β and ζ as follows:

β = dI

dL
, (15)

= ABG exp(−λL)[kcos(kL+φBG)−λsin(kL + φBG)] + ζ.

Thus, we find that

ζ = β − ABG exp(−λL)[k cos(kL + φBG)

− λ sin(kL + φBG)]. (16)

We now have a function determining the displacement re-
sponse, ζ , with respect to bead-coverslip separation, L. We
plot in Fig. 8 the experimental values for ζ by taking our ex-
perimental values for β and subtracting the second term in
Eq. (16). Effectively, we correct β for the part that is due to
the background scattering intensity. In contrast to the models
shown in Figs. 6 and 7, the model shown in Fig. 8 is not a fit
to the data of Fig. 8. Rather, the model form shown in Fig. 8
is calculated based on the best-fit parameters, values (namely
ABG, λ, L, k, and φBG) determined from the fits to the data
shown in Figs. 2 and 6, using Eq. (16) with β determined by
Eq. (1) (red line). For comparison, experimental values are
shown, also using Eq. (16), but with the measured values of
β in place of Eq. (1) (black dots). Evidently, the model and
data are consistent, suggesting that our parameterization of
the data is appropriate.

CONVERSION

Our procedure has now established IBG(L) and ζ (L) as
functions of the bead-coverslip separation, L, and the stage
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displacement, �s. To determine L and �z (Fig. 1) from the
measured scattering intensity, I, and stage displacement, �s,
we must solve

�z = I − IBG(L)

ζ (L)
, (17)

and

L = LF − �z, (18)

for L and �z. To achieve the required solution, we employ an
iterative procedure, in which the values of L and �z at step n,
namely Ln and �zn, are related to the values at step n − 1 via

�zn = I − IBG(Ln−1)

ζ (Ln−1)
, (19)

and

Ln = LF − �zn. (20)

Starting with �z0 = 0, iteration of these equations many times
determines �z, and L to high accuracy. The tension in the
tether can then immediately be determined using F = κ�z. In
order for these equations to possess a single solution, this pro-
cedure requires a one-to-one correspondence between (I, �s)
and (�z, L). In fact, there is only one solution for realistic
variations, provided ζ is always positive, which is the case.

DNA FORCE-VERSUS-EXTENSION

To test and verify our calibration method, we measured
the scattering intensity, I, versus stage displacement, �s, for
a bead tethered by a 4200 bp segment of DNA. These data
are shown in Fig. 9 in cyan, with the scattering intensity for
a stuck bead (gray) and a free bead (black) shown for com-
parison. The stuck bead shows a linear response as described
previously. For stage displacements less than 0 μm, the scat-
tering intensity of both the free bead and the DNA-tethered
bead is coincident with the scattering intensity of the stuck
bead. For stage displacements greater than 0 μm, at first the
scattering intensity of the DNA closely follows that of the free
bead. However, for stage displacements greater than 1 μm, the
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FIG. 9. Scattering intensity versus stage displacement for pulling a DNA
tethered bead (cyan) compared to the scatting intensity of a stuck bead (gray)
and a free bead (black).
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FIG. 10. Converted data using our methods for the three traces shown in
Fig. 9 with the DNA shown in cyan, free bead in black, and the stuck bead
in gray. A worm-like chain fit for force-versus extension of DNA, Eq. (21) is
shown in red.

scattering intensity for the DNA tethered bead increasingly
deviates from that of the free bead until the intensity varies
approximately linearly with stage displacement with a slope
that is approximately the same as for the stuck bead. At large
extensions, the DNA acts essentially like an inextensible rod
linking the coverslip and the bead. Therefore, the scattered in-
tensity from a DNA-tethered bead tracks that of a stuck bead,
albeit displaced by the contour length of the DNA.

Applying the conversion algorithm described previously,
using the parameter values tabulated in Table I, we converted
the measurements of the scattering intensity as a function
of stage displacement, shown in Fig. 9, to the force-versus-
extension curve, shown in Fig. 10, where the molecular
extension of the DNA is the bead-coverslip separation, L.
Also plotted in Fig. 10, as the red line, is the expected ds-
DNA force-versus-extension, corresponding to an extensible
wormlike-chain7

F = kBT

4LP

[(
1 − L

LC

+ F

K

)−2

− 1

4
+ L

LC

− F

K

]
. (21)

To fit our force-versus-extension curves, we use parame-
ter values from Ref. 7, which used a similar buffer to our
measurement, namely lp = 42 nm, K = 1000 pN, and kBT
= 4.1 pNnm. The contour length was fitted to 1380 ± 5 nm.
The good agreement between this model and our measure-
ments further validates our calibration method.

DNA FORCE-VERSUS-EXTENSION AT SEVERAL
LASER POWERS

The trapping stiffness, κ , displacement sensitivity, β, dis-
placement response, ζ , background intensity, IBG, and scatter-
ing intensity, I all may be expected to be linearly proportional
to the trapping laser power.63, 64 As shown in Fig. 11, we have
verified that this is indeed the case for κ and β in our setup
by measuring power spectra of a free bead at a fixed stage
displacement of 2 μm for several laser intensities.

Therefore, given calibration parameters obtained at one
laser power, it should be possible to calculate calibration
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(a)

(b)

FIG. 11. Power spectrum calibrations for a range of trap powers. (a) The
corner frequency (Fc), of the trap for a range of laser intensities. Conversion
to trap stiffness, κ , is shown (right axis). A linear fit (solid line) agrees with
measured data. (b) The square root of diffusivity and displacement sensitivity
for a range of laser intensities.

parameters applicable to another laser power simply by scal-
ing IBG, ζ , and κ linearly with laser power. We may there-
fore further test our calibration method by collecting DNA
forces-versus-extension data at several different laser powers.
Then calibrating each data set with the appropriately-scaled
parameters should lead to the identical force-versus-extension
curve in every case.

The scattering intensity, normalized by the scattering in-
tensity at zero extension, is shown in Fig. 12 for laser pow-
ers of 353 mW (cyan), 217 mW (red), 122 mW (dark blue),
and 59.6 mW (green), with powers measured before the en-
trance to the objective. A free bead (black, taken at 353 mW)
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FIG. 12. Normalized scattering intensity vs stage displacement measured for
a DNA tethered bead for laser powers of 353 mW (cyan), 217 mW (red), 122
mW (dark blue), and 59.6 mW (green).
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FIG. 13. Converted DNA force-versus-extensions measurements. (a) Force-
versus-extension of dsDNA shown with a logarithmic force axis combined
every 20 nm from twenty 20 s measurements at 59.6 mW data (green) and
one 20 s measurement at high force (cyan) combined every 10 nm. An exten-
sible wormlike chain fit, Eq. (21), is shown in black and has good agreement
with data. (b) Force-versus-extension of dsDNA, obtained by converting the
measured intensities shown in Fig. 12 to force and extension with the algo-
rithm described. The converted force versus extensions for laser intensities of
353 mW (cyan), 217 mW (red), 122 mW (dark blue), and 59.6 mW (green)
with a linear force scale. An extensible wormlike chain fit, Eq. (21), is shown
in black and has good agreement with data. (c) The residuals between the
converted force and extension values shown in (a) and the prediction of the
extensible WLC model.

is shown for comparison. The cyan trace is the same as that
shown in Fig. 9. For stage displacements less than 0 μm, the
scattering intensities are all equivalent to that of a stuck bead,
as expected. For stage displacements greater than 0 μm, as the
power of the laser is decreased, the measured normalized in-
tensities increasingly deviate from that of a stuck bead. This is
because the trapping strength decreases with decreasing laser
power, requiring the bead to be displaced further from the trap
center to achieve the same force. For extensions between 0
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FIG. 14. Example force clamp measurement of a nucleosome array. (a) Ex-
tension vs. time of nucleosome array at a constant force of 9.2 pN, measured
using the method described in the text. (b) The force as a function of time
showing the variation following each unwinding event.

and 600 nm, DNA has a linear force-extension relation, thus
as the trap strength is decreased, the average slope of the nor-
malized intensity increases.

We convert the measurements shown in Fig. 12 using the
fit parameters given in Table I, appropriately scaled by the
laser power. The results of the conversion to force and ex-
tension, for the data of Fig. 12, are shown using the same
color scheme in Figs. 13(a) and 13(b). Satisfyingly, the resul-
tant force-versus-extension curves collapse to a single curve,
that is, moreover, well described by the extensible worm-like
chain model, shown as the solid black line in the figure. The
residuals of this converted data and the prediction of the ex-
tensible worm-like chain is shown in Fig. 13(c). Differences
between the data and model at low extension may be the re-
sult of bead-coverslip interactions.48 The increasing residual
at extensions greater than 1.2 μm is a consequence of the large
slope of the force-versus-extension curve for extensions ap-
proaching the DNA contour length. To show the accuracy of
our method at low force, we display our measurements on a
logarithmic scale in Fig. 13(a), revealing excellent agreement
with the model, and with previous measurements.7, 65

FORCE-CLAMP PROCEDURE

To demonstrate a force clamp with our procedure, we
measured the unwinding of nucleosomes at fixed force of
9.2 pN.10, 13, 66 To achieve the force clamp, we implemented a
proportional-integral-derivative (PID) feedback controller us-

ing LabVIEWTM, in which the force is held constant by ad-
justing the position of the piezo electric stage. We have found
that carrying out our conversion algorithm to determine the
axial force and extension, followed by the actuation of PID
control on the stage to maintain a constant force can be done at
a cycle rate of >1000 Hz, using Labview’s MathScript func-
tions. In this way, we are able to study the extension as a
function of time at fixed applied force. An example of such
a measurement is shown in Fig. 14(a), which illustrates a typ-
ical extension-versus-time trace for a nucleosomal array held
at a fixed force of 9.2 pN. Each step in Fig. 14(a) corresponds
an individual nucleosome unwinding event where the tether
length increases by about 25 nm. At each such event, the force
transiently decreases before returning to its force clamp value.
The behavior of the force is shown in Fig. 14(b). The force re-
covers within about 20 ms. This response time is limited by
the resonance frequency of the microscope stage, not by the
computation time of our conversion algorithm. Consequently,
we can accurately measure rates up to about 30 s−1.

CONCLUSION

We have presented a calibration and conversion algo-
rithm to transform from the experimentally measured val-
ues of stage displacement and scattering intensity to the
physically-relevant values of applied force and bead-coverslip
separation. Moreover, we have demonstrated the effective-
ness of our procedure using measurements of the well-studied
force-versus-extension curve of double-stranded DNA. Our
calibration procedure itself only requires measurements on a
free bead. Therefore, our method is simple and broadly ac-
cessible. Our verification of the procedure only requires mea-
surements on a bead tethered by dsDNA, and, for a more strin-
gent test, a means of controlling the laser power. Finally, we
demonstrated that the calculations required for the conversion
of intensity and stage displacement can be accomplished us-
ing Labview sufficiently quickly that the conversion algorithm
does not limit the performance of a force clamp implemented
via the piezo stage.
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