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Abstract Bacteria and fungi use a set of enzymes called

nonribosomal peptide synthetases to provide a wide range

of natural peptides displaying structural and biological

diversity. So, nonribosomal peptides (NRPs) are the basis

for some efficient drugs. While discovering new NRPs is

very desirable, the process of identifying their biological

activity to be used as drugs is a challenge. In this paper, we

present a novel peptide fingerprint based on monomer

composition (MCFP) of NRPs. MCFP is a novel method

for obtaining a representative description of NRP structures

from their monomer composition in fingerprint form.

Experiments with Norine NRPs database and MCFP show

high prediction accuracy ([93 %). Also a high recall rate

([82 %) is obtained when MCFP is used for screening

NRPs database. From this study it appears that our fin-

gerprint, built from monomer composition, allows an

effective screening and prediction of biological activities of

NRPs database.

Keywords Nonribosomal peptides � Target Prediction �
Similarity searching � Drug discovery

Introduction

For thousands years, natural products are an important

source of drugs [1]. They are produced by marine or ter-

restrial organisms (plants, vertebrates, invertebrates…) and

microorganisms (fungi, bacteria, algae). Many studies in

the literature discuss the importance of natural products in

drug discovery [2–5]. They are still important sources for

many drugs in the market (e.g. morphine, cocaine, peni-

cillin, taxols…) and are also good lead compounds suitable

for further modification during drug development. Intro-

ducing a new compound on the market is time consuming

and cost-intensive process [6, 7], in particular for natural

products, so that strategies allowing time saving are

welcomed.

The discovery of natural products requires specific steps

as they are synthesized by living organisms. For example,

scientists need to determine which organisms produce

interesting compounds and define the conditions of pro-

duction. The produced compounds have to be extracted

from cultured media or from natural environments. Finally,

chemical structures are determined. Those structures can,

finally, be mimicked leading to artificial compounds. To

reduce the time and cost of the specific steps, the optimal

process is to predict the compounds produced by an

organism directly from its genome sequence. This strategy

can be particularly performed with nonribosomal peptides.

Those peptides are synthesized by a ribosome-indepen-

dent cell machinery. This alternative pathway produces

peptides using large multi-enzymatic complexes called

nonribosomal synthetases (NRPSs) [8]. Those synthetases

are composed of proteins organized in modules, each one

being responsible for the incorporation of one specific

amino acid in the final peptide. A relationship between

specific signatures and a given incorporated amino acid
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have been determined from protein sequences of NRPSs

[9–12]. So, from a genome sequence, bioinformatics

analysis allows to extract genes coding for NRPSs, to

deduce their protein sequences and to predict the amino

acids incorporated in the produced peptide [13]. This pre-

dicted peptide can then be analyzed by bioinformatics tools

to infer its putative activity.

We have collected nonribosomal peptides in Norine

(http://bioinfo.lifl.fr/norine/) [14], the first and still unique

computational resource dedicated to nonribosomal peptides

(NRPs). Each peptide has a unique Norine identifier in the

form NOR followed by a number of 5 digits. The database

contains more than 1,100 nonribosomal peptides extracted

from scientific literature with manually curated annotations

such as biological activity, producing organisms or bib-

liographic references and, most importantly, their mono-

meric structure. We used the universal term monomer

instead of amino acid because the entities encountered into

those peptides do not only include the 21 proteogenic

amino acids, but also derivates or unusual ones; other

compounds such as carbohydrates or lipids can also be

incorporated. Norine currently references 526 different

monomers occurring in the listed peptides. The monomeric

structures are encoded by undirected labelled graphs, with

nodes representing monomers and edges corresponding to

chemical bonds between them. One monomer can display

more than two peptidic bonds, and non peptidic bonds are

also observed in NRPs leading to peptides with cycles

and/or branches. The database can be queried for peptide

search through their annotations as well as through their

monomeric structures. It also contains a section dedicated

to the monomers incorporated into the peptides stored in

Norine.

Due to the particular way of synthesis, nonribosomal

peptides are a valuable source of a wide range of structural

and biological activities, produced by microbial cells

(typically bacteria and fungi). The NRPs may represent

novel drugs for several pharmaceutical areas including

antibiotics (penicillin and cephalosporin the precursor of

which is ACV, NOR00006), antitumors (actinomycin D,

NOR00228), and immunosuppressive agents (cyclosporin

A, NOR00033). They can also be exploited in biotechno-

logical applications such as biosurfactants. Their various

and interesting biological activities almost comes from

their original mode of synthesis that offers huge flexibility

by including non proteogenic monomers and cycles and

branching.

As they are small and exploited in pharmacology and

biotechnology, nonribosomal peptides are usually repre-

sented by atomic structures and stored in chemical com-

pounds databases. Classical chemo-informatics tools are

applied to them as part of generalist chemical databases to

predict their activity or do some structure search or

comparison. Norine contains few links to structural con-

formation databases such as PDB (25 NRPs). However, the

length of this data set is too low to be exploited for NRP

comparison or activity prediction.

Due to the similar property principle, structurally similar

compounds are expected to exhibit similar properties and

similar biological activities. This principle is exploited for

in silico drug discovery. The chemical compounds are

virtually screened either by docking into the active site of

interest or by virtue of their similarity to a known active.

Many studies suggest that knowledge about a target

obtained from known bioactive ligand is as valuable as

knowledge of the target structures for identifying novel

bioactive scaffolds through virtual screening [15, 16].

But, NRPs exhibit specificities in comparison to typical

synthetic compounds (synthesis pathway, complex struc-

tures). So, published numerical representations for chemi-

cal compounds, such as fingerprints, may not be the

optimal choice to represent NPRs. Our monomeric

approach opens new ways to analyze them. As first

observations showing that some monomers are specific to a

given activity [17] were promising, we decided to further

investigate the relationship between the NRP monomer

structures and their activity.

In this paper a new fingerprint based on monomeric

composition of NRPs is introduced. Monomer composition

fingerprint (MCFP) is a new method for obtaining a rep-

resentative description of NRP structures from their

monomer composition in fingerprint form. In this work, we

present experiments that show the usefulness of monomer

composition fingerprint when used for similarity searching

and activity prediction of NRPs.

Materials and methods

Monomer composition fingerprint (MCFP)

MCFP is represented as an integer vector, in which each

element represents the presence (number of occurrences) or

absence (‘‘0’’ value) of a specific monomer. The process of

generating the MCFP for each peptide starts by extracting

the monomer compositions from Norine and then filling the

corresponding positions in the MCFP vector. We use the

526 monomers referenced in Norine as individual elements

(see Fig. 1). For example, the peptaibolin (NOR01028) is

composed of the monomers NAc-Leu (N-acetyl-leucine),

Aib (2-aminoisobutyric acid), Leu (leucine), Aib (2-Ami-

noisobutyric acid) and Pheol (phenylalaninol) and gener-

ates a fingerprint with three elements set to ‘‘1’’, one to ‘‘2’’

and the rest (522) set to ‘‘0’’. Four elements are ‘‘on’’ for

this peptide of length five because the monomer Aib is

repeated twice.
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Similarity search system

We use Tanimoto-based similarity search system (TAN).

This system is based on the Tanimoto coefficient that is a

well established method in similarity-based virtual

screening and was therefore used as reference. In particu-

lar, the continuous form of the Tanimoto coefficient was

used. If Ai and Bi represent the ith monomer occurrence in

the peptides A and B, respectively, the similarity score SA,B

between peptides A and B was calculated by the following

equation.

SA;B ¼
Xn

i¼1

AiBi

,
Xn

i¼1

ðAiÞ2 þ
Xn

i¼1

ðBiÞ2 �
Xn

i¼1

AiBi ð1Þ

The advantage of this score is the direct use of monomer

occurrences in the equation and the neutrality of empty

elements. This equation has been widely used for chemical

similarity searching. However, a detailed study of fragment

weighting schemes has recently suggested that superior

screening performance is obtained if the square roots of the

element occurrence frequencies are used rather than the

unmodified frequencies [18–21]. We have hence carried

out experiments in which the raw monomer occurrences in

the TAN similarity measures are replaced by the square

roots of those occurrences. The TAN coefficient varies

between 0 (totally different monomer compositions) and 1

(identical monomer compositions).

Activity prediction system

We use in our experiments three machine learning algo-

rithms available in WEKA-Workbench [22, 23]. The naive

Bayesian classifier [24], the linear (LibLinear) classifier

[25], and the SMO classifier [26]. Details on these algo-

rithms can be found in their references. The machine

learning algorithms are used with their default settings in

the WEKA-Workbench.

Data sets

The data set for this study is taken from the Norine data-

base (version of April 2012), which contains 1122 peptides

with 11 distinct activities. We don’t consider the surfactant

activity as it is more a physico-chemical property (being a

lipopeptide or not) than a biological activity. The database

is first filtered so that, activity classes containing less than

20 peptides are removed. Then, peptides with same

monomer lists, even with different number of occurrences

(same elements ‘‘on’’ in the MCFP), within an activity

class are removed. Finally, we only consider the peptides

with only one known activity. A total of 605 peptides were

available for forming our test set, belonging to 5 different

activity classes.

(1) The antibiotics class (319 NRPs) includes different

NRPs categories, which are peptaibols (linear peptides

Fig. 1 MCFP generation

process
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produced by fungi), glycopeptides (vancomycin-like

with several cycles in their monomer structure),

lipopeptides, pure peptides and even chromopeptides.

It is to notice that, in Norine, 210 peptides share

antibiotic with other activities (antitumor, toxin, sur-

factant or immuno-modulator). Those 210 peptides are

included in the evaluation data set (see discussion

section).

(2) Toxins (157 NRPs) harbor different modes of action

to kill cells. They are pure peptides or lipopeptides. In

Norine, 103 NRPs that are toxins are also antibiotics,

antitumors or surfactants. They are also in the

evaluation data set.

(3) Siderophores (82 NRPs) chelate (bind) iron mole-

cules with specific monomers, including chromoph-

ores. They are mainly chromopeptides, but can also

be lipopeptides or pure peptides. Among the 82

siderophore peptides, 18 are also known as

surfactants.

(4) Antitumors (25 NRPs) operate with different modes

of action, being mainly pure peptides. In Norine, 71

NRPs that are antitumors are also antibiotics, toxins

or immuno-modulator. They are also in the evaluation

data set.

(5) Protease inhibitors (22 NRPs) are all pure peptides.

This class never crosses with other classes, as far as

we know.

Performance of machine learning algorithms depends on

the training data set (peptides with or without a given

activity). The negative set, peptides without the studied

activity, for any single activity class derives from the

positive sets, that are peptides having any other activity.

Validation

The similarity searching experiments were performed with

20 peptides selected randomly (as queries) from each

activity class. The recall results were averaged over each

such set of active peptides. The recall is the percentage of

active peptides retrieved in the top-1 % or the top-5 % of

the ranked list resulting from a similarity search.

For activity prediction experiments, 10-fold cross-vali-

dation was used to validate the results of different machine

learning algorithms. In this cross-validation, the data set is

split into 10 parts; one part is used for testing, the

remaining 9 parts for training. This is repeated 10 times, so

all the data have been used as test data once. Each activity

class is tested against all the others, grouped. As in the case

of many prediction methods, we used the F-measure as

quality criterion to quantify the performance of MCFP with

different classification algorithms. F-measure is defined as

the harmonic mean of precision and recall. The precision is

defined by prec = tp/(tp ? fp) and the recall (or sensitiv-

ity) is defined by rec = tp/(tp ? fn), where tp, fp and fn are

the number of true positives, false positives, and false

negatives, respectively. We also used accuracy (ac) and

area under the Receiver Operating Characteristic (ROC)

curve (AUC) measures to quantify the performance of

MCFP with different classification models. Accuracy is the

overall correctness of the model and is calculated as the

sum of correct classifications divided by the total number

of classifications ac = (tp ? tn)/(tp ? tn ? fp ? fn).

Further metrics of statistical performance analysis

involved the ROC curve, which has been used in various

fields (medicine, meteorology, etc.) [27] and also in drug

discovery field [28]. A ROC curve describes the tradeoff

between sensitivity and specificity, where the sensitivity is

defined as the ability of the model to avoid false negatives,

and the specificity relates to its ability to avoid false pos-

itives. The area under the ROC curve (AUC) is a measure

of the model performance: the closer to 1, the better is the

performance of the prediction.

Results

Similarity-based results

Details of the pairwise similarities among the activity

classes are given in Table 1. A rough guide to the diversity

of each of the chosen sets of NRPs is provided by matching

each peptide with every other in its activity class (intra-

class) or with all the 605 used in this study (inter-class),

calculating the Tanimoto coefficient applied to MCFP. The

class diversity is measured by computing the mean and the

number of comparisons having a coefficient greater than or

equal to 0.7 for these intra-class similarities. The histogram

of Fig. 2 gives an overview of the pairwise distances

obtained among intra- and inter-classes. The number of

pairwise comparisons with a high score is low for all the

classes, confirming a high diversity.

Table 1 Pairwise similarity and retrieval results for Tanimoto

coefficient

Activity class NRPs

number

Pairwise TAN TAN recall

Mean % C0.7 Top 1 % Top 5 %

Antibiotics 319 0.09 3.69 88.33 81.50

Toxin 157 0.09 1.65 75.00 59.33

Siderophore 82 0.18 2.11 100.00 90.83

Antitumor 25 0.27 8.67 67.50 45.21

Protease inhibitors 22 0.26 9.52 80.83 56.90

All against all 605 0.05 1.21

Mean 82.33 66.75
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The results for the searches in the data set are shown in

Table 1. Each row corresponds to one activity class and

lists the recall for the top 1 and 5 % of a sorted ranking

when averaged over the ten searches for this activity class.

Results reported in Table 1 show that TAN system with

MCFP obtains overall average recall rates of 82 and 67 %

for top 1 and 5 %, respectively. It has the best performance

for siderophore, antibiotics, and protease inhibitors activity

classes while performing least well for antitumor and toxin.

We observe a diminution of the recall between top-1 % and

top-5 %.

Biological activity prediction results

Visual inspection of the precision, recall, F-measure and

accuracy rates in Table 2 enables one to make comparisons

between the effectiveness of using MCFP with various

prediction models. The MCFP with LibLinear approaches

produce the best performance across the five activity

classes, with SMO and NaiveB also performing well. In

only one class (antitumor activity), the performance of the

MCFP with different prediction models was low. In terms

of the overall correctness of the prediction, MCFP finger-

print with different prediction approaches produced high

accuracy rates, especially with LibLinear model ([93 %).

In this study we used the ROC curve to study the per-

formance of MCFP with different prediction models.

Table 2 shows that the AUC value is always close to 1

([0.93).

Discussion

The main aim of this study is to introduce the monomer

composition fingerprint as a useful representation for NRPs

and then identify the effectiveness of using such repre-

sentation in similarity-based and prediction of the activity

for those peptides displaying many different biological

activities. The best selection of descriptors/fingerprints is

based on their accuracy in predicting the property/activity

of a peptide from another peptide that is considered similar

to it, by using either a similarity method, or a clustering or

its k-nearest neighbors. For those descriptors, and for

predicting the activity class of peptides, the best descriptors

are those yielding the highest number of correct predictions

(peptides with similar activity class), taking into account

the total number of peptides having this activity in the

database used. To achieve this aim, the Tanimoto similarity

system (TAN, see Eq. 1) and three different machine

learning approaches (NaiveB, LibLinear, and SMO) have

been applied.

The TAN calculated on monomer composition finger-

print demonstrates good results for the recall computed on

the top-1 %, except for the toxin and antitumor classes.

The toxin class has only 14 % of specific monomers and

shares up to 81 % of its monomers with the antibiotic class

(see Table 4). So, they can match with antibiotics or other

peptides because of their common monomers. This is not

surprising as those activities are biologically closed and

can even be both harbored by a single peptide (72 peptides

of Norine are known to be antibiotics and toxins, we tested

them as an evaluation data set). This is even worse for

antitumors that have no specific monomers and share 96 %

of their monomers with antibiotics and toxins. Their TAN

recall is lower than the one of toxin. At the opposite,

protease inhibitors have also no specific monomers and

share 88 % of their monomers with antibiotics and toxins,

but show the third best recall of the set. This is certainly

Fig. 2 Histogram for pairwise similarity using Tanimoto coefficient

Table 2 Precision, recall, F-measure, accuracy and AUC rates for the prediction models

Activity class Naı̈ve Bayesian LibLinear SMO

Prec Rec F AUC Prec Rec F AUC Prec Rec F AUC

Antibiotics 0.971 0.737 0.838 0.961 0.950 0.962 0.956 0.953 0.947 0.953 0.950 0.942

Toxin 0.656 0.898 0.758 0.946 0.899 0.904 0.902 0.934 0.889 0.917 0.902 0.937

Siderophore 0.890 0.988 0.936 0.998 0.988 0.963 0.975 0.981 1 0.951 0.975 0.994

Antitumor 0.471 0.640 0.542 0.935 0.696 0.64 0.667 0.814 0.696 0.640 0.667 0.868

Protease inhibitors 0.870 0.909 0.889 0.996 0.952 0.909 0.930 0.954 0.952 0.909 0.930 0.975

Accuracy 81.49 93.22 92.89
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due to the fact that they are small peptides (3, 4, 5 or 7

monomers) in comparison to the other peptides (mean

number of monomers is around 10) and that their compo-

sition is specific of their activity. It is to notice that no

peptide of Norine share protease inhibitor activity with

another activity. Finally, antibiotics have the second best

recall (88 %, in top 1 %), but it is not so good (as sider-

ophore) because, as mentioned before, antibiotic class is

constituted by several sub-groups that differ in monomer

composition, structure and mode of action (they are pep-

taibols, glycopeptides, lipopeptides, pure peptides or

chromopeptides). But the number of NRPs in each sub-

class is sufficiently high to find similar peptides in top-1 %

and top-5 % lists. Generally, the recall results presented

here are highly interesting and promising. That is because

this data set comprises heterogeneous activity classes

which are normally considered as very challengeable in

similarity-based searching. We plan to study more deeply

the intra-class similarities to distinguish sub-classes among

the actual activity classes, if some can be designed.

The prediction accuracy rates obtained with the three

machine learning approaches are promising because they

are higher than 90 %. Again, and for the same reasons,

antitumor class gives lower rates. However, the mispre-

dicted cases in antitumor class (see Table 3) are not really

incorrect. This is because these cases are predicted as

antibiotic and toxin classes and as we mentioned above, in

Norine, NRPs that are antitumors can also be antibiotics

and toxins. This finding is also supported by the number of

common monomers between antitumor, antibiotic and

toxin classes (Table 4). We plan to study the data sets

within each class and across classes to improve the pre-

dictions. For example, isolated peptides can be removed

from the classes.

In order to assess the true predictivity of any model it is

necessary to have an independent data set (evaluation data

set) against which the model predictions can be compared.

The evaluation data sets are different from the training data

sets used to build the model. This approach makes it pos-

sible for users to judge the robustness and predictivity of

the model when making predictions. Therefore, we predict

the activity of 5 peptides that are not yet included in Norine

Table 3 Confusion matrix for different prediction models

Activity class Naı̈ve Bayesian LibLinear SMO

a b c d e a b c d e a b c d e

a 235 64 9 11 0 307 9 0 3 0 304 11 0 4 0

b 5 141 1 7 3 9 142 1 4 1 9 144 0 3 1

c 0 1 81 0 0 1 2 79 0 0 2 2 78 0 0

d 2 7 0 16 0 6 3 0 16 0 4 5 0 16 0

e 0 2 0 0 20 0 2 0 0 20 2 0 0 0 20

a antibiotics, b Toxin, c Siderophore, d Antitumor, e Protease inhibitors

Table 4 Percentages of common and specific monomers

Antibiotics

(%)

Toxin

(%)

Siderophore

(%)

Protease

inhibitors

(%)

Antitumor

(%)

Antibiotics 38 55 22 26 13

Toxin 81 14 24 20 39

Siderophore 74 55 26 32 13

Protease

inhibitors

96 96 36 0 29

Antitumor 88 88 25 50 0

You should read the table by row. For example, antibiotics share 55 % of their

monomers with toxins; antibiotics have 38 % of specific monomers. The sum

of the rows is not equal to 100 % because some monomers are shared between

several classes

The numbers in bold are the percentages of monomers specific of each activity

Table 5 Description and results for peptides that are not in Norine

Name Ref. Known

activities

Predicted

activity

Monomer composition

Coelichelin [29] Siderophore Siderophore D-Fo-OH-Orn, D-aThr, OH-Orn, D-Fo-OH-Orn

Hypomurocin A1 [30] Antibiotic Antibiotic Ac-Aib, Gln, Val, Val, Aib, Pro, Leu, Leu, Aib, Pro, Leuol

Orfamide A [31] Antibiotic Toxin C14:0-OH(3); Leu,D-Glu, D-aThr, D-aIle, Leu,D-Ser, Leu, Leu, D-Ser, Val

Pyoverdin PSEN [32] Siderophore Siderophore ChrP, D-Ala, Asn,Dab, OH-His, Gly, Gly, Ser, Thr, D-Ser, OH-cOrn

TVB I [33] Antibiotic Antibiotic Ac-Aib, Gly, Ala, Val, Aib, Gln, Aib, Ala, Aib, Ser, Leu, Aib,

Pro, Leu, Aib, Aib, Gln, Valol

The good predictions are in bold
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(see Table 5) and built an exhaustive evaluation set with

232 peptides that are in Norine but not in the initial data set

as they have at least two known activities. The data sets

and predictions obtained with LibLinear method are pre-

sented in Tables 5 and 6. The correct activity, described in

source papers, is predicted for 4 out of the 5 new peptides.

Orfamide A is an antibiotic predicted as toxin, but crosses

between antibiotic and toxin predictions are also observed

in our initial data set. The results obtained for the evalua-

tion set are promising as we predict correctly one of the

activities for 83 % among the 237 tested peptides. This rate

is similar to the one found with the cross-validation done

with the initial data set, even if the activities represented in

this set are challenging because they are the ones with the

higher rate of crossing (antibiotic, antitumor and toxin).

The prediction results for the evaluation data set clearly

show the usefulness and robustness of our approach.

To improve the results in both similarity search and

activity prediction, we will work on the fingerprints. On one

hand, determining clusters of monomers will reduce the

numbers of elements in the fingerprints and increase the

common elements between peptides. On the other hand,

adding of structure information such as monomer neigh-

borhood will increase the number of elements in the finger-

prints and improve the discrimination between two NRPs

with similar monomer compositions but different structures.

The results obtained show that monomer composition

fingerprint provides an interesting alternative to the widely

used atomic fingerprints for similarity-based searching and

biological activity prediction of nonribosomal peptides.

However, beside the good performance of MCFP, it is

efficient compared to any other representation approach,

since dealing with fingerprint calculation is faster and

conduct at minimal computational cost.

Conclusion

In this paper, we present a new peptide fingerprint (MCFP)

based on monomer composition of NRPs. Experiments

with the Norine NRPs database, clearly show the useful-

ness and effectiveness of MCFP for similarity-based

searching and biological activity prediction of nonriboso-

mal peptides.
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