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Abstract
Charge hydration asymmetry (CHA) manifests itself in the experimentally observed strong
dependence of free energy of ion hydration on the sign of the ion charge. This asymmetry is not
consistently accounted for by popular models of solvation; its magnitude varies greatly between
the models. While it is clear that CHA is somehow related to charge distribution within a water
molecule, the exact nature of this relationship is unknown. We propose a simple, yet general and
rigorous criterion that relates rotational and charge inversion properties of a water molecule’s
charge distribution with its ability to cause CHA. We show which electric multipole components
of a water molecule are key to explain its ability for asymmetric charge hydration. We then test
several popular water models and explain why specific models show none, little, or strong CHA in
simulations. We use the gained insight to derive an analogue of the Born equation that includes the
missing physics necessary to account for CHA, and does not rely on re-defining the continuum
dielectric boundary. The proposed formula is as simple as the original, does not contain any fitting
parameters, and predicts hydration free energies and entropies of spherical cations and anions
within experimental uncertainty. Our findings suggest that the gap between the practical
continuum electrostatics framework and the more fundamental explicit solvent treatment may be
reduced considerably by explicitly introducing CHA into the existing continuum framework.

Introduction
An accurate qualitative and quantitative description of aqueous solvation of molecules is of
paramount importance for physical chemistry, biology and biophysics.1–5 Understanding the
detailed microscopic origins of experimentally observed solvation effects is therefore critical
for our ability to improve solvation theories and practical water models. Here, the hydration
of a single spherical ion is arguably the purest test case for models of solvation as well as for
our current level of understanding of the basic physics of charge hydration. And while
seemingly simple, ions are critical to the structure and function of biomolecules.6,7

In the widely used semi-microscopic implicit solvation approach,1,8–11 water is treated as a
structureless, linear response continuum, while the full structure of the molecular solute is
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retained. Within this formalism, the hydration free energy of a single spherical ion is given
exactly by the famous Born equation12

(1)

where ε is the dielectric constant of the solvent medium, and Ri is the ion radius. At this
conceptual level, however, an important feature of ionic solvation observed in
experiment13,14 – the charge hydration asymmetry15–22 (CHA) – is completely missing. The
phenomenon manifests itself in two ions of the same size but opposite charges, having very
different hydration free energies. A good example is K+/F− pair, where the CHA is about 50
kcal/mol or 50 % of the ions’ hydration energy.13,14 For small neutral molecules the size of
benzene, the CHA can be as large as 10 kcal/mol,22 resulting in comparable errors in
hydration energies predicted by the popular numerical Poisson equation formalism1,23 which
shares the same conceptual basis with the Born model. Hydration asymmetry effects were
observed in explicit solvent simulations of ion-ion potentials of mean force (PMF).24

More detailed and complex, microscopic descriptions of hydration,17–19,21,22,25–28 often
recover various degrees of CHA seen in experiment and provide valuable insights into
details of ion hydration. But serious unresolved issues remain: apparently similar, commonly
used explicit water models capable of predicting many of bulk water properties reasonably
well, may unexpectedly differ amongst themselves substantially28 in their intrinsic ability to
predict hydration asymmetries. These differences, up to 14 kcal/mol28 for ions the size of K+

and F−, are comparable to or larger than many relevant biomolecular energy scales, such as
folding free energy of a typical protein. Differences of similar magnitude are found in
computational studies of small molecules designed to test CHA.22 Moreover, other
seemingly reasonable microscopic models with realistic dipole and quadrupole moments
may produce negligible CHA29 in stark disagreement with experiment. The current
understanding of the CHA phenomenon is insufficient to consistently explain the
differences, and to improve the underlying water models accordingly.

Given the vast number of already available water (solvation) models, and the fact that the
search for better ones continues to expand,30–35 it is critical to identify a clear guiding
principle to construct and test these models correctly with respect to strong experimentally
observed CHA.

The first goal of this work is to move forward by providing a simple, general and robust
quantitative relationship between the charge distribution within a water model and its ability
to cause CHA. We will demonstrate how the theory can be used to explain the relative
propensities of popular water models to cause CHA. We will then show how our insights
can be used to improve the continuum solvent formalism by re-introducing the asymmetry
into the basic Born formula through rigorous physics. Identifying and eliminating what
appears to be the dominant source of error in the conceptual basis of the continuum
electrostatics models is important for the many fields where these models are used.

It should be noted that for isolated ions the experimental hydration energies can be
reproduced well by empirical adjustments of the ion radii in the Born formula.16,36 The idea
that hydration asymmetry effects can be subsumed into a re-definition of the dielectric
boundary within the fundamentally charge-symmetric linear response continuum
framework, e.g., the Poisson equation, is responsible for numerous attempts to develop a
universal set of atomic radii for continuum solvent calculations on multiatomic molecules.
However, even for very small neutral molecules that approach has been shown to face
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difficulties.22 A number of different atomic radii sets have been proposed over the
years,37–39 but no single, transferable consensus set has ever emerged.40 As a step towards
this goal, we will demonstrate how the issues of the dielectric boundary placement and the
hydration asymmetry can be clearly decoupled at the conceptual level of the Born model.

Results & Discussion
Origins of ion hydration asymmetry

In general, the free energy of ion hydration is given by

(2)

where ZI and ZII are the partition functions for a bulk state of water without the ion (pre-
hydrated state I with the ion in the gas phase) and for the ion embedded in water (hydrated
state II). The charge hydration asymmetry for otherwise identical ions of opposite charge is
then ΔΔG = ΔG(+q) − ΔG(−q) = −kBTln ZII(+q)/ZII(−q), where the sum in ZII(q) = Σσ⃗
exp(−βE(q, σ⃗)) extends over all admissible spatial configurations σ⃗ of the ion-water system
with the configurational energies E(q, σ⃗).

Since the electrostatic part of E(q, σ⃗) is a quadratic form in charges, ZII and, hence, ΔG are
invariant upon inversion of every charge in the ion-water system. However, ZII will also be
invariant upon inversion of the ion charge alone (q → −q) if the following condition is
satisfied: inversion of the charge distribution (ρw) within each water molecule, C: = {ρw(r⃗)
→ −ρw(r⃗)}, is equivalent to a set of consecutive rotations R of this molecule about its single
(often centered on the oxygen) spherically symmetric van der Waals interaction center.
Mathematically, this statement can be expressed as C · R = I, where I is the identity
operator, and R:= Rn̂1 (ψ1) × Rn̂2(ψ2)…, where each rotation Rn̂m (ψm) is a rotation
through angle ψm around some axis n̂m going through the van der Waals interaction center.
If C · R = I, then for each term in the sum ZII(+q) = Σσ⃗ exp(−βE(+q, σ⃗)) there exists a
corresponding term in ZII(−q) with the ion-water configuration Rσ⃗ and the same energy
E(−q, Rσ⃗)) = E(+q, σ⃗)). This leads to ZII(+q) = ZII(−q) and, hence, to ΔΔG = 0. The
equality will hold regardless of the ion size. Conversely,

(3)

is a necessary condition for a water molecule to exhibit CHA. The meaning of the above
expression is that the charge inversion can not be mimicked by any set of rotations of the
molecule around its single van der Waals interaction center.

The Ben-Naim and Stillinger (BNS) model,41 which has two positive and two negative
charges of equal magnitude at the vertices of a perfect tetrahedron, Figure 1, satisfies C · R
= I, and thus cannot produce CHA. In contrast, a real water molecule, as well as many
popular “n-site” water models such as SPC/E,42 TIP3P,43 TIP4P43 and TIP5P,34,35 Figure 1,
are not “charge-symmetric” (their charge distributions obey Eq. (3)), and therefore they are
expected to exhibit CHA.

However, water models that satisfy Eq. (3) may still produce very different degrees of CHA,
as seen in simulations.22,28,29 To explain why, we examine individual spherical electric
multipole moments (up to the octupole) of real water molecule, Figure 2, in light of our
general relationship, Eq. (3).
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For water models consistent with the C2v symmetry of real water, all individual moments,
except linear quadrupole (Q0), satisfy C · R = I. The same is true for any pair of moments
not including linear quadrupole*. This can be easily seen by comparing rotational
transformations that are equivalent to charge inversion for each moment in the pair. For
example, charge inversion of the cubic octupole (Ω2) is equivalent to these rotations: C ≡ Rx̂
(π) = Rẑ (π/2); for the square quadrupole (Q2): C ≡ Rx̂ (π) × Rẑ (π/2) = Rẑ (π/2); and for
the dipole (p) or the linear octupole (Ω0): C ≡ Rx̂ (π) = Rx̂ (π) ×Rẑ (π/2). Thus, by itself,
only Q0 appears to be able to cause CHA. However, the magnitude of Q0 of water molecule
is very small, 31 and is strictly zero for the SPC/E water model, which presents an apparent
paradox – real water as well as the SPC/E model exhibit strong CHA. The paradox is
resolved by noticing that while each of the remaining multipoles in Figure 2, or any pair of
them is C · R = I symmetric, a combination of p, Q2 and Ω2 – all of which significant in a
water molecule – is not; the three moments together satisfy C · R ≠ I. Thus, the combination
of these three multipole moments causes the ion charge hydration asymmetry. This key
observation explains the puzzling results of earlier RISM (the reference interaction site
model17,18,25) calculations of ion hydration where a substantial amount of ion hydration
asymmetry was observed only after the octupole moments of water were included.29 While
both the dipole and quadrupole moments of commonly used water models vary little
amongst each other, the moment Ω2 is different. For the models shown in Figure 1 this
moment (shown in brackets in units of DÅ2) varies considerably31 between models: 0 =
BNS [0.0] < TIP5P/TIP5P-Ew [0.59] < TIP3P [1.68] ≤ SPC/E [1.96] ≤ TIP4P [2.10]. Given
that Ω2 is critical for CHA, we suggest that the above sequence describes the intrinsic
propensities of the n-site water models to cause the asymmetry. The relative values of Ω2
explain the TIP3P < SPC/E < TIP4P sequence of relative hydration asymmetries observed
for the F+/F− pair in the MD simulations that kept ion parameters constant while probing the
water models themselves.28 While we are not aware of an analogous F+/F− simulation for
TIP5P/TIP5P-Ew, an extrapolation (see “Methods”) to K+/F− from the hydration free
energies for Na+/Cl− previously computed in TIP5P-Ew water44 yields a three times smaller
CHA than that computed for SPC/E model,28 consistent with the lower Ω2 of TIP5P-Ew.

The significant variation between water models in their ability to cause CHA is not limited
to ion hydration: the hydration free energy calculations on pairs of “charge-inverted” neutral
small molecules show22,45 that CHA varies as TIP5P-Ew < TIP3P < TIP4P-Ew. In fact,
relative CHA correlates well with the CHA prediction based on the relative values of Ω2,
Figure 3.

In general, not every multipole moment necessarily contributes to the energy of a water
molecule in external electric field. Thus, Eq. (3) should be applied selectively to investigate
the asymmetry of water response to electric fields other than that produced by a single ion.
For example, there will be no asymmetric water response to a constant field since only the
dipole moment (obeying C · R = I) contributes to the energy.

Charge-asymmetric ion hydration in continuum solvent
We will now use our understanding of how asymmetric ion hydration works to derive a first-
principles “charge-asymmetric” analogue of the Born equation. It is known from explicit
solvent simulations19,46 and analysis of the experimental hydration energies (see Supporting
Information) that a purely quadratic dependence of the solvation free energy on the ionic
charge for ions of the same sign is remarkably accurate in a wide range of sizes and charge

*For a combination of more then one moment, the transformations in C · R must be applied to all the moments simulateneously since
the moments belong to the single molecule being transformed
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values. This observation suggests the following ansatz for the general case of charge-
asymmetric ion hydration:

(4)

where all of the CHA effects are contained in the yet undetermined function η, while the
effective ion radius Reff is asymmetry-independent and is the same for cations and anions of
the same size, Ri. We stress that, without restrictions on η or Reff, Eq. (4) is not an
approximation. In what follows, we will use microscopic water models to infer functional
forms of η and Reff. Specifically, we invert Eq. (4) to define the asymmetry factor η = ΔG/
ΔGB(Reff). We then estimate ΔG from a realistic, yet analytically tractable microscopic
model that contains the key physics responsible for the asymmetric hydration. For
ΔGB(Reff), we will use a “fully charge-symmetric” microscopic model for which the
original Born equation is exact. Note that while direct accurate estimates of ΔG are
extremely demanding in terms of the accuracy of the input models and sensitivity to their
details,17,33,47,48 the ratio η = ΔG/ΔGB(Reff) may be expected to be much less sensitive to
the models used to estimate it. As agreement with experiment will demonstrate, this is
indeed the case.

Key derivation steps—Although most of the detailed water models shown in Figure 1
are charge-asymmetric, these are arguably49 not optimal for analytical calculations aimed at
elucidating the general principle. Arguably the least complex “charge-asymmetric” C · R ≠ I
model is a two-point model, denoted as 2P, with a negative charge at the center of a sphere

and a positive charge offset by a certain distance , Figure 6(A). Our 2P model preserves
components of all primitive multipole moments of TIP3P water along its z-axis of
symmetry, which are directly related to all components of the traceless moments. Thus, the
2P primitive moments retain the key elements (components) that can cause the hydration
asymmetry. Two-point charge models have been used successfully to investigate various
hydration phenomena,50 including CHA.49

The simplest reasonable water model that satisfies C · R = I is the simple point dipole (SPD)
model, Figure 6. SPD is also unique in that the Born equation Eq. (1), with an effective ion
radius, is exact for this model in the mean spherical approximation (MSA) limit.51

An analysis of the water oxygen radial distributions around model spherical ions33 reveals
that these distributions are not very sensitive to the sign of the ion charge. Thus, the hard
sphere model for ion and water with purely electrostatic interactions is a reasonable first-
order approximation for estimation of the asymmetry factor η. Using the two simplest water
models, 2P that obeys Eq. (3) and SPD that produces an ion solvation free energy in
agreement with the Born equation (see Figure 6(A)), in the definition of the asymmetry
factor, we obtain via Eq. (2):

(5)

To make further progress towards a simple analytical model akin to Eq. (1), we restrict the
computation in Eq. (5) to the first hydration shell - an approximation that was successfully
used in the past to estimate various hydration effects.15,32,52 Importantly, explicit water
simulations show that most of the charge hydration asymmetry effects can be attributed to
the first shell.22 With our 2P model, this approximation predicts ion hydration free energies
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for monovalent ions within ~ 6 % of the experiment, and fully preserves the hydration
asymmetry, see Supporting Information.

Within the first-shell approximation, Eq. (5) becomes tractable, see Supporting Information,
but still does not lead to a single equation nearly as transparent and insightful as the Born
formula. Our next simplifying step is based on the observation that, while the hydration free
energy does depend strongly on water-water interactions, the asymmetry factor η is virtually
independent of water-water interactions over their entire range of strength when scaled from
zero to full, see Supporting Information. Thus, to calculate η, we can set the water-water
interactions in Eq. (5) to zero, which drastically simplifies the calculation by decoupling the
identical water molecules in the first shell and, thus, making Z factorizable. The focus on
ion-water interactions as the cause of the hydration asymmetry is consistent with earlier

RISM calculations.53 Denoting  and  as the partition functions for ion + single
water molecule in the first hydration shell for both models, we have:

(6)

where Eσ is the electrostatic ion-water interaction energy for the water orientation σ, and
〈〉 σ denotes averaging over all possible orientations of the water molecule. Additionally, the
accuracy of η for realistic ions estimated via Eq. (6) is virtually the same if the number of
possible orientations of the water molecule relative to the ion is reduced to just two extreme
orientational states (σ = ±1) that span the entire range of possible directions of the water
dipole, Figure 6(B). With only two allowed water orientations, we finally obtain from Eq.
(6):

(7)

where Riw = Ri + Rw is the distance between ion and water hard sphere centers, and qO with

 characterize the charge distribution in the model water molecule, Figure 6.

We now turn our attention to Reff in Eq. (4). As was noted above, in the MSA limit the
solvation free energy of an ion of radius Ri in the hard sphere SPD water model 51 is given
by the Born equation with Reff = Ri + Rs:

(8)

where Rs could be regarded as a shift of the dielectric boundary from the ion surface (Rs =
0.52 Å at ε = 80 and the standard water radius Rw = 1.4 Å). Recall now that the SPD model
is manifestly charge-symmetric, so that Reff defined above is independent of the sign of the
ion charge, as needed by the proposed model. Substituting Eq. (8) and Eq. (7) into our
general ansatz Eq. (4) we arrive at
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(9)

For realistic ions considered here, Ri ≤ 3 Å, |q| ≥ e, the water molecules in the first hydration
shell experience a strong enough ion electric field ℰ⃗ such that the energy of the water dipole
p⃗ in this field |ℰ⃗p⃗| ≫ kBT. Under these conditions, Eq. (9) reduces (see Supporting
Information for details) to the simpler Eq. (10) below.

Charge-asymmetric “Born” formula
We propose the following “charge-asymmetric” replacement for the Born equation Eq. (1)
for the solvation free energy of a spherical ion of radius Ri and charge q in water:

(10)

Just like the original Born formula, the above equation does not have fitting parameters. Un-
like the original, Eq. (10) is asymmetric with respect to the sign of the ion charge q through
the asymmetry factor

(11)

Agreement with experiment—The hydration free energies predicted by Eq. (10) for
spherical mono-valent and di-valent ions agree with experiment, Figure 4, essentially within
the uncertainty range of the experiments, Table 1. The agreement with experiment is
noteworthy given that the proposed model is a very simple-looking equation with no fitting
parameters. It is reassuring that the “first principles” MSA value of Rs = 0.52 Å in Eq. (9) is
close (= 0.475 Å) to the value that can be obtained by taking Rs as a parameter and fitting
Eq. (9) to the experiment. The use of the best fit Rs in Eq. (9) results in an insignificant
improvement over the use of the “fist principles” Rs of ~ 1% in agreement between the
predicted and experimental hydration energies, see Supporting Information.

A more subtle test of the model comes from comparing the predicted hydration entropies ΔS
= −∂ ΔG/∂T with experiment. The predicted entropy contribution to ΔG of hydration, Eq.
(15) in “Methods”, shows an excellent qualitative and a reasonable quantitative agreement
with experiments,13,54 Figure 5. In contrast to this, the “ion-centric” approach, which
considers the effective ion radius as a temperature independent, intrinsic property of the ion,
cannot properly reproduce ΔS. Within that approach the only contribution to ΔS is due to a
temperature dependence of ε (the first term of Eq. (15)) that, for most ions, is not sufficient
to account for the experimental values of ΔS. For example, the asymmetry between
hydration entropies contributions of K+ and F− ions, T |ΔS(K+)−ΔS(F−)|, predicted by the
“ion-centric” approach is only 0.7 kcal/mol, while the experimental values are 4.5 to 6.7
kcal/mol, comparable to our prediction of 3.5 kcal/mol.

Microscopic origins of earlier empirical radii corrections—By re-casting Eq. (10)
to:
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(12)

we recover the form of the Latimer et al. prescription with the radii corrections

 and . Our “corrections” range from 0.86 Å (Li+) to
0.94 Å (Cs+) for monovalent cations and 0.12 Å (F−) to 0.08 Å (I−) for anions, and are
numerically close to the Latimer et al. empirical corrections C+ = 0.85 Å and C− = 0.1 Å.
Our model uncovers the microscopic origin of these corrections – specific asymmetry of
charge distribution in water molecule that gives rise to CHA in a non-uniform field of the
ion.

Propensities of common explicit water models to cause charge hydration
asymmetry—For a similar size cation/anion pair (B+/A−) such as K+/F−, the dimensionless
ratio

(13)

is a particularly simple and robust measure of CHA. Within our simplified 2P model, the

water charge distribution asymmetry is quantified by a single parameter, , which, by
construction, can be related to the ratio of the first two primitive multipole moments of the

TIP3P water model, . By identifying  we can map commonly
used n-site water models onto our simplified 2P model. This allows us to explore their
intrinsic hydration asymmetry properties via Eq. (10) and Eq. (13) using η* as a measure of
their propensity to cause CHA. Assuming Ri(A−) = Ri(B+), our ion hydration model predicts
for the CHA propensity:

(14)

This result, as well as Eq. (11), suggest that the ion and water sizes affect the CHA
propensity only through ion-water distance Riw, which is experimentally well-defined
quantity with a small margin of error. Thus, we can now evaluate (via Eq. (14)) the intrinsic
propensity of water models to cause CHA, irrespective of any parametrization of ions. These
propensities are shown in Table 2, and are in over-all agreement with our general symmetry
arguments presented above. Intrinsic propensities of TIP3P, SPC/E and TIP4P to cause
CHA are close to experiment used here as reference,13 with TIP4P being the closest, while
TIP5P-Ew underestimates CHA by a factor of four.

Note that in neutral solutes, the opposing CHA shifts in ΔG for opposite partial charges may
largely cancel out, masking a CHA deficiency of a particular water model. To illustrate the
point, consider solvation of a net neutral system of solvent-separated K+ and F−. According

to Eq. (10), its hydration energy can be approximated as  where the

correction relative to completely charge-symmetric Born model is of the second order in ,
which is small (about 6 % in this case) compared to the asymmetry correction to individual
ion solvation energies. It is therefore possible that while the total computed ΔG appears
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almost right, the solvation energies of individual groups in the molecule are under- or over-
estimated significantly because the CHA is not accounted for correctly. Computed effective
charge-charge interactions may contain gross errors in this case, causing distortions in
molecule conformation dynamics. Such total solvation energy error cancellations are
reminiscent of those that occur in the generalized Born model.55

Conclusion
We have used basic statistical mechanics to derive a quantitative connection between the
expected CHA and specific symmetry properties of the underlying water model.
Mathematically, the principle is expressed as C · R ≠ I, where C and R are the charge
inversion and rotation operations applied to the water molecule. It explains why real water
exhibits CHA – “charge–inverted water” can not be made from water by any combination of
rotations of the molecule about its van der Waals interaction center. When applied to
popular water models, the equation shows why some of them cause little to none CHA,
while in others this effect is significant. Here, consideration of the symmetry properties of a
water model’s electric multipole components was particularly insightful.

Once the key ingredients needed for a water model to exhibit CHA became clear, we used
the gained insight to reintroduce the ingredients into the original Born formula, which serves
as a conceptual example of the continuum electrostatics. Our approach explicitly separates
two problems that are commonly mixed in the development of continuum solvent models:
the charge-asymmetry effects and the placement of the dielectric boundary around the ion.
The result is an equation that is as simple as the original Born model, free from fitting
parameters, and predicts hydration free energies and entropies of spherical ions in good
agreement with experiment.

Potential benefits of the proposed replacement for the Born model are at least two-fold.
First, due to simplicity of the new formula, it can be used just as the original to describe the
basics of aqueous solvation of charges, but now with the hydration asymmetry effects fully
taken into account from first principles. Perhaps more importantly, the agreement with
experiment we have achieved shows that once the charge asymmetry effects are consistently
added to the foundation of the electrostatic continuum formalism, the result can be quite
accurate, without the need for empirical parametrization. This result is noteworthy since
CHA is obviously not the only real effect currently missing from the continuum solvent
framework, compared to e.g. the more fundamental explicit solvent representation. Which
suggests that, at least as far as the energetics are concerned, the asymmetry may be the main
ingredient still missing from the basis of the existing continuum electrostatics framework.
This observation should be particularly useful for future development of implicit solvent
models, especially if simplicity, robustness and computational efficiency are key. Over-all,
the main potential benefit of the proposed analysis of CHA is that it can be used to test, and
ultimately improve, practical water models.

Methods
Water models

Our charge-asymmetric model, Figure 6(A), is a hard sphere, two-point (2P) “charge
analogue” of the popular TIP3P.43 The partial charge qO = −0.834e on the oxygen center is
unaltered, but the two hydrogen charges are merged into a single partial charge, +0.834e,

offset from the center by - the projection of the  vector on the z-axis of
symmetry of TIP3P. This transformation preserves all z-components of the primitive (non-
traceless) multipole moments of the TIP3P charge distribution about the oxygen center, in
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particular, the components of the dipole moment, , and the

quadrupole moment, . The “charge-symmetric” water molecule is
modeled as a hard sphere with a simple point dipole (SPD) in its center; its dipole moment
equals that of the 2P model. In both models we use Rw = 1.4Åas a radius of the hard sphere.

Experimental reference
Experimental measurement of hydration energies of individual ions is anything but
straightforward. As a result, a variety of different sets of ion hydration energies can be found
in literature.56,57 Comparison between theory and experiment is also not straightforward –
one must carefully select experimental reference that corresponds to the type of calculation
performed.44,56 For example, issues such as whether bulk water/vapor interface potential is
included need to be considered. Following a discussion of these issues in Ref.,56 we have
chosen Schmid et al.13 as our main experimental reference for free energy ΔG and entropy
ΔS of ion hydration. We also use Marcus’ data54 to compare with our entropy calculations.
Both sets of values are determined for the state conditions T = 298 K and 1 mol/L both in
the gas phase and in the solution, and do not include contribution from water/air interface
potential consistent with our theoretical approach. The set of ionic radii are obtained from14

and are shown in Table 3.

Extrapolating absolute hydration free energies
Relative values of the experimental ion hydration free energies are known as the
conventional free energies. Provided that at least one value of the absolute hydration free
energy is known, it is easy to calculate the other hydration free energies by applying the
corresponding differences in the conventional energies.58 E.g., ΔG(K+) = ΔG(Na+) +
ΔGconv(K+) −ΔGconv(Na+).

Entropy estimate
The expression for the entropy of ion hydration is obtained from the temperature derivative
of ΔG, given by Eq. (10), through its functional dependence on the temperature dependent
quantities ε, Reff and Riw. To estimate Reff (T) we assume that the ion/solvent dielectric
boundary determined by Reff expands with temperature at the same rate as the ion-water
distance, i.e., ∂Reff/∂T = ∂Riw/∂T. The latter quantity is approximated with the rate of a bulk
water expansion, ∂Riw/∂T ≈ ∂Rww/∂T, where Rww = 2Rw is a mean distance between
neighboring molecules in a bulk water. This rate could be easy expressed via a known value
of volumetric thermal expansion coefficient of water, α = 2.57 · 10−4 K−1 at T = 298 K59

(see Supporting Information for details). The experimental value ∂ε/∂T = −0.36 K−1 at T =
298 K is taken from Ref.60 The resulting expression for the entropy can be written as

(15)

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematics of several point charge water models and C · R symmetries of their charge
distributions.
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Figure 2.
Symmetry properties of the lowest non-zero spherical multipole moments of water
molecule. Shown are the corresponding charge distributions. From left to right: coordinate
system; a dipole, p; a linear quadrupole, Q0; a square quadrupole, Q2; a linear octupole, Ω0,
and a cubic octupole, Ω2. These moments are related to the Cartesian components of the
traceless multipole moments of water molecule as Q0 = Qzz, Q2 = 1/2 (Qyy − Qxx), Ω0 =
Ωzzz, Ω2 = 1/2 (Ωyyz − Ωxxz).31
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Figure 3.
(a) Relative ability of several point-charge water models to cause charge hydration
asymmetry. ΔΔG is CHA for a pair of charge inverted solutes (ions or neutral molecules,
see panel (b)). ΔΔG for TIP5P-Ew water is taken as a reference. The horizontal axis shows
various test solutes used (only one molecule of a pair shown). The first structure corresponds
to F+/F− ion pair (see “Methods”). The rest of the pairs are neutral N/P-bracelets (only N-
bracelets shown on the axis) from Ref.22,45 The horizontal black dashed lines show the
relative values of Ω2 for different water models (relative to Ω2 for TIP5P model). (b) The
example of N- and P-bracelets for the hexagonal charge configuration.22
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Figure 4.
Predicted molar hydration free energies are compared with experiment13 for monovalent
ions (blue and red dots) at 298 K and 1 mol/L. Solid black lines: our model, Eq. (10).
Dashed green line: Born model, Eq. (1). Ion radii are from Ref.14
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Figure 5.
Hydration entropy |TΔS| of monovalent alkali halide ions at 298 K and 1 mol/L.
Experimental data: Marcus,54 orange bars; Schmid et al.,13 red bars. Our model: black bars.
The “ion–centric” prescription for empirical correction36 to ion radii: cyan bars.
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Figure 6.
A: The charge-asymmetric 2-point (2P) and the symmetric simple point dipole (SPD) hard

sphere water models. Both models have identical dipole moments . B: The two
orientation states, σ = ±1, of the water dipole in the ion first hydration shell used in Eq. (6).
The dipole energy of any other ion-water orientation can be decomposed as a linear
combination of these two states.

Mukhopadhyay et al. Page 18

J Phys Chem B. Author manuscript; available in PMC 2013 August 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mukhopadhyay et al. Page 19

Table 1

Root Mean Square Percent Error (RMSPE) in Hydration Free Energy for different models

Ions Born* Latimer† Our Model‡ Experiment¶

monovalent 60.25% 4.62% 3.94% 6.25%

divalent§ 116.86% 3.23% 3.52% 2.14%

*
Born equation, Eq. (1) without any correction in ion radii

†
Empirical correction proposed by Latimer et al. 36

‡
Eq. (10)

¶
RMSPE calculated from two sets of experimental data13,14

§
RMSPE calculated using cations only; data for spherical simple divalent anions unavailable in13
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