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Abstract: Monitoring (currently invasive) of cerebral venous blood 

oxygenation is a key to avoiding hypoxia-induced brain injury resulting in 

death or severe disability. Noninvasive, optoacoustic monitoring of cerebral 

venous blood oxygenation can potentially replace existing invasive 

methods. To the best of our knowledge, we report for the first time 

noninvasive monitoring of cerebral venous blood oxygenation through 

intact scalp that was validated with invasive, “gold standard” 

measurements. We performed an in vivo study in the sheep superior sagittal 

sinus (SSS), a large midline cerebral vein, using our novel, multi-

wavelength optoacoustic system. The study results demonstrated that: 1) the 

optoacoustic signal from the sheep SSS is detectable through the thick, 

intact scalp and skull; 2) the SSS signal amplitude correlated well with 

wavelength and actual SSS blood oxygenation measured invasively using 

SSS catheterization, blood sampling, and measurement with “gold 

standard” CO-Oximeter; 3) the optoacoustically predicted oxygenation 

strongly correlated with that measured with the CO-Oximeter. Our results 

indicate that monitoring of cerebral venous blood oxygenation may be 

performed in humans noninvasively and accurately through the intact scalp 

using optoacoustic systems because the sheep scalp and skull thickness is 

comparable to that of humans whereas the sheep SSS is much smaller than 

that of humans. 
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1. Introduction 

An essential step in reducing adverse outcomes (death or severe neurologic disability) in 

patients with traumatic brain injury as well as in patients undergoing cardiac surgery is 

prompt initiation of medical interventions that reduce the likelihood of secondary ischemic 

brain injury. For all these patients, prompt recognition of low cerebral venous blood 

oxygenation (low hemoglobin oxygen saturation) is a key to avoiding secondary brain injury 

associated with brain hypoxia [1]. In specialized clinical research centers, invasive 

monitoring of cerebral blood oxygenation using jugular venous bulb catheters or brain tissue 

oxygen tension using intracranial oxygen electrodes have been used to provide prognostic 

information in these patients and to guide management of the cerebral circulation [2]. 

However, placement of jugular venous bulb catheters or intracranial oxygen electrodes is 

reserved for severely head-injured patients. Moreover, both methods require considerable 

technical expertise to acquire and maintain good-quality monitoring data. Cerebral venous 

blood oxygenation below 50% (normal range is 55 – 75%) measured in the jugular bulb 

strongly correlates with poor clinical outcome [3–5]. However, this technique is used only in 

a limited number of specialized centers with highly trained neurointensivists. Moreover, it 

requires frequent recalibration and there is significant risk associated with infection, 

thrombosis, and perforation of the carotid artery. Noninvasive, continuous monitoring of 

cerebral venous blood oxygenation would be invaluable for management of cerebral ischemia 

in large populations of the patients with traumatic brain injury and patients undergoing 

cardiac surgery. 

Encouraging reports of NIR spectroscopy use [6, 7] must be balanced against the fact that 

current technology is qualitative and can be used only as a trend monitor. NIR spectroscopy 

has yet to provide quantitative measurement of cerebral venous oxygenation [8–10], at least 

in part because the technique assesses oxygenation of all blood (arterial, capillary, and 

venous) in the tissue and cannot distinguish venous from arterial and capillary blood. 

To provide an alternative to invasive monitoring of cerebral venous blood oxygenation 

and to facilitate this monitoring in a much higher proportion of head-injured patients, both 

severely injured and moderately injured, we proposed a noninvasive, quantitative, 

optoacoustic cerebral venous oxygenation monitor [11, 12]. The optoacoustic technique is 

based on detection of ultrasound waves generated in tissue by the absorption of optical pulses 

followed by the thermo-elastic expansion of the absorbing volumes. Our in vitro and in vivo 

studies demonstrated the potential of this technique in clinical use [13–15]. Recently, we 

reported high accuracy of cerebral venous oxygenation monitoring in large animals (sheep) 

by probing the superior sagittal sinus (SSS), a large central cerebral vein that drains all blood 

from the brain [16, 17]. In those studies, the scalp was removed at the site of the optoacoustic 

probing and the measurements were performed through the exposed skull. In this paper, for 

the first time to our best knowledge, optoacoustic monitoring of cerebral venous blood 

oxygenation was performed in large animals through the intact scalp and confirmed with 

blood samples obtained from the SSS using catheters and analyzed with the “gold standard” 

CO-Oximetry. The study was conducted using our novel, multi-wavelength, portable 

optoacoustic system. The sheep have a thick scalp and skull (4 mm and 6 mm), which are 

comparable in thickness to that of humans (4 and 8-10 mm, respectively), while the sheep 

SSS size (1-2 mm) is much smaller than that of humans (10 mm). 
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2. Materials and methods 

We developed a multi-wavelength optoacoustic system based on a compact optical parametric 

oscillator (OPO) (Opolette 532 II, Opotek Inc., Carlsbad, CA). The OPO provided pulsed 

tunable NIR radiation in the range of 680-2400 nm with pulse duration of 10 ns and repetition 

rate of 20 Hz. We designed and built a sensitive, wide-band optoacoustic probe, which 

combined a piezoelectric transducer for optoacoustic wave detection and a fiber-optic system 

for light delivery to tissue. The transducer had a resonance frequency of 2 MHz, bandwidth of 

3 MHz, sensitivity of 40 µV/Pa, area of 10 mm
2
 and thickness of 1 mm. The light delivery 

system incorporated 4 fibers with a core diameter of 1 mm around the transducer [16]. The 

transducer signals were amplified, digitized with a 100-MHz digitizer (National Instruments 

Corp., Austin, TX), and then processed in real time by a laptop computer using a custom-

written software developed in our lab. The laptop was also used to control the OPO using 

manufacturer-supplied software. 

The system was calibrated using heparinized sheep blood with different oxygenations in a 

phantom simulating blood vessel in a strongly scattering tissue [16]. Optoacoustic 

measurements were carried out at wavelengths of 700, 805, and 1064 nm. During the 

calibration procedure, the optoacoustic signals were recorded from blood simultaneously with 

blood sampling. A ratio of the blood signal amplitudes obtained at 1064 nm to that obtained 

at 700 nm were plotted against blood oxygenation measured using a CO-Oximeter (IL 682, 

Instrumentation Laboratories, Lexington, MA), the “gold standard” technique. This 

dependence represents a calibration curve that was used in this and our earlier studies [16, 17] 

to predict SSS blood oxygenation. 

We used the system for in vivo experiments in six merino sheep in which we performed 

measurements at the same three wavelengths: 700, 805, and 1064 nm. We chose 700 and 

1064 nm because hemoglobin absorption is strongly dependent on oxygenation at these 

wavelengths, while melanin and water absorption in tissues is relatively low [18–22]. At 1064 

nm the hemoglobin absorption increases with oxygenation, while at 700 nm it decreases. 

Since hemoglobin absorption does not depend on oxygenation at 805 nm (which is the 

isosbestic point at which oxygenated and deoxygenated hemoglobin absorb light equally), we 

used signals measured at this wavelength as a reference for signal normalization. To minimize 

electronic noise, we averaged 400 signals at each wavelength. At a 20-Hz pulse repetition 

rate, one three-wavelength measurement required 1.5-2 min. 

Adult merino sheep was chosen as an animal model for these studies because the animals 

have a thick scalp and skull (4 mm and 6 mm, respectively), which are comparable in 

thickness to those of humans (4 and 8-10 mm, respectively). The Institutional Animal Care 

and Use Committee of the University of Texas Medical Branch (UTMB) approved a protocol 

for this study. The animals were housed in the Animal Resources Center of UTMB under the 

daily supervision of veterinarians. The sheep were anesthetized with a 1.5% to 2.0% 

isoflurane during the study and kept in a prone position. Tracheal intubation was performed 

for the delivery of both isoflurane and gas mixtures of medical grade oxygen and nitrogen. In 

each sheep, we performed 2-3 cycles of changes in SSS blood oxygenation by varying the 

fraction of oxygen (FiO2) in the inhaled gas mixture from 1.0 to 0.1 and back to 1.0. This 

resulted in variation of SSS blood oxygenation between 20% and 100%. 

To insert a catheter into the SSS, a small craniotomy was performed close to the site of 

optoacoustic measurements. Blood samples were taken from the SSS immediately after each 

three-wavelength optoacoustic measurement to obtain the actual value of the SSS blood 

oxygenation using the CO-Oximeter. The optoacoustic measurements were performed 

through the intact, shaved scalp and, for comparison, without the scalp. The optoacoustic 

probe was placed in contact with the tissue and moved over the SSS using a 3D translation 

stage to obtain SSS signals with the greatest amplitude. To provide good acoustic contact, a 

thin layer of ultrasound gel was applied between the probe and tissue surfaces. The incident 
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laser fluence at the site of probing was about 4 mJ/cm
2
, which is well below the maximum 

permissible exposure for skin in this spectral range (20 to 100 mJ/cm
2
 [23]). 

During the study we continuously monitored the vital signs of the animals. Blood pressure 

was measured using a catheter inserted into femoral artery, while arterial blood oxygenation 

was monitored using a pulse oximeter attached to the lip, tongue, or ear. The cardiac rhythm 

and heartbeat rate were monitored by electrocardiography. At the end of the experiment the 

animals were euthanized by using saturated KCl solution intravenously (about 1 cc/kg) under 

deep isoflurane anesthesia. 

3. Results 
Figure 1 shows typical optoacoustic signals recorded from the exposed sheep skull over the 

SSS at the wavelengths of 700 nm (a), 805 nm (b), and 1064 nm (c). There are three signals in 

each graph for three different oxygenation levels: the blue line shows the signal recorded soon 

after the start of the oxygenation change cycle (oxygenation level was 65%), the green line 

represents the signal acquired when oxygenation level became very low (22%), and the red 

line depicts the signal recorded at the end of the cycle (oxygenation level was high again, 

80%). 

 

Fig. 1. Optoacoustic signals from the exposed sheep skull and the SSS at wavelengths of 700 

nm (a), 805 nm (b), and 1064 nm (c) for different SSS blood oxygenation: 65% (blue line), 

22% (green line), and 80% (red line). 

The leftmost peak in each signal was produced by the absorption of light in the upper 

layers of the skull (in the near IR spectral range, the major absorbers within the skull bone are 

lipids, water, hemoglobin, and collagen [24, 25]). The next prominent peak was delayed from 

the first one by 2-2.35 µs in different sheep. This time delay can be converted into tissue 
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thickness by multiplying by the speed of sound in tissue, cs. Fry et al. [26] reported cs = 2.5 

mm/µs for the diploe (porous internal layer of the bone) and 2.9 mm/µs for both inner and 

outer tables, while an average speed of sound in skull bone reported by Enderle is 3.36 mm/µs 

[27]. Based on the reported data, one can estimate the minimal and maximal possible bone 

thickness as Lmin = 2 µs x 2.7 mm/µs = 5.4 mm and Lmax = 2.35 µs x 3.36 mm/µs = 8 mm, 

respectively. These numbers fall in the range of the cranial bone thicknesses we measured 

after the experiments at the location of the craniotomy: from 5 to 8 mm. The SSS is located 

directly beneath the skull bone, separated only by the dura matter, a thin layer of connective 

tissue. Since hemoglobin is the major chromophore in the near IR spectral range, one can 

conclude that the second peak is generated in the blood of the SSS. 

Blood content of the upper dense layer of the skull bone is extremely low. Since the 

optoacoustic amplitude depends on the light fluence and absorption coefficient at these 

wavelengths, the changes in the amplitude of the surface peak were not produced by the 

variations of blood oxygenation in the bone. Instead, they were produced by the instability of 

the light fluence and acoustic contact of the probe with the tissue. To minimize influence on 

oxygenation measurements of OPO pulse energy and acoustic contact instability (and thus to 

increase the accuracy of these measurements), we normalized all the acquired signals to the 

amplitude of the surface peak. After that, we use the peak-to-peak amplitude of the SSS 

signal (the second peak from the left) for the oxygenation measurements. This amplitude 

decreased with the SSS oxygenation in signals measured at 700 nm, while at 1064 nm it 

increased with the SSS oxygenation. The SSS signal peak-to-peak amplitude changed only 

slightly at 805 nm because this wavelength is the isosbestic point of hemoglobin spectrum in 

the near-infrared spectral range [18–20]. At this wavelength the optical absorption of blood 

does not depend on oxygenation and the amplitude of the SSS signal was changing due to 

motion artifacts and variation in total hemoglobin concentration. 

Figure 2 shows typical optoacoustic signals detected by the transducer in contact with the 

intact scalp over the SSS at 700 nm (a), 805 nm (b), and 1064 nm (c). The three signals in 

each graph represent data for three different oxygenation levels: 26.5%, 45%, and 93.5% 

(blue, green, and red line, respectively). The leftmost peak was due to the absorption of light 

in the scalp upper layers. The signals were normalized for the amplitude of the scalp peak to 

minimize the influence of pulse energy and acoustic contact instability on the measurements. 

The central peak is separated in time from the first one by 1.3 µs that corresponds to a 

distance in soft tissue (cs = 1.5 mm/µs) of 2 mm. The scalp thickness on top of the sheep’s 

head is about 3-4 mm. Since the optoacoustic probe exerted some pressure on the scalp to 

provide good acoustic contact during the measurement, the scalp was compressed by the 

probe, making 2 mm a reasonable tissue thickness at the measurement site. Thus, this peak 

was generated at the scalp and skull bone interface, probably in the blood of emissary veins or 

in the muscle layer that exists in sheep between the scalp and the skull. The peak from the 

SSS was at about 4 µs. We verified its position by comparing the time delay from the skull 

peak (2.2 µs) with that measured in subsequent experiments with the skull exposed in the 

same sheep, where the SSS signal was much more prominent due to a higher fluence reaching 

the vein. Although not very high in amplitude, the SSS signal was still measurable through 

the thick scalp and skull (2 mm and 7 mm, respectively, as calculated from the signals). 

We measured the SSS signal amplitudes during two cycles of oxygenation change and 

calculated ratio of the amplitudes to that measured at 805 nm. Figure 3 presents the ratios 

obtained for 700 nm (blue triangles) and 1064 nm (red circles) vs. SSS blood oxygenation 

measured invasively. The linear fit correlation coefficients (the straight lines) were R
2
 = 0.712 

for 700 nm and R
2
 = 0.869 for 1064 nm. 
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Fig. 2. Optoacoustic signals from a sheep with intact scalp measured at 700 nm (a), 805 nm 

(b), and 1064 nm (c) for different SSS blood oxygenation: 26.5% (blue line), 45% (green line), 

and 93.5% (red line). 

 

Fig. 3. Correlation of the normalized SSS signal amplitudes measured at 700 nm (blue 

triangles) and 1064 nm (red circles) with actual SSS blood oxygenation measured invasively. 

The dashed lines are linear fit to the data sets (R2 = 0.712 and 0.869 for 700 nm and 1064 nm, 

respectively). 

We then used these normalized amplitudes for prediction of blood oxygenation in the SSS 

using the calibration curve relating the SSS signal amplitude ratio measured at 1064 nm and 
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700 nm to actual blood oxygenation [16]. We divided the SSS signal amplitude measured at 

1064 nm by that measured at 700 nm in Fig. 3 and predicted the SSS blood oxygenation (Fig. 

4(a)). The optoacoustically predicted blood oxygenation was linearly dependent on the actual 

SSS blood oxygenation measured invasively. The linear fit to this set of data points (the 

straight line) has correlation coefficient R
2
 = 0.931 and is close to the bisector (the regression 

coefficient of the line is 0.89). 

We analyzed the agreement between the optoacoustically predicted oxygenation and the 

“gold standard” data obtained with the CO-Oximeter. Figure 4(b) shows the difference 

between the predicted and actual SSS blood oxygenation in this experiment. The average 

value of the difference (bias <∆> = −5%) and the standard deviation from the average (SD = 

7.6%) are also shown. The solid line corresponds to the bias value and the two dashed lines 

delineate the 95% confidence interval <∆> ± 2SD (the probability of a data point to fall into 

this interval is 95%, when all data points are distributed normally). This result is very 

encouraging when taken into account the presence of the additional thick, turbid tissue layer 

(the scalp) between the probe and the SSS compared to the data obtained with the exposed 

skull [16, 17]. 

 

Fig. 4. (a) High correlation between the optoacoustically predicted and actual blood 

oxygenation in the SSS of a sheep with intact scalp; (b) Standard deviation and bias of the 

difference between the optoacoustically predicted and actual SSS blood oxygenation. 

4. Discussion 

In this study we noninvasively measured cerebral venous blood oxygenation in large animals 

through the intact scalp using our multi-wavelength optoacoustic system. The measurements 

were validated against blood samples obtained from the catheterized SSS and analyzed with 

the “gold standard” CO-Oximetry. The SSS signal was easily identified and accurately 

quantified because the SSS is the largest cerebral vein and there are no other highly absorbing 

volumes of similar size near the SSS. 

Although the attenuation of light by scalp and skull is wavelength-dependent, the 

calibration of the system in the phantom studies at the same wavelengths minimized its 

influence on the oxygenation measurements. Although no tissue phantom is ideal for in vivo 

measurements, this calibration provided accurate prediction of the SSS blood oxygenation. 

This is because the phantom optical properties (the effective attenuation coefficient and its 

spectral dependence) were very close to those of tissue, and the optoacoustic signals were 

acquired at different wavelengths within short time. The latter assured that tissue properties 

did not change significantly during the measurements. 

The acoustic waves generated in the SSS blood undergo attenuation and aberration in the 

skull. However, as we use for predicting the blood oxygenation the ratio of signal amplitudes 

measured at different wavelengths but in the same geometry, these effects have minimal 
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influence on the accuracy of the SSS blood oxygenation measurement. The reflections of the 

SSS acoustic waves from the boundaries of tissue layers (reverberations) arrive at the probe 

much later than the actual SSS signal and are much stronger attenuated due to a longer path in 

the tissues and do not reduce accuracy of the SSS oxygenation measurements. 

The physiologically relevant range of cerebral venous blood oxygenation for healthy 

subjects is from 55% to 75%. However, due to traumatic brain injury and instability of blood 

flow and oxygen consumption in the brain, it varies in a wide range from below 50% to above 

75%. We used the range from about 20% to 100% to test the system performance at both 

normal and abnormal blood oxygenations. 

The results that we obtained predict that cerebral venous blood oxygenation may be 

measured in humans noninvasively and accurately through the intact scalp using optoacoustic 

systems. By analyzing our in vivo data obtained in this and the previous studies [16, 17], we 

concluded that the major confounding variable in the optoacoustic measurements of the sheep 

SSS blood oxygenation is due to motion artifacts. Since the probe size (3x3 mm
2
) is 

comparable to the sheep SSS size (1-2 mm), minor probe displacements by as little as 1 mm 

can change the SSS signal. Because the adult human SSS is much larger than that of the 

sheep, we predict that measurements in humans will be substantially less prone to motion 

artifacts and will be more accurate. Moreover, to avoid the lateral scanning of the 

optoacoustic probe, one could use optoacoustic arrays for rapid SSS identification and 

oxygenation measurements. Recently developed optoacoustic arrays providing optoacoustic 

images deep into highly scattering media and in vivo tissues [28–31] could be adapted for 

SSS signal detection. This would further improve system performance and minimize 

influence of motion artifacts. 

Several other technical modifications could be made to further improve the performance 

of our optoacoustic system. For instance, using high-power pulsed laser diodes operating at 

high pulse repetition rate (up to tens of kHz) would substantially reduce measurement time 

and, thus, increase the measurement accuracy [32,33]. Laser diodes, because of low cost and 

weight, as well as compact design, are more suitable for the clinical environment than an 

OPO-based system. 

5. Conclusions 

We demonstrated that the optoacoustic signal from the large animal SSS is detectable through 

the thick, intact scalp and skull. The amplitude of the SSS peak correlated well with 

wavelength and actual SSS blood oxygenation measured invasively: the SSS signal at 700 nm 

decreased, at 805 nm was almost constant, and at 1064 nm signal increased with oxygenation. 

To minimize the influence of confounding factors, signal amplitude ratios at 700 nm and 

1064 nm to that measured at 805 nm can be used. The optoacoustically predicted values 

strongly correlated with actual SSS blood oxygenation measured using the CO-Oximeter. 

Since the sheep scalp and skull thickness is comparable to that of humans and the sheep SSS 

is much smaller than that of humans, one can predict that cerebral venous blood oxygenation 

monitoring can be performed in humans noninvasively and accurately through the intact scalp 

using optoacoustic systems. 
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