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Abstract: We analyze the structure of space-time focusing of spatially-
chirped pulses using a technique where each frequency component of the
beam follows its own Gaussian beamlet that in turn travels as a ray through
the system. The approach leads to analytic expressions for the axially-
varying pulse duration, pulse-front tilt, and the longitudinal intensity profile.
We find that an important contribution to the intensity localization obtained
with spatial-chirp focusing arises from the evolution of the geometric phase
of the beamlets.
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1. Introduction

Typically, spatial and angular chirp in ultrafast optical systems is treated as a misalignment
(e.g. [1] ), but recent work in nonlinear microscopy [2–4], micromachining [5, 6] and waveg-
uide writing [7] has taken advantage of the special properties of these beams. When a beam
that has transverse spatial chirp is focused with a lens or curved mirror, the axial intensity is
strongly localized because the pulse duration is not its shortest until all frequency components
are fully overlapped. The strong localization that results from this simultaneous space-time fo-
cusing (SSTF) is useful for multiphoton microscopy because it improves the axial resolution
for wide-field imaging. In micromachining, we have shown that it strongly suppresses nonlinear
propagation in a medium along the way to the focus, allowing machining on the back side of
a transparent medium or on a surface immersed in water [5]. The spatio-temporal structure of
these pulses is quite interesting: there is a strong pulse front tilt at the focus [8] (which appears
to be responsible for the nonreciprocal writing effect [6, 9, 10]), and adjustment of the input
spectral chirp can move the focus in the axial direction [11]. The pulse front tilt has been ex-
ploited in several other areas, such as traveling-wave pumping of x-ray lasers [12], achromatic
phase matching of frequency doubling [13], and pulse front matching for THz generation in
crystals [14]. Nonlinear effects can be suppressed as the beam propagates through a medium
to the target, a great advantage for any application that requires high-energy beam delivery
through a medium.

The detailed spatio-temporal structure of these beams has been calculated directly with Fres-
nel propagation [3]. To provide more insight into the nature of the spatio-temporal coupling and
to allow generalization to other systems, we develop in this paper a flexible, intuitive technique
that we call the double ABCD method. This method allows us to analyze and design spatially-
chirped propagation systems. The propagation of the central axes of the Gaussian beamlets are
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first propagated as rays, either with paraxial ABCD matrices or non-paraxial tracing. The sec-
ond step is to use ABCD matrices to propagate the Gaussian beamlets through the system as if
they are traveling along the optical axis. Finally, the ray angles calculated from the raytrace are
used to modify the expression for the Gaussian beam, thereby incorporating the phase informa-
tion correctly. This method can accurately describe the spatio-temporal structure of propagat-
ing beams with spatial chirp. Kostenbauder [15] has developed an extension of ABCD matrices
that accounts for spatio-temporal propagation that has been used to analyze dispersive systems
(e.g. [16]. The Kostenbauder matrices provide a compact means to analyze systems to second
order in the phase. The approach detailed here is more general since most of the computation is
performed in frequency space where each ω−component can be considered to propagate inde-
pendently. The aim of the double-ABCD technique is not so much to calculate the dispersion
of pulse stretching/compression systems, for which there are other techniques [16–18], rather it
is to aid in the understanding and design of systems that manipulate the spatial chirp of systems
to control the spatio-temporal intensity distribution.

After an overview of optical systems that can be used to produce focusing spatially-chirped
beams (Section 1.1), we provide a brief summary of the approach to describe the propagation
by performing a direct Fresnel transform on the focusing, spatially-chirped beam (Section 1.2).
In Section 2 we describe the propagation of beams in frequency (ω) space, since in linear
propagation the spatial and frequency components can be considered as separable functions.
As part of this analysis, we derive a general approach to starting with a field that has a known
Fresnel propagation on-axis and modifying it to include the effects of tilting its propagation
direction at an angle to the optical axis. The resulting expression is then used to analyze the
pulse in the spatial and spectral domains. Finally, in Section 3 we investigate the structure of
the pulse in the spatial/temporal domains, where we can obtain insight into the origins of the
axial intensity localization and the scaling with the degree of spatial chirp.

1.1. Optical systems for simultaneous spatial and temporal focusing

The principal goal in space-time focusing is to start with a beam in which the spectral compo-
nents are spatially-dispersed, then form a focal plane where the spectral components overlap
and the pulse is compressed. Directing a beam with lateral spatial chirp (parallel frequency com-
ponents) into a lens or focusing mirror will cross the frequencies at the focal plane. There are
several ways to produce this beam with lateral spatial chirp, some of which are shown in Fig. 1.
The most straightforward method, used in our experiments [5, 6], is to employ a single-pass
parallel grating compressor [Fig. 1(a)]. Note that the same amount of compression obtained in
a conventional double-pass compressor can be obtained for a single-pass compressor by sim-
ply doubling the grating separation. In this case, the incoming chirped pulse is compressed at
the output in the sense that there is no pulse front tilt, even though there is spatial chirp. It is
well known that misalignment of a double-pass compressor will result in a spatially-chirped
beam [1]. Adjusting the gratings out of parallel will result in angular spatial chirp; a beam will
not generally come to a focus where the frequency components cross. However, if the retrore-
flection mirror is misaligned to use a different incident angle for the return beam [Fig. 1(b)],
the output will have a (generally small) lateral spatial chirp.

Imaging optics can be used to generate spatially chirped beams with a single grating. In
nonlinear microscopy experiments(e.g. Ref. [4]), a single grating is placed at the back focal
plane of a lens (L1) and a second lens (L2) is placed near the front focal plane of L1, so that
the beam waist is focused tightly [Fig. 1(c), with z12 = f1]. A similar configuration, with z12 =
f1 + f2 produces an image of the grating at the focal plane of L2 [19]. In this case, the focused
intensity is limited by the magnification of the system. Finally, one can image a spot on the
grating to the sample with demagnification [Fig. 1(d)]. In such a system, the beam will not
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necessarily be at a focus where the wavelengths cross. A telescope to adjust the input divergence
can be used to arrange for the beam and wavelength focii to overlap. Unlike the dual grating
compressor arrangements, these imaging systems do not greatly affect the input chirp of the
pulse.

a b 

f1 z12 

L1 L2 

f2 so si 

L1 
c d 

Fig. 1. Configurations for space-time focusing. a) Single-pass, parallel grating compressor.
b) Double-pass compressor, but with retroreflection mirror tilted in the horizontal plane.
c) Collimation of spectral components from single grating, refocus with second lens. d)
Imaging of single grating to target.

In the schematics above, the wavelength components are propagated as rays through the
system. Clearly this is not sufficient to describe the evolution of the field through the system.
The principle applied in this paper is to separately calculate the beam propagation of each
frequency component, then apply the information about beam direction and position calculated
from a raytrace to result in a final expression for the field. This approach should greatly simplify
the analysis of optical systems designed to manipulate spatially chirped beams.

1.2. Direct Fresnel spatio-temporal beam propagation

In free space, the wave equation is separable when the field is represented in the spatial and
frequency domains. Each frequency component can be propagated independently of the others
and the final result can be Fourier-transformed back to the time domain. The starting point for
the spatial-chirp focusing problem is a beam of central frequency ω0 (and vacuum wavenumber
k0 = ω0/c ) propagating in the z direction, with the beam waist (1/e2 radius win) at the entrance
of a lens of focal length f . Each frequency component is laterally shifted at the lens entrance
by the distance α (ω −ω0), where α is a parameter that describes the spatial chirp rate:

E(x,y,z = 0,ω) = E0exp

[
− (ω −ω0)

2

Δω2 + iφin(ω)

]
exp

[
− (x−α (ω −ω0))

2 + y2

win
2

]
(1)

The first term of the right-hand side represents the complex input spectrum, containing any
input spectral phase φin.

Following Goodman [20], we can propagate this beam in the forward direction (z >
0) by taking the spatial Fourier transform of Eq. (1) multiplied by the lens phase fac-
tor exp

[−ik0
(
x2 + y2

)
/2 f
]

to obtain the angular spectrum (with spatial frequency fx). The
wavenumber is defined as k0 = ωn(ω)/c. To propagate the field, the angular spectrum is multi-
plied by the Fresnel propagation phase. An inverse transform back to position space yields the
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spatio-spectral field

E (x,z,ω) = FTx
−1

{
e

i k0z

(
1− 1

2

(
2π
k0

fx
)2
)

FTx

{
E (x,z = 0,ω)e−i

k0x2

2 f

}}
. (2)

For simplicity, we suppress the y-dependence of the field, since that component propagates
independently as a Gaussian beam. Since the propagation phase is a function of ω through k0,
each frequency component propagates independently.

With Gaussian functions, the spatial Fourier transforms in ω space can be performed ana-
lytically. Under the assumption of limited spectral bandwidth, Durst et al performed analytic
inverse Fourier transform to the time domain [4]. Alternatively, the result can be sampled on a
grid and numerically transformed to the time domain. While this approach is direct and concep-
tually straightforward, it is difficult to interpret the analytic form of the results and to generalize
to other systems. The complication arises from the well-known result that a Gaussian beam with
a waist at the entrance of a lens will not have its minimum waist at the lens focal plane, owing
to the divergence of the input beam. Even though this effect may not be significant, it is present
in the analytic form. Our approach, described in the next section, circumvents this problem by
writing a form for the spatially-chirped beam so that the beam waists and the beamlet crossing
planes coincide. This approach allows for further insight into the propagation effects.

2. Frequency-space analysis and Double ABCD propagation

Since linear propagation can be calculated separately for each frequency component, we can
treat each of these components as a beamlet. Then we incorporate the frequency dependence
of the angle and position of these beamlets to obtain information about the spatio-temporal
structure.

2.1. Structure of the spatially-chirped input beam

As described in Section 1.2 the input Gaussian beam with lateral spatial chirp is given by
Eq. (1). Note that the x−dependence of the field may be understood as a superposition of Gaus-
sian beamlets of radius win that have a lateral shift α (ω −ω0) at the lens entrance. Since the
actual extent of the beam size is related to the bandwidth of the input pulse, it is convenient to
define two dimensionless parameters, the spatial chirp rate β , and the spatial chirp beam aspect
ratio βBA. Since the 1/e2 half-width of the Gaussian input spectrum is Δω , αΔω corresponds
the position of the frequency component ω0 +Δω at the lens entrance, which we express in
terms of a factor β times the input beam width. The dimensionless spatial chirp rate is then

β =
αΔω
win

. (3)

The spatially-chirped beam as it appears at the lens entrance is stretched in the direction of
the spatial chirp and ideally takes the form of an elliptical Gaussian beam. Integrating the input
intensity over the the spectrum yields the input energy fluence. This integral is essentially a
convolution of the spatial spread of the spectrum with the input beam size. The ratio of the 1/e2

radii of this beam is the spatial chirp beam aspect ratio:

βBA =
√

1+β 2. (4)

The spatial dispersion of the spectrum lengthens the input pulse duration. Expanding the
exponents in Eq. (1) we obtain an expression that makes clear the local spectral content:

I(x,z = 0,ω) ∝ exp

{
−2

[
β 2

BA

(
ω −ω0

Δω
− x

win

β
β 2

BA

)2
]}

. (5)
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The local bandwidth is independent of position and is narrower by the factor βBA, which, as-
suming there is no input chirp, stretches the input pulse duration by this factor. The shift in the
peak of the local spectrum seen in Eq. (5) is (x/win)

(
β/β 2

BA

)
Δω .

2.2. Plane wave analysis: origin of pulse-front tilt in focus

One of the interesting aspects of space-time focusing is that the pulse front is tilted, potentially
quite strongly, at the focus. This tilt is present even if there is no such tilt at the entrance
of the focusing optic. The pulse front tilt has been measured experimentally by Coughlan et
al. [8] with scanning spectral interferometry. The spatio-temporal pulse structure has also been
manipulated with a spectral pulse shaper placed before the angularly dispersive optics [21,22].
Much of the space-time structure of focused spatially-chirped beams can be calculated in the
spatio-spectral domain. The simplest illustration of this method is to consider the role of angular
spatial chirp in the pulse structure of Gaussian beams with planar wavefronts. This is the case at
the SSTF focus if the location of the focused beam waists coincides with the crossing plane of
the frequency components. Assuming the pulse is compressed at the focus (φin = 0), an angular
spectral sweep that is linear in frequency leads to a phase function

φ (x,ω) =
ω
c

sin[θ (ω)]x ≈−ω
c

α (ω −ω0)

f
x. (6)

Here we follow the convention of Eq. (1) where beamlets with ω > ω0 are displaced to posi-
tions x > 0, leading to θ < 0. The pulse front tilt (PFT) is defined as the spatial variation of the
temporal peak of the pulse, which for a pulse without odd orders of spectral phase, is equal to
the group delay evaluated at the central frequency. Since all frequency components are over-
lapped at the focal point we can calculate the frequency derivative of the spatially-dependent
spectral phase to get the group delay φ1 (x,ω), then evaluate the result at ω0:

φ1 (x) = φ ′ (x,ω)
∣∣
ω0

=−ω0
α x
c f

. (7)

The input beam [Eq. (1)] has the short-wavelength part of the spectrum at x > 0; in the
focus it is this side that leads in the PFT. Clearly, the tilt of the pulse front originates directly
from the dependence of the beamlet angle with ω . Departure from linearity in the angular chip
can introduce curvature in the pulse front. Such a departure is expected in practical situations,
since the angular dispersion of a diffraction grating is to first order linear in wavelength, not
frequency. To estimate the magnitude of the PFT, we eliminate the focal length in Eq. (7) by
using win = 2c f/(ω0w0), where w0 is the 1/e2 radius in intensity of the focused spot size.
We can also make use of the definition of the dimensionless spatial chirp rate β [Eq. (3)] to
substitute for α , and replace the bandwidth by the transform-limited pulse duration τ0 = 2/Δω .
Simplifying, it is straightforward to show that the temporal shift of the pulse front is simply

φ1 (x) =− x
w0

β τ0. (8)

Note that the PFT depends only on the spatial chirp rate at the lens entrance, independent of the
focusing conditions. Evaluating the second derivative of Eq. (6) to obtain the spatial dependence
of the group delay dispersion (chirp), φ2 (x), yields

φ2 (x) = φ ′′ (x,ω)
∣∣
ω0

=−2
α x
f c

, φ2 (w0)Δω =−4β
ω0

. (9)

The spatial dependence of φ2 shows that in addition to the PFT, the pulse develops a spectral
chirp that increases away from the optical axis. The second expression in Eq. (9) is an estimate
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of the broadening at x = w0. Since the broadening roughly corresponds to β times the duration
of an optical cycle, this chirping at the sides of the focus will be significant only if the pulse
is extremely short. However, if the frequency crossing plane is arranged to be far from the
beamlet waist position, this term could be much more important since the beam size at that
position could be much larger than the beamlet waist size.

2.3. Tilt transformation of a forward propagated field

To calculate the form of the field away from the focus we can extend this analysis to account for
the diffractive evolution of the Gaussian beamlets. We first calculate the positions and angles
of rays of different wavelength through the system. This can be done through paraxial ABCD
matrices or non-paraxial tracing. Separately, we propagate the Gaussian beamlets through the
system as if they are traveling along the optical axis. This gives the evolution of the beam
sizes and wavefronts. To correctly combine the two, we need to transform a known field as it
propagates on-axis to one that is propagating at an angle to the axis.

We start with an expression for an initial field (a beamlet with a specific frequency ω) that
is propagating along the optical axis of the system (the z-axis). We can use the Fresnel integral
to find the field at any position downstream. Consider next the same beamlet tilted at z = 0 at
an angle θx to the z-axis by applying a linear phase ramp. This tilt can come from a prism, a
grating, or from propagation off-center through a lens. The linear phase ramp in position space
can be written as exp [i kxx], where kx = (ω/c)sinθx ≡ 2π fx0. We next calculate the tilted field
in terms of the on-axis Fresnel-propagated field.

When the initial field is represented in the angular-spectral domain (through a Fourier trans-
form [20]), the phase ramp produces a shift in the angular spectrum of the original field,
Ẽ ( fx − fx0,0). To propagate the field, we multiply this by the non-paraxial propagator:

Ẽ ( fx − fx0, z) = Ẽ ( fx − fx0, 0)exp

⎡
⎣ik0

(
1−
(

2π fx
k0

)2
)1/2

z

⎤
⎦ . (10)

The square root may be expanded in two ways: around the new beam direction ( fx = fx0)
and around the original z-axis ( fx = 0). The first expansion is more general, in that the beam
direction change can be large, but the spread of the angular spectrum is small. The second
expansion assumes that all angles are small: this corresponds to a direct Fresnel transform of
the shifted field.

We treat first the more general case, where we do not assume that new angle of the beamlet
to the z-axis is not necessarily small. In this case, we change variables to fx′ = fx − fx0. Then,
noting that the projection of the k-vector on the z-axis is defined through k2

z = k2
0 − (2π fx0)

2,
we pull kz out of the square root and expand for 2π fx′/kz � 1:

Ẽ ( fx − fx0,z) = Ẽ
(

fx
′,0
)

exp

[
i kzz− i

2π2z
kz

(
fx
′)2 − i2π z tanθx fx

′
]
. (11)

The tanθx term in the exponential results from the ratio 2π fx0/kz = kx/kz. To transform back
to position space, we use the shift theorem to represent the result in terms of a transform with
respect to fx′, with the result

E (x,z) = exp [i(kxx+ kzz)]×
FT fx ′

−1
{

Ẽ ( fx′,0)exp
[
−i 2π2z

kz
( fx′)

2
]

exp [−i2πz tanθx fx′]
}
.

(12)

Comparing to Eq. (2), we can see that the exponential quadratic in fx′ is the Fresnel propagator,
and the term linear in fx′ will result in a shift in x. From this we conclude that we calculate the
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Fresnel propagation of the field without the phase ramp, then make the two substitutions

k0 → kz =
ω
c

cosθx and x → x− z tanθx, (13)

so that the propagation phase in front of the expression is exp [i(kxx+ kzz)] instead of exp [i k0z].
This derivation is a result that can be applied to general diffractive propagation, though in
this paper we will restrict our attention to the propagation of angled Gaussian beams. Note
that the substitution of kz for k0 in this derivation applies globally throughout the expression
for the Fresnel-propagated field without the phase ramp. In the context of Gaussian beams,
this modification will change the Rayleigh range of the beam in the expressions for the z-
dependence of the beam size, radius of curvature and the Gouy phase.

In the other limit where the beamlet angle is considered to be small, i.e. 2π fx/k0 � 1. Note
that this is implicitly assumed when the direct Fresnel transform described in Sect. 1.2 is per-
formed. In this case, we expand the square root in Eq. (10) as is customary for Fresnel propa-
gation. The propagated field takes the form

E (x,z) = exp
[
i
(
kxx+ kz

′z
)]

FT−1
{

Ẽ
[

fx
′]e−i 2π2z

k0
( fx ′)

2

e−i2π zsinθx fx ′
}
, (14)

where kz
′ = k0

(
1− sin2 θx/2

)
. The tilt transformation is simpler in this case, since there is no

global change to k0 and only the x coordinate is shifted:

x → x− zsinθx. (15)

This is the form of the tilt transformation that will be used above in calculating the spatio-
temporal propagation of spatially-chirped beams.

2.4. Angled Gaussian beam propagation

In this section we apply these results to derive an expression for a tilted Gaussian beam
that has a well-defined frequency ω . For a coordinate system centered on the beam waist,
the Gaussian beam can be written in term of the amplitude and phase E (x,y,z,ω) =
A(x,y,z,ω)exp [iφ (x,y,z,ω)]. Using the sign convention that a forward-propagating plane
wave is written as exp [i(k0z−ω t)], the well-known expression for the field is given by

A(x,y,z,ω) = E0 (ω)
w0

w(z)
exp

[
−x2 + y2

w2 (z)

]
and φ (x,y,z,ω) = k0z−η (z)+ k0

x2 + y2

2R(z)
, (16)

where the beam radius (w), radius of curvature (R) and the Gouy phase (η) are given by

w(z) = w0

√
1+ z2

/
z2
R, R(z) = z

(
1+ z2

R

/
z2)and η(z) = arctan(z/zR) . (17)

Note that w, R and η are implicitly functions of k0 (and ω) through the Rayleigh range zR =
k0w2

0/2.
We will assume that the beam tilt angle θx is small so that we can use the transform described

in Eqs. (14) and (15). To perform the tilt transformation on the Gaussian beamlet, the amplitude
function undergoes the shift in the x variable, x → x− zsinθx.

A(x,y,z,ω) = E0 (ω)
w0

w(z)
exp

[
− (x− zsinθx)

2 + y2

w2 (z)

]
. (18)

#167438 - $15.00 USD Received 26 Apr 2012; accepted 28 May 2012; published 12 Jun 2012
(C) 2012 OSA 18 June 2012 / Vol. 20,  No. 13 / OPTICS EXPRESS  14251



The phase structure is important for the analysis of the pulse shape throughout the focus. For
the paraxial case,

φ (x,y,z,ω) = k0xsinθx + k0z
(
1− 1

2 sin2θx
)−η (z)+ k0

(x− zsinθx)
2 + y2

2R(z)
. (19)

This gives the complex field for a single-frequency Gaussian beam propagating at a specific
angle to the optical axis. In an optical system that includes angular dispersion, we can obtain
the beamlet angles from raytracing.

2.5. Combining raytracing with angled Gaussian beam propagation to obtain 3-D field

To look at the structure of the beam throughout its propagation, we include in our expression
for an individual tilted Gaussian beam [Eqs. (18) and (19)] the frequency-dependence of the
angle: θx = α(ω −ω0)/ f . We then can expand spectral phase around ω0 to find the position-
dependent group delay and chirp. Note that even though this paraxial treatment of the spatial
chirp does not result in any angular dependence of the Rayleigh range, the Rayleigh range itself
depends on frequency. If the focal spot size is considered to be frequency-independent, zR ∝ ω .
However, if the beam size at the lens entrance is independent of frequency, then the focused spot
radius is inversely proportional to frequency, and zR ∝ 1/ω . To focus on the primary effects
of the spatial chirp, we hold zR constant, treating the frequency-dependence of the Rayleigh
range as a higher-order effect that is appreciable only for extremely wide bandwidth pulses.
The framework presented below can be extended in a straightforward way to the more general
cases.

Expanding to first order the spectral phase of Eq. (19) with the frequency-dependent angular
chirp, we obtain the position-dependent group delay:

φ1 (x,z) =
z
c
+ x

α ω0

c f

(
1− z

R(z)

)
+

x2

2cR(z)
. (20)

The first term is just the arrival time of the pulse, and the last term, which is present even without
spatial chirp, represents a pulse front curvature that results from the divergence of the beam
away from the focal plane. The middle term corresponds to the PFT. When Eq. (20) is evaluated
at the focus, z= 0, the PFT reduces to what we found earlier in Eq. (7). To better understand the
z−dependence of the PFT, we can simplify the Gaussian beam radius of curvature R(z) using
Eq. (17). We can also make use of the simplifications leading to Eq. (8) to obtain the more
intuitive form:

φ1 (x,z) =
z
c
+

x
w0

β τ0

(
1

1+ z2/z2
R

)
+

x2

2cR(z)
. (21)

The PFT is approximately zero far from the focus and develops within the beamlet confocal
parameter. The magnitude of the PFT is directly proportional to the dimensionless chirp rate β .

Next we can expand to second order in the spectral phase to obtain the spatial dependence of
the pulse chirp.

φ2(x,z) =

(
x

w0

τ0β
ω0

− z
zR

τ0
2β 2

4

)(
1

1+ z2/zR
2

)
. (22)

The x-dependent chirp is the extension of the result that we found for the focal plane, Eq. (9).
This term, which is small for low bandwidth pulses, decreases away from the focal plane just
as the PFT does [see Eq. (21)]. The z-dependent term in the first parenthesis is a new term that
is important for the intensity localization of the spatio-temporal focus. This term is plotted in
Fig. 2 for a value of β = 10. Even though the pulse is ideally perfectly compressed at the focal
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Fig. 2. Dependence of geometric second-order chirp (φ2) on axial position.

plane, it develops chirp at either side of the focus. This tends to increase the duration of the
pulse away from the focal plane.

The on-axis spectral chirp originates from the geometry of the beamlet wavefront evolution
through the focus. The calculated expressions of the spatio-spectral phase contain the informa-
tion on the wavefronts of the individual Gaussian beamlets. Note that this information is not
easily available in a direct Fresnel calculation. In Fig. 3 we show the evolution of the wavefronts
of several beamlets of equally-spaced frequency. These are contours of constant phase, with the
curvature of the wavefronts magnified to easier visibility. The position farthest to the left corre-
sponds to a plane near the lens, where the wavefronts overlap to share the common phase front
imparted by the lens. As the beam approaches the focus, the curvature of the individual beam-
lets increases, then flattens at the focus. Along the z-axis, there is initally no variation in the
phase with frequency, but a phase offset develops closer to the focus. From the wavefront spac-
ing, it can be seen that the variation in phase is in fact predominately parabolic in frequency,
indicating a linear frequency chirp. The pulse chirp reaches a maximum at one Rayleigh length
from the focus (see also Fig. 2). At the focus, the individual wavefronts are flat and there is
no chirp there, as the wavefronts are coincident along the z-axis. On the other side of the focal
plane, the chirp has the opposite sign. This progression of the wavefronts arises because of the
independent propagation of the individual Gaussian beamlets.

We have also calculated the third-order phase φ3(x,z), and we find that it follows the same
x- and z-dependence as φ2(x,z), but with a leading factor of 1/ω0. Therefore, if the expansion
terms are assembled into a Taylor series, the contribution of the third-order to the net phase is
smaller than that from the second-order by the factor (ω −ω0)/ω0. The geometric third-order
phase is important only for large-bandwidth pulses; it will generally add to the increase of the
pulse duration away from the focal plane.

3. The structure of space-time focused beams

The preceding analysis in the spatio-spectral domain provides a great deal of insight to the
structure of the pulse and the beam through the focus. One of the principal applications of this
technique is that the axial intensity can be localized very strongly by the space-time focusing.
To calculate the intensity, we must transform our field into the time domain. Doing so provides
further insight into the how the intensity localization is achieved.

3.1. Calculation of the spatio-temporal field

The expressions for the field in Eqs. (18) and (19), with the ω−dependence of the beamlet
angle θx depend in a non-trivial way on ω . The direct Fourier transform cannot be calcu-
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Fig. 3. Evolution of beam wavefronts from a point relatively close to the lens (left side) to-
ward the focal plane at z= 0. Each colored wavefront corresponds to a particular frequency
beamlet.

lated analytically, but we can make use of the analysis above to expand the spectral phase
to second-order in the frequency difference. Provided we ignore the frequency-dependence of
the Rayleigh range, the amplitude functions are Gaussian functions, and analytic transform is
possible. In order to do so, it is important to rearrange the expression for the spectral ampli-
tude [Eq. (18)] so that the local bandwidth and center frequency is clear. We assume an input
Gaussian spectrum with 1/e amplitude half-width Δω . By expanding the frequency-dependent
angular terms in Eq. (18) and simplification, the amplitude function can be expressed in the
simple form:

A(x,y,z,ω) = A0
w0

w(z)
exp

[
−
(

x2

wx(z)
2 +

y2

w(z)2

)]
exp

[
− (ω −ωL(x,z))

2

ΔωL
2(z)

]
. (23)

The auxiliary z-dependent functions defined in this expression are best represented in terms of
the dimensionless variable ζ = z/zR. The x-dependent beam radius is defined through

wx(ζ )2 = w2
0

(
1+β 2

BAζ 2) , (24)

and the local center frequency and the local bandwidth are

ωL (x, ζ ) = ω0 +β Δω
x

w0

ζ
1+β 2

BAζ 2
. (25)

ΔωL
2(ζ ) = Δω2 ζ 2

1+β 2
BAζ 2

. (26)

Note that the local bandwidth is independent of the transverse coordinate. Although the local
pulse duration is determined both by the local bandwidth and the degree of chirp, it is instructive
to calculate the local bandwidth-limited pulse duration:

τbw (ζ ) =
2

ΔωL (ζ )
= τ0

√
1+β 2

BAζ 2

1+ζ 2 . (27)

At large distance from the focal plane, ζ � 1, we find the pulse duration is longer than the
transform-limited pulse duration by the factor βBA. Thus βBA is the pulse duration contrast that
we obtain from spatial-chirp focusing.
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To evaluate the field in the time domain, we assemble the calculated spectral amplitude and
phase components we have calculated thus far:

E (x,y,z, t) = A0
w0

w(z)exp
[
−
(

x2

wx(z)
2 +

y2

w(z)2

)
+ iφ0

]
×

FT−1
{

exp
[
− (ω−ωL(x,z))

2

ΔωL
2(z)

+ iφ2(ω −ω0)
2
]

exp [iφ1 (ω −ω0)]
}
.

(28)

Before we focus our attention on the on-axis temporal intensity, we make a comment about
the calculation of the 3-D field. Note that the local central frequency ωL is shifted away from
ω0 when x �= 0. After calculating the inverse Fourier transform, this shift in center frequency
does not affect the local pulse duration (since ΔωL is independent of x). However, it does result
in a group delay offset. This offset adds to the group delay φ1 that was calculated from the
expansion of the spectral phase around ω0. This shift affects the detailed structure of the PFT
off-axis and away from the frequency crossing plane.

For x = 0, ωL = ω0, we can use the second-order phase from Eq. (22), perform the inverse
Fourier transform. If there is no input spectral chirp, the local pulse duration reduces to

τL(ζ ) = τbw (ζ )

√
1+β 4

(
ζ

1+β 2
BAζ 2

)2

= τ0

√
1+β 4

BAζ 2

1+β 2
BAζ 2

. (29)

With an input chirp of φ2in, the local on-axis pulse duration has a considerably more compli-
cated form:

τL (ζ ,φ2in) = τbw (ζ )

√
1+

(
Δω2 1+ζ 2

1+β 2
BAζ 2

)2(
φ2in − β 2

Δω2

ζ
1+ζ 2

)2

. (30)

Note that the input chirp can compensate the geometric phase over a narrow range (see Fig. 2).
Within that range, the argument of the square root in Eq. (30) goes to unity, and the pulse
duration goes to the bandwidth-limited value at the z-position where the chirp cancellation
takes place.

3.2. Contributions to the axial localization of the temporal intensity

The analytical technique here allows for insight to the origins of the different contributions to
the axial localization for this focused spatially chirped beam (Fig. 4). In this figure, the dashed
line shows the energy fluence profile for a single Gaussian beamlet: ∝ Ein/

[
πw2 (z)

]
. The

other curves shown account for successively more of the localization contributions. The second
widest curve shows the effect of focusing at a higher numerical aperture in the spatially-chirped
direction. The beam fluence, ∝ Ein/ [πwx (z)w(z)], is lower away from the focal plane relative
the the single beamlet. In the simplest view of space-time focusing, the increase in the pulse
duration away from the focus results from the decrease of the local spectral width. The third
widest curve accounts the decrease in the local bandwidth away from the focus [Eq. (27)],
but neglects the geometric chirp. This axial intensity profile is further reduced by the geometric
spectral chirp that is present within the confocal parameter of the focus [Eq. (29)] (center curve).

When the contributions to the axial dependence of the intensity are multiplied, we can obtain
a simple expression for the axial intensity profile:

I(ζ ) = I0

√
1

(1+ζ 2)
(
1+β 4

BAζ 2
) , (31)

where I0 is the peak intensity at the focus. In the limit of no spatial chirp, βBA → 1, and the
intensity follows the Lorentzian profile of a conventionally-focused Gaussian beam.
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Fig. 4. Contributions to axial intensity localization. The outer dashed line corresponds to
the axial intensity for the non-spatially-chirped beamlet. The next line in (blue) accounts
only for the change in beam fluence that arises from spreading the beam at the lens in
the x-direction. When the on-axis spectral width is calculated, the minimum possible pulse
duration is increased away from the focus, resulting in the third curve (black, solid). The
full Fresnel calculation shows further localization resulting from the geometric chirp (red).

Equation (31) for the axial intensity assumes a perfectly-aligned optical system. There are
several degrees of freedom that must be aligned to achieve the maximal axial localization. As
noted above, input chirp (φ2in) can combine with the geometric chirp to shift the plane at which
the pulse is compressed. This feature of space-time focusing has been used to scan the focal
plane along the z-axis [2, 11]. The analysis above clearly shows that while the plane where
φ2 = 0 can be moved throughout the confocal parameter (see Fig. 2), the peak intensity and the
localization suffer because the plane of zero chirp is moved to a position where the different
frequency beamlets are not fully overlapped. (see Fig. 5(a)). The pulse duration is longer even
though there is no spectral chirp because it is limited by the local bandwidth [Eq. (27)]. The
increase in the beam area away from the wavelength crossing plane also decreases the peak
intensity. The axial tuning is illustrated in Fig. 5(a).
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Fig. 5. Variation of the axial intensity with input spectral chirp (φ2) for a beam focused
with a beam aspect ratio of βBA = 4 and a transform-limited pulse duration of 40 fs. In
both graphs, the second-order phases are φ2 = 0 (red), φ2 = 2000 fs2 (blue), φ2 = 4000 fs2

(green). (a) No input third-order phase. (b) Positive input φ3 = 2×105 fs3

Figure 5(b) shows the variation of the axial intensity profile with input second-order phase
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for the case where there is strong additional third-order phase. Such a situation can arise in the
alignment of a single-pass compressor with incident angle that is imperfectly optimized. For
all of the curves, the pulse duration is longer because of the third-order phase, and it is seen
that the addition of second-order phase does not further change the pulse duration significantly.
The position of the peak intensity does not move as much as when the third-order phase is
not present. A pulse with strong third-order has an Airy shape, which is known to have little
sensitivity to second-order dispersive phase [23]. In an experimental configuration, lack of axial
tuning of the high intensity position can be a sign of excessive third-order phase.

4. Discussion: scaling analysis of space-time focused beams

The depth of focus of the spatially-chirped focus can be defined as the full width at half maxi-
mum (FWHM) of the axial profile in Eq. (31). We can find a closed-form solution for the depth
of focus, ζDOF :

ζDOF = 2

√√√√−1−β 4
BA+
√

1+14β 4
BA+β 8

BA

2β 4
BA

. (32)

The value of the depth of focus for the spatially-chirped beam, relative to the depth of focus
of the non-spatially-chirped focused beamlet is plotted as a dotted line in Fig. 6. A factor of
10 decrease in ζDOF is obtained at a beam aspect ratio of βBA ≈ 4.1. It is important to ob-
serve that the beam aspect ratio is the sole parameter that controls the decrease of the depth of
focus over the Gaussian beam limit. Therefore, the same localization can be obtained with ps-
duration pulses as with fs pulses, provided the optical system produces sufficient spatial chirp
for the desired value of βBA. Coherence is required, however: a broadband ns Q-switched pulse
would not be increased by spreading the spectrum out spatially. The geometric spectral chirp
effects described above would not lengthen the pulse duration away from the focus because
such lengthening requires spectral phase coherence.

Relative DOF 
Relative B-integral 

DOF for full aperture beam 

Beam aspect ratio, βBA 

Relative DOF 

Relative B-integral 

Beam aspect ratio, βBA 

Fig. 6. Depth of focus (DOF) and B-integral through focus as a function of the beam aspect
ratio, for linear (a) and log (b). Dashed curve in (a) indicates the effective decrease in the
DOF for a conventional Gaussian beam focus for a beam that uses the full aperture of the
lens.

In principle, it is possible to obtain localization by focusing a multimode beam. The quantity
M2 is often used to characterize aberrated beams [24]. As the multimode content increases, the
value of M2 increases, and for a given spot size, the effective Rayleigh range is decreased by the
M2 factor. Therefore the effective depth of focus can be reduced by creating a beam with a wide
distribution of transverse spatial modes. However, such a beam would require each mode must
be correctly phased with all the others at the focus. Conventional ways to produce multimode
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beams, with random phase plates or by coupling the beam into a multimode fiber, would leave
each mode with a different phase, effectively reducing the coherence of the beam.

When the spatially-chirped beam enters the final focusing optic, the elliptical beam occupies
a larger aperture than the non-spatially-chirped beam by the factor ζDOF . It is instructive to
compare the depth of focus that can be attained by filling the aperture of the optic with a larger
beam. If one increases the beam size entering a lens of a fixed focal length by a factor n, the spot
size decreases by 1/n and the confocal parameter increases by n2. Since the spatially-chirped
beam requires a larger aperture than the beamlet by the factor βBA, we can plot as a reference the
curve 1/β 2

BA to represent the relative decrease in the depth of focus by filling the lens. This line,
shown as a dashed line in Fig. 6(a), is always below that of the spatially-chirped focus (dotted
line); in fact, in the limit of large spatial chirp, the ratio approaches

√
3. Although localization

using spatial chirp is not as great as it is for a conventionally-focused beam that fills the lens,
the focal spot is larger when the spatial chirp is used. In micromachining, for example, a larger
spot allows much more rapid machining. As we will see below, the spatial chirp focus also
allows the focal volume to approach a spherical shape.

One of the most important features of space-time focusing is that the intensity is much lower
than usual as the beam approaches the focal plane. This leads to a dramatic reduction in self-
focusing, allowing much higher intensity to be reached in a bulk material [5]. Self-focusing
arises from the accumulation of nonlinear phase φNL =

∫
k0n2I (z)dz through the medium with

nonlinear refractive index, n2 (e.g. see [25]). To evaluate how the spatial chirp affects this
nonlinear interaction, we can calculate φNL by integrating over the complete unperturbed axial
intensity profile for the cases with and without spatial chirp. In Figs. 6(a) and 6(b), the ratio of
these two integrals, the relative B-integral is shown as a solid curve. To reduce the B-integral
by a factor of 10, for example, we can use βBA ≈ 5.5. It is well known that for a Gaussian beam
the threshold for self-focusing depends on the peak power, not the peak intensity: in the tight-
focusing limit, where the nonlinear medium extends beyond the Rayleigh range to either side of
the focal plane, a smaller focal spot leads to higher intensity but also a shorter interaction length
(2zR). With space-time focusing, it is possible to decrease the interaction length (the depth of
focus, Eq. (32)), which leads to an increased threshold for self-focusing. For the same reason,
space-time focusing can reduce the effects of ionization defocusing.
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Fig. 7. Calculation of the spatial chirp dependence of aspect ratio of the focal volume
as the ratio of the longitudinal intensity FWHM to the transverse intensity FWHM for
two different focal spot sizes. Dashed line indicates the point where the focal volume is
approximately spherical.

Since the degree of localization increases with the spatial chirp aspect ratio, it is possible to
control the shape of the focal volume. He et al. [7,26] have fabricated waveguides in glass with
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a circular cross-section using this technique. For a conventional Gaussian beam, we may define
the aspect ratio of the focal volume ρG as the confocal parameter divided by the FWHM of the
focal spot:

ρG =
πw0√

ln(2)/2λ
, (33)

where n is the refractive index in the medium. It is difficult to obtain ρG = 1 with conventional
focusing. Even if the beam is focused at F/1, ρG = 3.4. Figure 7 shows the focal volume aspect
ratio for the spatial chirp focusing case. The beam aspect ratio for which ρST = 1 is at the value
of βBA where the curves cross the dotted line. Creating a spherical focal volume requires larger
spatial chirp as the spot size is increased. For w0 = 10μm, ρST = 1 at βBA ≈ 11 (solid line); for
w0 = 20μm a beam aspect ratio of βBA ≈ 15 is required (dashed line).

5. Summary

Using the concept of extending Gaussian beam propagation to include a frequency-dependent
angle of propagation, we have developed an intuitive theory for linear spatio-temporal prop-
agation of ultrafast pulses. The approach allows us to treat each frequency component as its
own Gaussian beamlet. The axis of the beamlet can be traced through an optical system ge-
ometrically, either using ABCD matrices or by using a raytracing program. The evolution of
the Gaussian beamlet can also be calculated separately using the ABCD method. Finally, the
angle and displacement information of the beamlet axis from the ray trace is incorporated into
the phase and amplitude structure of the spatio-spectral field. As shown above, much infor-
mation about the pulse front tilt and the frequency chirp of the pulse can be obtained from
the spatio-spectral field. Fourier transformation to the time domain gives the intensity profiles.
This allows us to understand the contributions to the axial localization of the intensity in the
ideal space-time focusing configuration in which the beamlet waist position and the frequency
crossing plane coincide. In later work, we will explore more general cases and spatial chirp
systems using this double ABCD approach. Nonlinear interactions such as harmonic- [19] and
sum-frequency generation [27] have been investigated. We are currently investigating the non-
linear propagation effects such as self-focusing and ionization defocusing of space-time focused
beams.
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