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Abstract: This paper reports the experimental and theoretical investigation 

of the Talbot effect beyond the paraxial limit at optical frequencies. Au hole 

array films with periodicity
0

a comparable to the wavelength of coherent 

illumination λ were used to study the non-paraxial Talbot effect. Significant 

differences from the paraxial (classical) Talbot effect were observed. 

Depending on the ratio of 
0

/a λ , the interference pattern in the direction 

perpendicular to the hole array was not necessarily periodic, and the self-

image distances deviated from the paraxial Talbot distances. Defects within 

the hole array film or above the film were healed in the self-images as the 

light propagated from the surface. 
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The Talbot effect is a ubiquitous, lensless self-imaging characteristic of periodic arrays 

[1]encountered in a range of research areas from atom optics [2] plasmonics [3].Under 

coherent illumination with wavelength λ at normal incidence, an array with periodicity 
0

a will 

form self-images at integer multiples of the Talbot distance 2

0
2 /

T
z a λ=  [4]. In addition to 

self-images, patterns with periodicity of 
0

/a q can be observed at fractional Talbot distances

/ 2
T

pz q , where p and q are relative prime numbers [5]. Self-images and fractional images 

have been used in various applications such as lithography [6], interferometry [7], optical 

trapping [8], and array illumination [9]. At Talbot distances, self-images of the periodic array 

can be formed even in the presence of defects; this property has been used to generate defect-

free self-images from a defective mask [10]. 

The self-imaging properties of the Talbot effect, however, are only valid for periodic 

objects under the paraxial approximation (
0

/a λ >>1) [11]. Previous work showed that lateral 

periodicity was not necessary for achieving longitudinal self-imaging, and certain non-

periodic structures could generate self-images [12].Beyond the paraxial limit, the periodicity 

in the x-y plane is not sufficient to ensure self-imaging in the longitudinal direction. Many 

applications based on the paraxial Talbot effect, therefore, cannot be extended to nanoscale 

structures with periodicities comparable to the wavelength of the incident light. Theoretical 

work has focused on the light patterns from 1D gratings beyond the paraxial limit (the non-

paraxial Talbot effect) [5, 13, 14], and some differences in the light patterns were predicted. 

For example, exact self-images only exist for certain ratios of 
0

/a λ , and these self-images 

are expected to appear at positions smaller than Talbot distances. These predicted results, 

however, have not been confirmed experimentally because of challenges in fabricating large-

scale periodic patterns that satisfy
0

~a λ  and difficulties in imaging the 3D light structure 

[15]. Recently, the non-paraxial Talbot effect was observed from surface plasmons launched 

by periodic groves on an Au film [16]; however, the fast damping of surface plasmons limited 

the study to only the first Talbot distance. 

Here we report an experimental and theoretical investigation of the Talbot effect beyond 

the paraxial limit. We measured and calculated the interference patterns formed by coherent 

light through hole arrays with
0

a  on the same order as λ. Different from the paraxial Talbot 

effect, the self-images were not periodic in the longitudinal direction. In addition, the 

measured self-image distance
R

z  was different from the Talbot distance
T

z . Our theoretical 

analysis showed the deviation of
R

z  from
T

z was related to the in-phase condition and strongly 

depended on the ratio 
0

/a λ . The healing property of the Talbot effect was still observed in 

the non-paraxial regime. Because of constructive interference of plane waves transmitted 

through the periodic hole array, defect-free patterns could be observed at 
R

z even in the 

presence of defects in the optical path. 

Scalar wave theory is traditionally used for the Talbot effect in the paraxial limit, where 

the light pattern through a periodic hole array at z = 0 (the initial structure) can be represented 

by a scalar wave ψ and Fourier expanded as a sum of plane waves in the direction of light 

propagation (z>0) [17] 

 1 2 1 2

1 21 2

,
( , ) ( ) exp[ ]

m m m m

eff m m x y zm m
r A ik x ik y ik zψ λ ω

∞ ∞

=−∞ =−∞
= × + +∑ ∑  (1) 

r = (x, y, z) is the spatial position, λeff = λ/ n is the effective wavelength in the medium with 

refractive index n,
1 2

( )m mA ω  is the complex amplitude of the plane wave, and 
1

m
 
and 

2
m are 
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integers. The wave vector 1 2 1 2 1 2, ,

1 0 2 0
( , , ) (2 / ,2 / , )m m m m m m

x y z z
k k k m a m a kπ π= =k satisfies 

2 /
eff

π λ=k and 1 2, 0m m

z
k > . 

In the paraxial limit (a0 >>λeff), Taylor expansion of kz results in 

 1 2 1 2
2, 2 2 1/ 2 2 2 2 2

1 2 0( ) 2 [1 ( ) / 2 ] /
m m m m

z x y eff eff
k k k k m m aπ λ λ= − − ≈ − +  (2) 

If this approximation is applied to Eq. (1), the following relation can be derived 

 ( , , , ) exp[ 2 / ] ( , , , )
T eff T eff eff

x y z sz i sz x y zψ λ π λ ψ λ+ =  (3) 

where 
2

0
2 /

T eff
z a λ=  is the Talbot distance and s is an integer. Thus, exact self-images will be 

observed at integer multiples of 
T

z because the intensities satisfy 

 
2

( , , , ) ( , , , ) ( , , , )T eff eff effI x y z sz I x y z x y zλ λ ψ λ+ = =  

Beyond the paraxial limit, however, when 
0

/
eff

a λ  approaches unity, the Taylor expansion 

in Eq. (2) is not valid. The light patterns can still be calculated based on the plane wave 

summation, but the approximation about kz can no longer be used. To calculate the accurate 

phase change of the propagating plane waves (the exp[ ]
z

ik z  term in Eq. (1)), we consider kz 

independently for each 
1 2

( , )m m plane wave beyond the paraxial limit. Since kz is imaginary 

for evanescent waves with 
2 2 2(2 / )
x y eff

k k π λ+ > , we therefore simplified the calculation of 

light patterns in the far field by neglecting the exponentially decaying evanescent waves. 

Thus, only the propagating plane waves, graphically depicted as points with coordinates 

1 2
( , )m m inside the circle with radius

0
/

eff
a λ  in k space (Figs. 1(A)–1(B)), are considered. In 

addition, the condition for achieving exact self-images requires all the plane waves to be in 

phase at the same distance. If the center frequency 0,0(0,0, )
z

k is chosen as the reference, this 

condition can be written as: 

 1 2, 0,0exp[ ] exp[ ]m m

z R z R
ik z ik z=  (4) 

for all propagating waves
1 2

( , )m m , where 
R

z  is the self-image distance. We divided the non-

paraxial Talbot effect into three different regimes based on the number of propagating waves: 

(i) 
0

/ 1
eff

a λ < , (ii) 01 / 2
eff

a λ≤ <  and (iii) 0 / 2
eff

a λ ≥ . 

In regime (i), only the center spatial frequency point in k space can propagate to the far 

field. Since there are no other plane waves inside the circle
0

/
eff

a λ to interfere with this center 

wave, no structured light pattern is observed. In regime (ii), four nearest neighbors are 

considered when calculating the light pattern in addition to the center spatial frequency 

(Fig. 1(A)).Because the four nearest neighbors have the same kz component, the self-image 

distance can be easily derived from Eq. (4): 

 ( )
2

0/ (1 1 / )
R eff eff

z aλ λ= − −  (5) 
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Fig. 1. Self-image distances of the non-paraxial Talbot effect are different from the classical 

Talbot distances. (A-B)Fourier space spectrum of plane waves emitting from the hole array, 

where the circle with radius a0/λeff separates the propagating waves and evanescent waves. 

Light patterns from scalar wave calculations with (C) a0/λeff = 1.230 (a0 = 600 nm, λeff = 488 

nm), (D)a0/λeff = 1.90 (a0 = 1.2 µm, λeff = 633 nm). Experimental measurement with (E) a0/λeff = 

1.230, (F)a0/λeff = 1.90. Light patterns from FDTD simulations with (G) a0/λeff = 1.230, 

(H)a0/λeff = 1.90. 

Equation (5) is similar to the self-image distances for 1D gratings with 
0

1 / 2
eff

a λ≤ <  

[13]. In regime (iii), additional plane waves with higher spatial frequencies contribute to the 

far-field light pattern (Fig. 1(B)). The increased ratio of 
0

/
eff

a λ  results in an increase in the 

number of plane waves that need to be considered in Eq. (4). 

We simulated the light patterns at the different regimes above using the scalar wave theory 

(Figs. 1(C)–1(D)). Since transmission through the hole array is not considered in this model, 

we assumed that light was uniformly transmitted through the holes and not through the film. 

In experiment, however, the transmission is enhanced by surface plasmons and depends 

strongly on the material property and geometry of the structures (Figs. 1(E)–1(F)).For a more 

accurate calculation and to compare with experiments, we carried out 3D finite difference 

time domain (FDTD) simulations (Lumerical® software package) .In the FDTD simulations 

(Figs. 1(G)–1(H)), we used plane wave illumination polarized along the x axis and a uniform 

mesh of 4 nm. Periodic boundaries were used in the x and y directions and perfectly matched 

layer (PML) was used in the z direction. The optical constants of Au were taken from Johnson 

and Christy [18].Since we are only interested in the self-image distances, we only focused on 

the light patterns on a relative intensity scale; for all figures, yellow represents the strongest 

intensity. 

To compare the light patterns in the three regimes, we used Au square hole arrays with 0a  

= 600 nm and 1200 nm, and continuous wave laser illumination λeff = 488 nm, 543 nm and 

633 nm. Large-area (>1 cm
2
) Au hole array films with film thicknesses of 130 nm and hole 

diameters of 150 nm were fabricated using the PEEL technique [19]. Homogenous 

illumination was obtained by passing the laser light, delivered by an optical fiber, through a 

collimator. The 3D light patterns generated from the hole arrays were then imaged using a 

confocal microscope (Nikon® D-Eclipse C1) with z steps of 0.1 µm. The light was collected 

through a pinhole in the confocal microscope, which removed out of focus light and improved 

the resolution of the images. 
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In regime (i) (
0

/ 1
eff

a λ < ), we tested the case
0

/ 0.948
eff

a λ =  ( 0a  = 600 nm, λeff = 633 

nm).As expected, no periodic structure was observed because there was no interference of 

plane waves (data not shown). In regime (ii) ( 01 / 2
eff

a λ≤ < ), we tested 
0

/ 1.230
eff

a λ =  

(Fig. 1(A)). The corresponding scalar wave simulation showed periodic self-images in the z 

direction (Fig. 1(C)) that agreed with experiment, where we measured the self-image 

distances to be 1.2 µm, about 20% less than the Talbot distance 
2

0
2 / 1.48

T eff
z a λ= = µm 

(Fig. 1(E)). Based on the analytical expression given by Eq. (5), the self-image distance was 

calculated to be 1.2
R

z = µm, which agreed with the measurement. The light pattern from the 

FDTD simulation also matched with our measurements (Fig. 1(G)). 

In regime (iii) ( 0 / 2
eff

a λ ≥ ), self-images satisfying I(x, y, z + zR) = I(x, y, z) can only be 

observed when the initial structure satisfies certain specific conditions [17]. Although exact 

self-images do not exist for the periodic hole arrays we used, we found that light patterns at 

certain
R

z do not deviate significantly from the initial structure. Since these differences are 

barely distinguishable from noise from experimental misalignment of the light source, we still 

designate these planes “self-image planes”. For periodic hole arrays with 
0

/ 1.9
eff

a λ =

(Fig. 1(B)), we observed three self-images within 10 µm from the film surface in the 

measurement (Fig. 1(F)): the first self-image appeared at 4 µm, the second at 7.1 µm, and the 

third at 9.6 µm. Compared to the first and the second self-images, the third self-image was of 

weaker intensity, and deviations from the initial structure were also more pronounced. The 

measurement was very different from the paraxial Talbot effect, where the Talbot distance 
2

0
2 / 4.55

T eff
z a mλ µ= =  indicates two repeats within 10 µm from the surface of the film with 

the second repeat at 2 9.1
T

z z mµ= = . We note that the measured self-images were not 

periodic in the longitudinal direction, and the fractional Talbot planes commonly observed in 

the paraxial Talbot effect were also missing. These differences can be explained by the 

breakdown of the paraxial approximation, which affects the interference patterns at both the 

Talbot planes and the fractional Talbot planes. Both scalar wave (Fig. 1(D)) and FDTD 

simulations (Fig. 1(H)) showed similar self-imaging behavior. 

 

Fig. 2. Difference between the measured first self-image distance zR and the Talbot distance zT 

is related to a0/λeff. The curves indicate the distances where the 1st, 2nd and 3rd nearest 

neighbors in k space are in phase with the center spatial frequency and approach the Talbot 

distance with increasing a0/λeff. At the self-image distances (black squares), the deviations from 

the phase matching curves are relatively small. The error bars indicate the experimental errors 

in determining the self-image distances due to the noises. 
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To understand when the self-images distances 
R

z  approach the Talbot distances
T

z , we 

measured the distance of the first self-image for a range of different ratios 
0

/
eff

a λ  and plotted 

its relative difference to 
T

z  as a function of 
0

/
eff

a λ  (Fig. 2). Our experiments showed that 
R

z  

was always smaller than 
T

z , which is consistent with the Taylor expansion theory that first 

order expansion of kz gives an upper limit estimation of the self-imaging distance. Since the 

self-images would form at distances where Eq. (4) was satisfied for all the plane waves 

simultaneously, we plotted out the solutions for each plane wave (m1, m2). As expected, exact 

self-images cannot be found because the distances where plane waves are in phase with the 

reference wave are different for different (m1, m2). At the measured first self-image distances 

(black squares), deviations from the in-phase conditions caused the light patterns to be 

different from the initial pattern. These deviations, however, are small enough that the 

differences in the light pattern are barely distinguishable from the noises in the system. At the 

Talbot distance 
T

z (green dotted line), the deviations are much more obvious; therefore, the 

light patterns at 
T

z are significantly different from the initial structure. The same analysis can 

be applied to the second and third self-images. With increasing
0

/
eff

a λ , all the phase 

matching curves converged to 
T

z . We estimate that when
0

/ 10
eff

a λ > , the non-paraxial 

Talbot effect will approach the paraxial Talbot effect. 

Besides resolving the 3D light pattern from a perfect initial structure, we investigated how 

the presence of defects would affect the transmitted light pattern. Understanding the impact of 

defects on the 3D light pattern can potentially benefit applications that rely on the Talbot 

effect, including lithography and imaging. First, we studied the influence of a 2D defect, a 

1.5-µm diameter hole, within the 0a  = 1.2µm periodic Au hole array film in regime (iii) with

0
/

eff
a λ  = 2.20. We oversaturated the intensity at the position of the defect so that the light 

pattern from the hole arrays and the defect could be measured at the same time. When focused 

to the hole array film (z = 0), the defect appeared as a bright spot approximately 1.5 µm in 

diameter (Fig. 3(A)). The presence of the defect resulted in the disappearance of several 

 

Fig. 3. 2D defects on the film were healed gradually in the self-image planes. Light patterns at 

self-image distances (A)z = 0 µm, (B)z = 4.4 µm, (C)z = 8.4 µm and (D)z = 13.1 µm. (E) the yz 

cross-section. As the light propagated in the z direction, the intensity of the defect decreased 

while the size of the defect increased. (a0 = 1.2 µm, λeff = 543 nm). 

small bright spots corresponding to the holes in the hole array film. At the first self-image 

distance, some of the missing holes began to be restored (Fig. 3(B)). At the second (Fig. 3(C)) 

and third self-image planes (Fig. 3(D)), more missing holes were reconstructed, and the 
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intensity of the defect continuously diminished. This process where defects in the initial 

structure are healed in the self-images can be seen clearly in the y-z cross-section 

(Fig. 3(E)).In the presence of the 2D defect, the hole array still generated self-images, and the 

self-image distances were not affected. Effectively, the defect showed behavior similar to a 

point source emitting spherical waves, whereas the size of the defect became larger, the 

intensity decreased in the propagation direction. Light through the defect and the periodic 

hole array appeared to evolve independently from each other. At self-image planes farther 

than 10 µm, the influence of the defect became very weak, and defect-free self-images were 

again observed. 

In addition to defects within the hole array film, we studied the influence of 3D defects 

away from the surface of the film. We used anisotropic Au pyramid particles [19] 

approximately 3 µm in diameter and embedded them in a uniform poly(dimethylsiloxane) 

(PDMS) matrix as scattering defects. The pyramids were distributed randomly 11 µm away 

from the surface of the film. At the film surface (z = 0 µm), we only observed the periodic 

hole array; the particle was not visible (Fig. 4(A)). When we focused to z = 11.2 µm 

(Fig. 4(B)), two bright spots in the light pattern were missing because of scattering by the 

pyramidal particle. The missing bright spots were restored in the self-images as the light 

propagated in the z direction, and only one bright spot was missing at the self-image plane 2.3 

µm from the particle (Fig. 4(C)). As the propagation distance increased, the periodic pattern 

was completely restored as if there were no defect in the light path (Fig. 4(D)). In the y-z 

cross-section, the self-imaging property of the periodic hole array was unchanged, and the 

influence of the particle was limited to a very local region in the longitudinal direction 

(Fig. 4(E)). 

 

Fig. 4. Defect away from the surface of the film was healed in the self-images of the hole array 

pattern. The light patterns at (A) the film surface z = 0 µm, (B) the position of the particles z = 

11.2 µm(C) the self-image planes at z = 13.5 µm and (D) the self-image planes at z = 29 µm. 

(E) yz cross-section of the 3D light pattern showed the particle had a very local influence on 

the light pattern. (a0 = 1.2 µm, λ = 543 nm, n = 1.4) 

The healing effect observed for the two types of defects can be explained based on the 

lack of constructive interference of plane waves. Defects and the periodic hole array are 

composed of plane waves with different spatial frequencies, where the periodic pattern only 

has plane waves with spatial frequencies k =  ( 1 2,

1 0 2 0
2 / , 2 / , m m

z
m a m a kπ π ).In contrast, finite-

size defects can be decomposed into plane waves with many other different spatial 

frequencies. At the self-image distances, the hole array pattern reappears because plane waves 

with 1 2,

1 0 2 0
(2 / , 2 / , )m m

z
m a m a kπ π=k are in phase and interference constructively. Most of the 
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plane waves composing the defects, however, will have large deviations from the in-phase 

condition and destructively interfere. With increased propagation distance, deviations from 

the in-phase conditions become larger, which lead to the gradual disappearance of the defects. 

In conclusion, we demonstrated the non-paraxial Talbot effect at optical frequencies. We 

found that self-images of the initial 2D periodic structure were not necessarily periodic in the 

longitudinal direction and that phase matching curves could be used to understand and predict 

changes in the non-paraxial self-image distances compared to the classical Talbot effect. 

Interestingly, the non-paraxial Talbot effect shared the same healing property as the paraxial 

Talbot effect. Defects with in the initial hole array structure as well as defects above the film 

surface were healed in the self-images of the hole array. Although this work was performed at 

optical frequencies, we anticipate our findings can be applied to other frequency ranges as 

well as other fields of physics. 
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