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Summary
A common goal of microarray and related high-throughput genomic experiments is to identify
genes that vary across biological condition. Most often this is accomplished by identifying genes
with changes in mean expression level, so called differentially expressed (DE) genes, and a
number of effective methods for identifying DE genes have been developed. Although useful,
these approaches do not accommodate other types of differential regulation. An important
example concerns differential coexpression (DC). Investigations of this class of genes are
hampered by the large cardinality of the space to be interrogated as well as by influential outliers.
As a result, existing DC approaches are often underpowered, exceedingly prone to false
discoveries, and/or computationally intractable for even a moderately large number of pairs. To
address this, an empirical Bayesian approach for identifying DC gene pairs is developed. The
approach provides a false discovery rate controlled list of significant DC gene pairs without
sacrificing power. It is applicable within a single study as well as across multiple studies.
Computations are greatly facilitated by a modification to the expectation–maximization algorithm
and a procedural heuristic. Simulations suggest that the proposed approach outperforms existing
methods in far less computational time; and case study results suggest that the approach will likely
prove to be a useful complement to current DE methods in high-throughput genomic studies.
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1. Introduction
A common goal of microarray and related high-throughput genomic experiments is to
identify genetic signatures that provide insight into understanding, diagnosing, and/or
treating disease. A multitude of effective methods have been designed for this purpose,
almost all of which focus on identifying genes or gene sets showing average expression
levels that vary across biological condition. Applications of the most effective approaches
for identifying so called differentially expressed (DE) genes or gene sets have proven useful
(for a review, see Newton et al., 2007; Barry, Nobel, and Wright, 2008; Yakovlev,

© 2011, The International Biometric Society
*kendzior@biostat.wisc.edu.

6. Supplementary Materials
Web Supplement Appendices, Tables, and Figures referenced in Sections 3 and 4 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.

NIH Public Access
Author Manuscript
Biometrics. Author manuscript; available in PMC 2012 October 29.

Published in final edited form as:
Biometrics. 2012 June ; 68(2): 455–465. doi:10.1111/j.1541-0420.2011.01688.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.biometrics.tibs.org


Klebanov, and Gaile, 2010). However, in spite of notable successes, major insights have
resulted far less frequently than expected (Pollack, 2007; Zilliox and Irizarry, 2007). This is
due to the immense complexity of most diseases, and in particular to the fact that
manifestation of disease can result from a de- or reregulation of genes that does not
significantly affect each gene’s average expression level.

An important example is given in a study of endometrial cancer (Kato et al., 2003), where
the expression of two genes known to be involved in cellular proliferation and genome
replication (Ki-67 and MCM3, respectively) demonstrated significant positive coexpression
in normal cells, but not cancer cells, suggesting a deregulation between the two genes that
potentially results in cancer development or maintenance. The identification of Ki-67 would
not have been made if only the average levels of expression had been considered, because
Ki-67 abundance did not change between the two groups. Chan et al. (2000) highlight a
similar result in a study of ovarian cancer, where no coexpression between Bcl-2 and p53
expression was found in normal ovaries, but significant negative coexpression in malignant
ovaries is evidenced. Another example concerns a study of cell cycle regulation in islet
(Keller et al., 2008), where investigators showed that p16 and a group of cyclins (genes that
control progression of cells through the cell cycle) are negatively coexpressed in lean mice,
but positively coexpressed in obese mice suggesting a reregulation of the cell cycle pathway
related to obesity. As in the other aforementioned examples, p16 and many of the cyclins
were not shown to be DE between the lean and obese mice and would have therefore been
missed had DE measures been applied in isolation. Numerous additional examples abound
further suggesting that identification of other types of differential regulation, above and
beyond DE measures, may increase one’s ability to distinguish between groups and provide
insight into their distinct etiologies (for a discussion and additional examples, see de la
Fuente, 2010). In particular, the discernment of differentially coexpressed (DC) gene pairs
from their equivalently coexpressed (EC) peers may prove useful to this end (de la Fuente,
2010). As noted in de la Fuente (2010), the term coexpression often refers to some measure
of correlation, and hereinafter we will use the term to refer specifically to Pearson’s
correlation unless otherwise noted.

The simplest methods for identifying DC gene pairs conduct pair-specific tests for selected
pairs within a condition, identify those pairs that are strongly or significantly coexpressed,
and define DC pairs as those coexpressed in one condition but not another. Approaches for
doing so both within (Watson, 2006) and across (Choi et al., 2005) experiments exist.
Although useful, these approaches sacrifice considerable power by conducting analyses
separately within condition, they do not provide probabilistic statements regarding the
likelihood that a particular pair is DC, and they cannot identify important types of DC pairs
(e.g., those showing significant coexpression in both conditions that differs in magnitude or
sign). These concerns are largely addressed by the approach of Lai et al. (2004) who propose
an extension of the traditional F-test to accommodate not only changes in means but also
correlations. The determination of exact thresholds is computationally prohibitive in their
model, and as a result they propose an approach to approximate false discovery rate (FDR),
which is shown to be conservative in most cases. Also, because the test statistic quantifies
both DE and DC, selection of a pair provides no information about whether the pair is DE,
DC, or both.

It is worth noting a few other approaches that have been developed for coexpression
analysis. The liquid association method of Li (Li, 2002) investigates changes in
coexpression among pairs of genes in a single condition conditional on the expression of
some other single gene; we note that this approach does not aspire to analyzing differential
coexpression across biological conditions. Two approaches by Hu and colleagues (Hu et al.,
2009; Hu, Qiu, and Glazko, 2010) do look for differential coexpression across biological
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conditions, by assessing DC at the gene as opposed to the gene pair level. These two
approaches highlight DC arising from different variances as well as correlations across
conditions, without separating the two sources. As our article concerns DC inference at the
gene pair level, these three methods will not be further examined.

To address a number of the limitations presented by previous methods, we here present an
empirical Bayesian approach for identifying DC gene pairs from a high-throughput
experiment measuring expression in two or more conditions within a single study or across
multiple studies. The approach provides an FDR controlled list of interesting pairs along
with pair-specific posterior probabilities that can be used to identify particular types of DC.
Section 2 details the underlying model and its assumptions with specific emphasis on
computational efficiency and meta-analysis. The simulation studies presented in Section 3
suggest an improvement in power over comparable approaches with reasonable runtimes.
Finally, case study results and a Discussion are presented in Sections 4 and 5, along with
examples highlighting ways in which the derived posterior probabilities may be used in
practice.

2. Methods
2.1 Description of the Model

Consider normalized expression levels in a study indexed by s, profiled from m genes in ns

subjects, where the ns subjects are partitioned into K conditions, each with  chips

( ). For every pair of genes, Fisher’s Z-transformation (Fisher, 1928) is applied to

sample correlations calculated within condition, , to yield , where
the pair subscript has for the moment been suppressed for simplicity of notation. As noted
by Bartlett (1993), this transformation has several advantages, including symmetry,
homogeneous and known variance, and approximate normality when moderately large

sample sizes are available. As a result, , the transformed correlation for a pair within

condition k, is assumed to arise from a normal distribution with mean  and variance .

The distribution of latent levels of correlation across pairs is also modeled in terms of
normal distributions, using the following density, which we will call ψs:

(1)

where Gs is the number of mixture components, wsg is the weight of the gth component, φ is

the univariate normal density, and μsg and  are component-specific means and variances,
respectively. This specification accommodates fluctuation in the latent levels of correlation
across pairs and allows for information sharing across pairs as well as conditions within the
study. In practice, the one-component distribution is often too simplistic to describe the data
while distributions with needlessly many components increase runtime without an
accompanying increase in performance. Therefore, we will only consider 1 ≤ Gs ≤ 3.

Of primary interest is identifying those pairs for which  differs across conditions, or, more
generally, defining the DC class. For example, when K = 2, there is a single way in which a

pair could be classified as , referred to hereinafter as a DC class. When K = 3,

there are four DC classes: ; and a DC class where ,

and  are all distinct. The number L of EC/DC classes (there is always a single EC class)
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increases with increasing K, as prescribed by the Bell exponential number (Bell, 1934); EC/
DC classes will be indexed by l = 1, …, L.

The preceding yields the following multivariate setup for a correlation vector 
in study s:

(2)

(3)

where , the K-vector μsg = (μs g, …, μsg ) contains K copies of μsg, Σs is a

K-by-K diagonal matrix with diagonal entries  (note that this is equivalent to the

vector elements arising from independent normals), and the  are (possibly singular)
matrices particular to the EC/DC class of the gene pair in question. For example, when there

are two conditions,  (EC case) and  (DC case) are, respectively, given by

Combining equations (2) and (3) gives the joint conditional distribution of ys and λs under a
specific EC/DC class l and in turn the intermediate marginal distribution of ys for that class
is obtained by integrating over λs. Because the specified model is a mixture of conjugate

quantities and hence conjugate itself, as Σs and all  are known, we get:

(4)

It is worth noting that the density of a  can be evaluated as the product
of the densities of one or more multivariate normals (MVN) with a particular covariance
structure, D + uu′, where D is a diagonal J -by-J matrix (J ≤ K) and u is a J -vector, both
containing only positive entries. This fact contributes greatly to computational efficiency,
because any particular MVN density with covariance as given above can be stated without
using determinants or inverses, via application of the matrix determinant lemma (Harville,
1997) and the Sherman–Morrison formula (Bartlett, 1951) and hence evaluated using only
linear algebra. To highlight this point (and simplify notation a bit later on) the likelihood
obtained from equation (4) is stated as

(5)

where fl refers to the appropriate mixture of products over MVN densities with covariance
structure D + uu′ for study s.
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2.2 Combining Information from Multiple Studies
Suppose that we have S studies, indexed by s. Furthermore assume that they contain
expression information pertaining to the same m genes over K conditions. For a given gene
pair, it is assumed that it follows one pattern with respect to the K conditions under
consideration; that is to say, it belongs to a particular EC/DC class l.

Let the (K×S)-vector y refer to the concatenation of the K-vectors ys in order. Given a class
l, the ys are assumed to arise from their study-specific distributions in a (conditionally)
independent manner. Under this assumption, we may take products of (5) to obtain:

(6)

Assuming the y arise from a mixture over EC/DC classes, with mixing proportions π1, …,

πL,  and defining ϑ = ({μsg }, {τsg }, {wsg }) and θ = (π1, …, πL, ϑ), the
observed likelihood is derived:

(7)

The vectors of transformed correlations, y, are assumed to arise from equation (7) in an
independent manner, conditional on the system-wide hyperparameters of θ. Although this is
obviously not true in practice, as pairs that involve common genes are not independent,
correlations among such pairs are less dependent than the genes contained in the pair, and
are therefore only strongly dependent when the genes in question are strongly correlated
(Langford, Schwertman, and Owens, 2001). As a result, this violation is less severe than that
made in many gene-specific analyses (Broet, Richardson, and Radvanyi, 2002; Kendziorski
et al., 2003; Smyth, 2005); and empirical results suggest that the violation is not severely
detrimental in practice (see Section 3).

Adding this assumption to equation (7) and liberating the suppressed gene pair subscript i =
1, …, p, where p is the number of pairs, yields

(8)

Note that when S = 1 this meta-analysis framework simplifies into a framework for DC
analysis within a single study.

2.3 Parameter Estimation
Consider the complete data likelihood for the model described above:

(9)

where each zil ∈ {0, 1} denotes whether or not the true EC/DC class of pair i is l.
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An expectation–maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) can be
used to obtain estimates of θ = (π1, …, πL, μ1, …, μS, τ1, …, τS ) from the data.
Specifically, on the tth iteration, the E-step consists of calculating the complete data
sufficient statistics {ωil } = {E[zil ]|y1, …, yp, θ(t)} for all i and l via equation (5) and Bayes
theorem, under the current value of θ, θ(t), to obtain the Q-function

(10)

We will use Ω to refer to the p-by-L matrix {ωil }.

The M-step then maximizes the Q-function for θ. In this context, maximization can be
divided into two parts as equation (10) is separable into two summands, one a function of
the mixing proportions and the other a function of ϑ. Closed-form maximizers π̂1, …, π̂L
are obtained by taking column-wise means of Ω. Closed-form solutions for the constituents
of ϑ are not available, but can be obtained numerically, subject to the constraints that ∀s, Gs
is known, τgs > 0, and Σg wsg = 1. In the current implementation, bobyqa in R/minqa is used
(Powell, 2009) for this numerical optimization.

For each study s, knowledge of Gs is essential to proper execution of the framework; good
initial estimates of ϑ are also helpful to speed convergence. Both are estimated from the data
in this empirical Bayesian framework. Although a number of methods may be used for this
purpose, we prefer the M-clust algorithm (Fraley and Raftery, 2002, 2006) as implemented
in R/mclust: When properly queried using the transformed correlations from the data as
inputs, M-clust will return good values for Gs, the {μsg }, and the {τsg }. M-clust also
returns a mixture component classification and a measure of classification uncertainty for
each datum, which can be used to estimate the wsg via averaging the uncertainty values.

Although the use of the Fisher Z-transform along with assumptions of parametric forms and
conditional independence of pairs produce likelihoods that can be quickly evaluated, there is
still a considerable computational burden for even modestly large m, as the number of pairs
is quadratic in the number of genes; the M-step is by far the most expensive in terms of
runtime. Noting this, as well as the fact that the mixing proportions take much longer to
converge than the estimates of ϑ, a modification to the standard EM is used, as detailed
below. Also provided is a heuristic which can be used to further cut runtime.

2.3.1 A special case of the two-cycle alternating expectation-conditional
maximization (TCA-ECM)—This modified EM consists of running an E-step to calculate
the Q-function, then calling the numerical optimizer to update ϑ. Then, a cycle of
calculating the E-step and maximizing to obtain estimates of the mixing proportions, π̂1, …,
π̂L, keeping the current estimate of ϑ fixed, is performed until estimates of the mixing
proportions converge. This process replaces a single iteration of the standard EM, and
repeats until convergence of θ is achieved.

In other words, one iteration of the standard EM is replaced by:

1. Calculate {ωil } given π and ϑ.
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2. Maximize Q w.r.t ϑ given the {ωil } (note that due to the separable nature of Q, the
derived argmax does not depend on π). Update the members of ϑ with their
respective components of the joint argmax.

3. Calculate {ωil } given π and this updated ϑ.

4. Maximize Q w.r.t. π given {ωil } (note that this step likewise does not depend on
ϑ). Update π with the argmax.

5. Repeat 3 and 4 until π converges

Technically speaking, this modification to the standard EM is not novel. It can be construed
as an incarnation of the TCA-ECM algorithm presented by Meng and van Dyk in 1997
(personal communication). However, it is a special case of that rather general framework
and can dramatically reduce runtimes if the following conditions hold:

1. Good initial estimates for one subset of θ may be computed using the data (and
hence estimates for this subset converge quickly during the EM), while only poor
or uninformed estimates exist for the other, and

2. The M-step is computationally cheap for the latter subset (e.g., closed-form
maximizers exist) but expensive for the former (e.g., numerical optimization is
required).

When these conditions hold, this modification to the standard EM (referred to hereinafter as
the TCA-ECM) requires fewer iterations than the standard EM, is considerably faster, and
provides the same estimates of θ, up to specified convergence and iteration tolerances
(simulations not shown; see also Meng and van Dyk, 1997). Executions of our algorithm
with only one iteration of this modification will be referred to as one-step incarnations.

2.3.2 A helpful heuristic—To further reduce runtime, one can use a random subset of the
data (e.g., 0.1% of all gene pairs) to perform computations related to ϑ, specifically while
either calling M-clust or the pertinent portion of the TCA-ECM. This heuristic is
exceedingly beneficent when the number of pairs is large, because the number of data points
p (which number in the hundreds of thousands if not millions when m > 500) is far greater
than the number of free parameters being estimated. The validity and efficacy of this
heuristic will be illustrated in Section 3.

Our approach has been implemented in an add-on extension package for the R statistical
computing language (R Development Core Team, 2009), where the most computationally
intensive portions of the code are dynamically outsourced to code written in C, to improve
runtime speed. All simulations were run on a standard DELL Xeon 5670 with 1600 Mhz and
48 GB of RAM.

3. Simulations
The proposed methodology provides a way to identify DC gene pairs, but it relies on
numerical approximation methods and it assumes conditions that are never fully satisfied in
practice (e.g., assumptions of conditional independence). To assess the methodology we
performed a small set of simulation studies. These provide some, albeit limited, insight into
the quality of parameter estimates from the TCA-ECM algorithm and associated heuristics,
potential gains in computational time, and how violations of assumptions affect inference.
Perhaps most importantly, the simulation results also provide information on error rates
related to DC inference and facilitate a comparison to related approaches.

We consider four simulations in three scenarios. The first simulation (SIM I) is designed to
assess relative performance among the modified EM algorithms when the model described
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in Section 2.1 holds. A simulated data set consists of 10,000 observations (which represent
transformed correlations) simulated in two conditions, where the normal mixture prior takes
a specified form. Five different priors are considered; their descriptions and density plots
(Web Supplement Figures 1a–e) are provided in the Web Supplement. For each form of the
prior, 20 simulated data sets are generated.

The other sets of simulations (SIMS II-A, II-B, and III) are designed to assess performance
when model assumptions are violated. A single data set in SIM II-A contains three groups of
100 genes, simulated in each of two conditions. Within each group and condition, the genes
are all correlated; genes in different groups are uncorrelated. Two covariance matrices, one
for each of two conditions, are created such that the strengths of the correlations in the first
group are not the same between conditions, but all other correlations are unchanged. SIM II-
B is identical except that the three groups now have 1000, 1000, and 2000 genes,
respectively, rather than each having 100 genes as in SIM II-A. SIM III contains two groups
of 1500 genes where DC pairs exhibit changes in sign and the majority of intergroup
correlations are not zero. Further details for the setup of SIMS II-A, II-B, and III are given
in Web Supplement Appendices A and B.

For each simulated data set in SIMS II-A, II-B, and III, Fisher Z-values were obtained from
correlations calculated using the biweight midcorrelation that was used to minimize the
effect of potential outliers (Wilcox, 1997). A single simulation consists of 200 chips, 100 in
each condition; data are drawn from a MVN distribution with mean zero and covariance as
dictated by condition. As in SIM I, 20 simulations are considered in each of these.

A gene pair is identified as DC using our approach under a soft thresholding mechanism if
the posterior probability of DC exceeds a critical value that controls the posterior expected
FDR at 5% (Berger, 1980, p. 164). A gene pair is identified as DC under a hard thresholding
mechanism if the posterior probability of DC exceeds 0.95. This threshold conservatively
controls the posterior expected FDR at 5%.

Our approach is compared to an FDR-controlled pairwise application of Box’s M-test
(Mardia, Kent, and Bibby, 1979) and to the ECF (expected conditional F) approach of Lai et
al. (2004). For the M -test, the p-values obtained from each pair of genes are converted into
q-values (Storey, 2002) and thresholded to get a list of pairs with FDR of 5%. In the ECF
approach, the distribution from which the null is drawn is data independent once the number
of subjects (microarrays) in each condition is known. Using the code from the ECF web-site
and details provided in personal communications, we simulate from this null one million
times to obtain ECF thresholds corresponding to multiple comparison adjusted p-values
ranging from p = 10−1 to 10−4, following the approach used in (Lai et al., 2004) (see Table
2).

3.1 Results
Table 1 provides timing, parameter, and deviance estimates derived from data generated
under SIM I for both the full and one-step TCA-ECM approaches. Averages across 20 data
sets are shown with standard deviations given in parentheses. There are two conditions, so
there are two EC/DC classes. The proportion of DC was set to 0.05 (π2 = 0.05; so π1 =
0.95) in these simulations. Deviance is defined here as 1000 × ||ft − fe ||2, where ft and fe are
the true and estimated densities for the distribution from which the transformed correlations
are generated. This is done to compare the estimated ϑ to the truth in situations where a
model of different complexity is deemed best for the simulated data (e.g., a two-component
fe is chosen when ft truly uses three components). The results in Table 1 indicate that the
one-step version of the TCA-ECM provides performance and accuracy that are very close to
those obtained from the full TCA-ECM in a fraction of the time. Therefore, we will not
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include the full approach in subsequent simulations where data set size is computationally
prohibitive.

Power, FDR, and runtime for the proposed approach, the ECF procedure of Lai et al. (2004)
and Box’s M -test (Mardia et al., 1979) evaluated using the data from SIM II-A are shown in
Table 2. The results suggest that the proposed approach has well-controlled FDR, with
power that is increased over that obtained from ECF for each of the thresholds considered
(including one corresponding to p = 10−1).

Given the results from SIM II-A, as well as the fact that computation in the ECF approach is
prohibitive over many simulations when p (the number of pairs) is relatively large, we only
consider our approach in SIMS II-B and III, with the one-step TCA-ECM restricted to 0.1%
of the pairs for parameter estimation. Note that for 4000 genes, this restriction still leaves ~
8000 pairs from which the relatively few parameters (there are at most eight
hyperparameters and mixing proportions) are estimated. Table 3 reports power, FDR, and
runtime for results derived from 20 runs of SIMS II-B and III for this restricted version of
the one-step TCA-ECM, suggesting that while the use of the restricted algorithm reduces
runtime considerably, it does not detrimentally impact observed FDR or power.

4. Prostate Cancer Case Study
As an application of this approach, we considered three studies of prostate cancer for which
microarray expression data were available for normal and diseased subjects. These studies
will be referred to as the Monzon, Taylor, and Roth studies, respectively. They are described
in detail in Web Supplement Appendix C. In short, each study utilized a different
Affymetrix microarray platform, and each data set is available at the Gene Expression
Omnibus (with GEO accession ids GSE6919, GSE21034, and GSE7307, respectively). The
Monzon study considers samples from 18 normal and 65 diseased prostates; Taylor
considers 29 normal and 150 diseased; Roth considers 7 normal and 17 diseased.

The three studies have 8631 genes in common, many of which are homologues within gene
families. From the 8631, we selected 5765 genes representing unique genes from the
families. For all three studies, any gene for which two or more probes existed was
represented by a single probe, which was chosen by calculating the average intensity across
all arrays within that study for all probes corresponding to that gene and then taking the
probe with the median such average. Background correction of the intensities contained in
the raw (.CEL) files was performed using Robust Multi-array Average (RMA; Bolstad et al.,
2003). Quantile normalization was not done due to issues concerning unpredictable
alterations of correlations across samples (see Discussion). Rather, chip-specific intensities
were normalized to have the same median across studies.

With condition defined by disease status (K = 2), the proposed approach was used to
identify DC gene pairs separately for all three studies and together in a meta-analysis. Over
16.6 million gene pairs were considered. As in the simulation studies, biweight
midcorrelation (Wilcox, 1997) was used prior to Fisher’s Z-transformation to minimize the
effects of outliers.

4.1 Results
When analyzing the studies individually, 14,954 and 115,279 gene pairs were declared DC
by the approach for the Monzon and Taylor studies, respectively; 408 of these pairs were in
common across the two studies. No pairs were flagged in the much smaller Roth study. We
note that lack of common identifications is often observed in studies of differential
expression due to differences in sample quality, subtle differences in sample type (assayed
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tumors can be at different stages, for example, and this information is not often available),
technical differences in sample processing, and differences in microarray platforms. Indeed,
this type of discrepancy motivated much of the work on gene set enrichment analysis
(Subramanian et al., 2005). In contrast, the meta-analysis yields 141,678 DC gene pairs,
including the 408 gene pairs identified by both Monzon and Taylor separately. In addition,
8,055 of 14,954 and 97,064 of 115,279 pairs carried over their DC identification to the meta-
analysis.

Figure 1 shows posterior probabilities of DC obtained from the Monzon and Taylor
individual analyses for all 16.6 million pairs. The color of each pair’s point corresponds to
the posterior probability of DC generated by the meta-analysis, ranging from blue (nil
evidence of DC) to red (high evidence of DC). Dashed lines indicate the 0.95 cutoffs used in
the individual analyses; those points boxed into the upper right-hand corner reflect the 408
pairs taken by both studies. Lest the reader think that Figure 1 indicates that Roth’s study did
not contribute to the meta-analysis results, consider Web Supplement Figure 2. The structure
is similar to Figure 1, except that now only those 141,678 pairs taken by the meta-analysis
are plotted (in red). Although the curve largely describes the results of Monzon and Taylor,
note the handful of points that lie far beyond the curve. These pairs are taken by the meta-
analysis due to the Roth study. For emphasis, pairs for which the posterior probability of DC
obtained from the Roth study is greater than 0.5 are circled.

Figure 2 shows two gene pairs identified by the meta-analysis as well as the separate
Monzon and Taylor analyses. The plotted points are colored by condition, with
noncancerous subjects in purple and cancerous subjects in orange. A robust regression line
(i.e., one based on only those points used internally by the biweight midcorrelation
calculation) is overlaid for each condition as a visual aid. When viewing these regression
lines as proxies for correlation, it is important to note tightness around the line as well as
slope; however, because these lines were fit using least squares, their trajectories are driven
by vertical (y-axis) deviations. Web Supplement Figure 3 similarly highlights two other
pairs chosen as DC by the meta-analysis, but neither of the individual studies. Although
there appears to be a clear DC relationship, the individual studies are underpowered (relative
to the meta-analysis) to identify these pairs as DC at an FDR of 5%.

5. Discussion
Understanding the genetic basis of disease requires identifying genes that are differentially
regulated between healthy and affected conditions. For over a decade, thousands of
investigations utilizing high-throughput expression data have focused on identifying DE
genes. Although tremendously powerful in many settings, it is becoming increasingly clear
that overlooking other types of differential regulation, such as DC, can be critically limiting
and in some cases can lead to incorrect inference (Mentzen, Floris, and de la Fuente, 2009).

The empirical Bayesian approach presented here provides a much needed method for
identifying DC pairs while controlling a specified FDR. The pair-specific posterior
probability distributions facilitate classification of each pair into its most likely EC/DC
class. The approach does not restrict DC gene pairs to those that are highly correlated in at
least one condition, it allows for the identification of DC pairs that change in magnitude but
not sign across conditions, and it does not involve tests for DE. This last point is important
because many of the best methods for normalization prior to a DE analysis change the
correlation structure between genes in a significant way and so are not optimal when
performing DC identification is of interest (Qiu et al., 2005). In other words, the most
appropriate method for normalization depends in part on whether subsequent analysis
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involves tests for DE or DC, and it is not yet clear how best to normalize measurements
prior to applying methods that aim to do both simultaneously.

Although our approach does not involve identification of DE genes, the hierarchical
framework presented here is conceptually similar to our previous work, which proposed a
log-normal normal hierarchical model for identifying DE genes (Kendziorski et al., 2003). A
main difference is that here we introduce a more flexible prior that accommodates the
structure of transformed correlations observed in practice. More importantly, the normal
observation component is used here to describe Fisher Z-transformed correlations calculated
from gene pairs rather than log-transformed expression from individual genes as in a DE
analysis. We note that the Z-transformation is required as raw, nontransformed correlations
do not exhibit the desired variance properties described by Bartlett (1993) and assumed by
our model; however, care must be taken in postprocessing when correlations are very large
in magnitude as the Z-transformation is exceedingly nonlinear as raw correlations approach
−1 or 1. In addition to providing a more flexible model that can accommodate the
distribution of coexpressions observed in practice, these differences have important
implications computationally. In particular, estimation of hyperparameters via the EM
algorithm as previously described becomes arduous in studies of coexpression even when
the number of genes is modest (because all pairs are considered). To address this, we have
proposed a modification to the EM algorithm referred to as the TCA-ECM along with a
heuristic that provides reliable parameter estimates in substantially reduced computing time.
As the conditions specified in Section 2.3.1 are not specific to this application, the TCA-
ECM as implemented here should prove advantageous in other more general mixture model
settings where the conditions hold.

As with any modeling framework, the proposed approach makes a number of assumptions
that should be checked in practice. A main one is that transformed correlations can be well
approximated by a normal mixture; our code provides such a diagnostic. The biweight
midcorrelation or Spearman’s correlation provide estimates that are largely robust to
outliers; and the biweight midcorrelation was used here as it has been shown to be superior
to Spearman’s correlation in many regards (Wilcox, 1997). A second assumption concerns
conditional independence of the correlations (equation (8)). The simulation study suggests
that this violation results in slight increases in FDR with little change in power. Further
work is required to more completely assess the impact on inference when the model
assumptions are violated.

A few notes on computational limitations: Because our approach is making probabilistic
statements about all (m choose 2) gene pairs, it is not suited for direct applications to
extremely large numbers of genes, such as whole-genome analyses (~20,000 genes leading
to ~200M gene pairs). Even in analyses where the number of genes is not this big, some
prefiltering of genes is usually beneficent, such as filtering genes with very low (~1–2 on the
log2 scale; Irizarry et al., 2003) or constant expression. Although such filtering will probably
change the overall underlying distribution of correlations across the system, this will not
adversely affect the ability of our approach to properly control FDR as long as the
distribution can be approximated by our flexible prior; this is something that can be assessed
via diagnostics, as in Web Supplement Figure 4.

Although the proposed methodology does not make use of (and is hence not constrained by)
previously defined sets of genes, the pair-specific posterior probabilities of DC provided by
the approach can augment an analysis that has identified a group of genes as interesting a
priori. The upper panel of Figure 3 shows six genes identified in Gorlov et al. (2009) as
being individually significant in the transition from normal prostate to localized prostate
cancer. No information is provided in Gorlov et al. (2009) on the relationships among the
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genes, but as one can see in Figure 3, there are a number of interesting features among the
pairs. Notably, SRM appears to be a DC hub within this gene set.

It may also be of interest to construct groups of genes strongly DC with a gene of interest.
Such a gene could be identified a priori or could be chosen from a list rank ordered by
overall DC. Take, for instance, PARM1. PARM1 is believed to play a role in prostate cancer
progression, as it is thought to enable certain cells in the prostate to resist apoptosis (The
Human Gene Compendium, 2011). Additionally, it is in the top 20 genes when one rank
orders the genes by their upper 0.00001 quantile of meta-analysis posterior probabilities of
DC, across all m − 1 pairs involving themselves. The lower panel of Figure 3 shows 12
genes greedily chosen to form a DC subnetwork, using PARM1 as a seed. Specifically, each
gene was added sequentially into the subnetwork by virtue of having the highest average
meta-analysis posterior probability of DC with respect to pairs involving genes already in
the subnetwork. The result is a novel subnetwork of genes that exhibits strong DC patterns
among its members. The network shows strong correlation among members in the
noncancerous condition that is lost when cancer is present, suggesting a deregulation among
members. A number of prostate and/or cancer related genes are identified. Perhaps most
interesting is TP53TG1, which has been shown to play an important role in signaling of
TP53, a well-known tumor-suppressor gene (Takei et al., 1998).

In summary, it is becoming increasingly clear that important types of differential regulation
are missed by traditional tests for DE genes; DC measures are one such type. The proposed
approach is computationally efficient and should prove to be a useful complement to a
traditional DE analysis. However, unlike most DE methods, the approach utilizes
correlations as opposed to gene-specific expression measures, and as a result it is directly
applicable to other types of high-throughput studies where correlations are of some interest.
Integrating multiple types of high-throughput studies at once requires extending the
framework. Current efforts in this direction are underway.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Shown are the posterior probabilities of differential coexpression obtained from all 16.6
million gene pairs in the Monzon and Taylor individual analyses. Their color corresponds to
the meta-analysis evidence; see the color bar. Dashed lines indicate the 0.95 cutoffs used in
the individual analyses; those points boxed into the upper right-hand corner reflect the 408
pairs taken by both studies. This figure appears in color in the electronic version of this
article.
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Figure 2.
Two gene pairs deemed DC by Monzon, Taylor and the meta-analysis. The processed
expression values for ACAT2~TP53TG1 are plotted using data from (a) Monzon and (b)
Taylor in the first two plots; ALOX15B~NPY is similarly depicted in (c) and (d). Colors
and shapes indicate condition; noncancerous subjects are indicated by dots, cancerous
subjects by triangles. A robust regression line (see Methods) is superimposed for each
condition (cancerous is dashed). These figures appear in color in the electronic version of
this article.
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Figure 3.
In the upper panels, a graphical depiction of relationships within and across conditions for a
small pathway related to prostate cancer identified by a recent paper (Gorlov et al., 2009) is
shown. The two networks in (a) and (b) show biweight midcorrelations observed among
these genes within this pathway in noncancerous and cancerous subjects, respectively, using
the Monzon data. In the lower panels, relationships within and across conditions for a
network of 12 genes greedily built up from a seed of PARM1 are shown, based on meta-
analysis posterior probabilities of DC (but again illustrated using the Monzon data for (c)
noncancerous and (d) cancerous subjects). In both sets of panels, deepness of color indicates
strength of correlation, where correlations of magnitude 0.5 or greater receive the deepest
hue; see the color bar. These figures appear in color in the electronic version of this article.
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Table 2

SIM II-A

Approach Obs. FDR Obs. power Time*

1-step TCA-ECM (soft threshold) 0.054 (0.021) 0.952 (0.099) 549(195)

1-step TCA-ECM (hard threshold) 0.0004 (0.0003) 0.869 (0.162) 549(195)

ECF w/p = 10−1 0.277 (0.028) 0.932 (0.064) 134+(1)

ECF w/p = 10−2 0.037 (0.012) 0.718 (0.141) 134+(1)

ECF w/p = 10−3 0.006 (0.004) 0.452 (0.154) 134+(1)

ECF w/p = 5 × 10−3 0.004 (0.003) 0.381 (0.145) 134+(1)

ECF w/p = 10−4 0.001 (0.001) 0.240 (0.116) 134+(1)

Box’s M -test 0.084 (0.035) 0.856 (0.067) 27(1)

Average FDR and power from the proposed approach with hyperparameters estimated using the one-step versions of the TCA-ECM under soft and
hard thresholding. Values are means calculated over 20 simulated data sets; standard deviations are shown in parentheses. Results from the ECF
approach of Lai et al. (2004) and Box’s M -test Mardia et al. (1979) are also shown. Computational time is given in seconds. Should the reader
desire them, means and standard deviations for the observed false and true positives for SIM II-A can be found in Web Supplement Table 1.

*
Times for the ECF results do not include the runtime required for the simulation of the ECF null, which depends linearly on the number of null

simulations. When using one million null simulations (as was the case here) this adds an additional 795 seconds to the ECF’s runtime.
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Table 3

SIM II-B and SIM III

Approach FDR Power Time

SIM II-B

 1-step TCA-ECM (soft threshold; 0.1% pairs) 0.058 (0.015) 0.985 (0.011) 3734 (362)

 1-step TCA-ECM (hard threshold; 0.1% pairs) 0.0006 (0.0003) 0.913 (0.049) 3734 (362)

SIM III

 1-step TCA-ECM (soft threshold; 0.1% pairs) 0.122 (0.034) 0.975 (0.022) 3086 (195)

 1-step TCA-ECM (hard threshold; 0.1% pairs) 0.008 (0.007) 0.903 (0.055) 3086 (195)

Average FDR and power from the proposed approach in SIMS II-B and III with hyperparameters estimated using the one-step version of the TCA-
ECM under soft and hard thresholding and the subset heuristic with 0.1% of pairs. Values are means calculated over 20 simulated data sets;
standard deviations are shown in parentheses. Computational time is given in seconds.
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