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Cancer control research spans “basic and applied research in the 
behavioral, social, and population sciences that, independently, or 
in combination with biomedical approaches, reduces cancer risk, 
incidence, morbidity, and mortality and improves quality of life” 
(1). This dynamic and complex field includes genetic, behavioral 
and environmental risk assessments, primary and secondary pre-
vention strategies, and interventions to improve diagnosis, treat-
ment, surveillance for recurrence, and end-of-life care (2). Outcomes 
at each of these diverse phases of the cancer care continuum are 
affected by influences at multiple socioecological and biological 
levels (Figure 1). Biological levels refer to “below the skin” genetic 
and cellular processes such as mutations that increase risk of  
disease, damage to DNA repair mechanisms arising from environ-
mental exposures that predispose to cancer, or biomarkers of 
tumors that affect response to therapy and outcomes (4).

Interventions to improve cancer-related health outcomes may 
include such varied and complex efforts as national, state, and 
community-wide policies; interventions directed at the behavior of 
health-care organizations and providers, individual patients, or the 
general public; or efforts to disseminate molecularly-targeted diag-
nostic and therapeutic advances (eg, oncotype DX use, BRCA 1 
and 2 genetic testing for breast and ovarian cancer susceptibility or 
herceptin therapy). Most of these cancer control interventions 
estimate the impact of outcomes of a specific intervention on a 
narrow outcome in a well-defined population. However, from a 
policy and planning perspective, we often need to estimate the 
effects of interventions, or combinations of multiple interventions 
on overall population cancer incidence or mortality, given the 
effects of interventions at multiple levels.

In these situations, computational modeling is a valuable tool 
for integrating complex data on multiple interventions targeted at 
different biological and socioecological levels while estimating  
net effects on the population. Computational models (5–7) are 

computer-based representations of real-world systems that use 
mathematics, rules, and logic in combination with observed data to 
portray cancer and the dynamic multifaceted influences of cancer 
processes over the lifetime of the organism or system. Cancer is an 
optimal disease for applying computational modeling because mul-
tilevel influences affect the onset, progression, and outcomes of the 
disease and result in the need for complex intervention strategies, 
especially those that bridge “above the skin” and “below the skin” 
influences (3,8,9).

Models are useful in cancer control research to explicitly 
describe interrelationships between factors across levels, estimate 
the impact of uncertainty, identify high-yield intervention points, 
extend the time horizon of clinical trials, project results from an 
experimental setting to the whole population, and compare alter-
native “what if” multilevel strategies in a “virtual” laboratory (10–14). 
Modeling is especially valuable when real-world experiments are 
impractical for pragmatic, theoretical, or ethical reasons.

The purpose of this chapter is to provide an overview of com-
putational modeling and illustrate its applications in four areas of 
cancer control: tobacco use, colorectal cancer screening, cervical 
cancer screening, and racial disparities in access to breast cancer 
care. We then suggest ways these models can be broadened to 
encompass more multilevel variables and identify some of the 
challenges to future progress in this area.

Overview of Computational Modeling
Computational models vary along several independent dimensions. 
Briefly, decision tree models (15) represent chance events and deci-
sions over time with each path through the tree representing one 
possible sequence of events, each with its associated probability 
and outcome, such as life expectancy. State-transition models 
allocate and reallocate members or segments of a population into 
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one of several categories or health states over time (eg, cancer 
stages, recurrences) and are more efficient in capturing recurring 
events than are decision trees. These models may be based on 
“microsimulations” (16), which use the individual (eg, cells, persons, 
or families) as the unit to simulate large aggregates or populations 
of these individuals or “macrosimulations” (17). The macro approach 
uses explanatory variables that are measured at the population level, 
such as national smoking quit rates for the United States (18).

Transitions between states represented in the models occur with 
specified probabilities and can depend on age, race, risk group, or 
other population characteristics. Mathematical computation is used 
to estimate the numbers of individuals in a given state at any point 
in time. Markov models (19,20) are one type of state-transition  
model that require a simplifying assumption that the probability of 
being in one state does not depend on the prior state, a situation 
that does not often occur in biological systems. Other assumptions 
can of course be made about transition probabilities over time.

All models include individuals, subgroups, or populations that 
are relevant to the research question. Computational models then 
project future outcomes for these categories. Referent groups  
can be constituted using two different methods, each providing a 
different answer to a given question (21). The first method, known 
as longitudinal modeling, calculates outcomes for hypothetical 
typical individuals or cohorts (eg, women aged 40 years) and  
follows them over time to evaluate what the outcomes would be 
under two or more competing scenarios. This approach is most 
typically used in decision trees where a single cohort is followed to 
assess very specific clinical outcomes. The second method, known 
as cross-sectional modeling, calculates the health outcomes of an 
entire cross section of the population (representing all relevant 
birth cohorts) for an observed time horizon, typically until death.

These models are well suited for estimating the impact of 
changes in the population along multiple levels, including changes 
in risk factors (such as hormone replacement therapy use), behavior, 
policies, or new technology on trends in incidence and mortality 
(21–24). Such models are used by the Cancer Intervention 
Surveillance Network (CISNET). CISNET is a National Cancer 
Institute (NCI)–funded research collaborative consisting of inves-
tigator groups working on computational models for lung, pros-
tate, colorectal, and breast cancer that have been used extensively 
to evaluate the impact of policy guidelines on population out-
comes. Other research teams also have been building models to 
capture the interactions of different diseases with common risk 
factors (25,26) or impacts on mortality (27,28).

Computational modeling has two predominant analytic 
approaches: deterministic and stochastic. Deterministic models 
(29) calculate the probabilities as an average number of observed 
health events and are most suited to relatively simple models 
involving limited combinations of events and decisions. In stochastic 
models (30,31), such as discrete event models or Monte Carlo 
simulation, probabilities for each individual in the cohort over 
time are simulated using computer-generated random numbers to 
represent chance events or uncertain model parameters, allowing 
investigators to generate a representative sample of possible com-
binations based on observed population distributions of a given 
parameter. This stochastic process yields a confidence interval 
around the point estimate, capturing uncertainty in model parame-
ters. Bayesian approaches also can be used to estimate distributions 
of parameters in a population using the prior distributions of known 
events. The BRCA-pro model for estimating risk of having a 
genetic mutation that places individuals at risk of cancer is one 
example of a Bayesian approach (32–34).

Figure 1. Multiscale and multilevel influ-
ences in cancer prevention and control 
(3).
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Thus, models can differ along several dimensions in their 
approach to a specific question, with each approach providing 
answers to different questions about varying levels of influence on 
cancer outcomes. The appropriate model depends upon the 
research question and intended uses of the results. In the next sec-
tions, we illustrate how four groups of investigators using validated 
well-established computational models have begun to address 
multilevel influences in cancer control.

Illustrative Cancer Control Models
We illustrate four models that employ stochastic simulations 
(Table 1). Each model has both unique and shared features. The 
SimSmoke model, for example, tries to model a large number of 
policies, explicitly considers their dynamic effects, and examines the 
synergies between policies on tobacco control, whereas the colorectal 
model orders the cost-effectiveness of different screening policies 
as their effects vary by age and gender. Table 2 provides a summary 
of the shared or generic parameters often used in these four models, 
as well as examples of factors from various socioecological and bio-
logical levels likely to affect each parameter.

Model 1: SimSmoke
SimSmoke is a computational model developed within CISNET to 
evaluate competing policies and the feasibility of meeting Healthy 
People 2010 tobacco use targets (35–39). The model simulates 

population-level tobacco use in the base case (status quo), under 
five different policy scenarios where interventions are implemented 
individually and under a variety of combination scenarios (Table 3).  
Simulated scenarios span multiple socioecological levels, including: 
patient/provider, organization/practice setting, local community 
environment, state health policy environment, and national policy 
environment. Specific policy interventions considered include 
increased tobacco taxes, smoke-free indoor air laws, mass media/
educational initiatives, and enhanced cessation treatment support.

What Does the Model Look Like?  SimSmoke is a state-transition 
model. The population is split into a set of mutually exclusive 
states based on age and smoking status (never smokers, smokers, 
and former smokers). Individuals can transition from one smoking 
state to another over time, for example, from former smokers to 
current smokers after relapsing. Movement through the simulated 
population occurs through birth or immigration, aging, smoking 
initiation, smoking cessation, relapse, or death (due to smoking  
or not). The model tracks—or counts—these events over time, 
and interventions are simulated by specifying their impact on 
these events.

To illustrate how interventions are operationalized, consider 
“enhanced cessation support” (Table 3), which includes three spe-
cific policies: expanded coverage of cessation treatment and provider 
reimbursement, mandates of adequately-funded telephone quitlines, 
and support for health-care system-level change to “prompt, guide, 

Table 1. Illustrative simulation models addressing multilevel challenges in cancer care research*

Multilevel challenge in 
cancer care research

Illustrative simulation  
model(s) Objective

Intervention levels/scales 
under study

Potential for  
multilevel/multiscale 

adaptation

Effective cancer control  
  requires interventions  
  at multiple ecological  
  levels

SimSmoke To inform tobacco-control  
  policy decision making  
  in the United States  
  and internationally

National and state policies
Community provider  
  reimbursement
Patient education

Addresses >2 ecological levels
Needs to adapt to include  
  cellular and genetic levels  
  (eg, genotypes for nicotine  
  addiction)

New technologies CISNET Colorectal  
  Cancer Screening

To assess the effectiveness  
  and cost-effectiveness of  
  screening for colorectal  
  cancer with a variety of  
  screening tests

Patient adherence to  
  screening
Cellular growth of  
  adenomas

Extend to examine smaller  
  scales, such as genetic  
  basis of adenoma risk and  
  growth
Extend to encompass other  
  ecological levels affecting  
  patient adherence to  
  screening at the provider,  
  practice, or policy level

For each cancer site,  
  disease is  
  heterogeneous

Goldie et al. Cervical  
  Cancer Screening  
  Strategies

To examine alternative  
  cervical cancer  
  prevention strategies  
  in the context of HIV

Patient adherence to  
  screening and HIV  
  treatment regimens
Cellular processes of  
  HPV infection

Extend to include other  
  ecological levels, including  
  state policies on HIV  
  prevention, community  
  effects on individual sexual  
  behavior, practice-level  
  availability of HIV medicines

Disparities in cancer  
  mortality

CISNET Breast  
  Cancer Disparities

To ascertain how much  
  of the black–white  
  mortality gap in breast  
  cancer is attributable  
  to mutable factors

Patient adherence to  
  screening
Biomarkers of cancer  
  natural history  
  (ER/HER2)

Extend to include federal  
  or state policies that affect  
  access to screening or  
  emerging therapies

*	 CISNET = Cancer Intervention Surveillance Network; ER = estrogen receptor; HPV = human papillomavirus.
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and incentivize tobacco treatment.” The authors quantify the impact 
of realistic implementation of these three policies together on the 
rate of quit attempts, cessation treatment use, and treatment.

What Are the Results?  For each scenario, adult smoking preva-
lence is estimated for the next 20 years and compared with the base 
case. Based on the results reproduced in Table 3, the authors 

Table 2. Examples of simulation model input parameters and multilevel influences*

Parameter Description Conditional on Levels that influence parameter

Incidence from  
  age–period–cohort  
  model

Incidence Age, race, breast  
  density, birth cohort

Ecological forces that affect risk behavior (eg, reproductive  
  forces, trends in smoking post-WWII)
Ecological factors that affect hormonal exposures
Individual-level factors affecting risk such as family history  
  and diet

Population birth  
  distribution

Probability distribution  
  of birth-years in  
  US population

Race Ecological factors affecting diffusion of contraception;  
  policies about use of contraception

Non-breast cancer  
  mortality

All-cause mortality  
  exclusive of deaths  
  from breast cancer

Race, age, birth cohort Ecological factors affecting mortality such as occupations,  
  insurance
Individual factors related to social class, health habits

Unscreened stage  
  (or tumor size)  
  distribution

Distribution of stages  
  (or sizes) of tumors  
  diagnosed in the  
  absence of screening

Race, age Biological scale factors related to cellular and molecular  
  aspects of cancer progression

Dwell-time  
  distributions

Mean in stage and in  
  preclinical state  
  (sojourn time)

Age Unobservable biological level of cellular and molecular events
Interactions of biological levels with  
  individual-level health behaviors and exposures that  
  may modify biological processes

Screened stage  
  distribution

Distribution of stages of  
  tumors that are  
  screen-diagnosed  
  by each test

Race, age, and  
  first-vs-later screen

Ecological factors affecting structure of care, policies  
  regarding insurance coverage, and access to  
  screening and diagnostic services
Individual factors related to adherence to screening use  
  and diagnostic follow-up
Biological level related to ability of technology to detect  
  tissue changes related to cancer

Screening  
  dissemination

Distribution by cohort,  
  age, time period

Cohort, age,  
  calendar year

Ecological factors affecting structure of care, policies  
  regarding insurance coverage, and access to screening  
  and diagnostic services
Individual factors related to adherence to screening use  
  and diagnostic follow-up

Operating  
  characteristics

Sensitivity and specificity,  
  initial and later screens

Race, age, tumor size,  
  density

Ecological-level factors that affect the quality of screening  
  facilities
Population level related to training and skill of radiologists
Biological level related to ability of technology to detect  
  tissue changes related to cancer

Screening-induced  
  care

Biopsies and other  
  diagnostic tests

Age Ecological level in access to care
Individual level in adherence and health seeking behaviors

HR/HER2  
  distribution

Probabilities of tumors  
  exhibiting ER and  
  HER2 positivity

Race, age, stage/size  
  at diagnosis

Individual level in health behaviors increasing risk of  
  particular tumors (largely unknown at present)
Biological level of cellular and genetic processes  
  that lead to different types of tumors

Treatment  
  dissemination

Probability distribution  
  of treatment regimens

Race, age, year, stage,  
  ER/HER2

Ecological level in access to care
Individual level in adherence and health-seeking behaviors

Natural history  
  survival

Survival functions before  
  use of adjuvant Rx

Race, age, stage Biological level of unobservable natural history of  
  disease in the absence of intervention

Treatment  
  effectiveness

Hazard ratios for  
  regimens; modifies  
  survival without Rx

Race, age, Rx, stage,  
  ER/HER2

Ecological level in access to treatment and quality of treatment
Individual level in adherence to treatment regimen
Biological levels of effects of treatments on cellular and  
  molecular processes of carcinogenesis and metastasis

Quality of life Utility for each state Age, stage Ecological level of societal perspectives
Individual-level preferences

*	 ER = estrogen receptor; HR = hormone receptor; WWII = World War II.
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conclude that a comprehensive intervention package, including 
both enhanced cessation support for individuals and considered 
tobacco control strategies, could decrease smoking prevalence to 
12.2% in 2020. Furthermore, if new and promising interventions 
are added (including the provision of publicly available Internet-
based cessation support and personally tailored and long-term 
support for evidence-based cessation), smoking prevalence could 
be reduced further to 9.7%. These results shed light not only on 
feasible goals in reducing smoking prevalence but also on the rela-
tive contribution of various intervention scenarios. Interestingly, 
the model shows how some policies tend to influence quit attempts 
while other influence quit success, and the combination of policies 
leads to mutually reinforcing synergies.

Although this application simulates what the authors consider 
to be the most realistic impacts of each intervention, it is possible 
to use the model to explore likely variation in effect due to varia-
tion in implementation fidelity. Or, as often happens when these 
models are used in workshops with system stakeholders and policy 
makers, discussion of the modeling team’s translation of interven-
tions into effects can lead to richer discussion about what it would 
really take to achieve this effect and thus the more “real-world” 
tradeoffs between simulated scenarios. In these model-supported 
workshops, participants can shape what they perceive to be more 
feasible alternate implementation scenarios to compare with 
model-based results.

How Can the Model Incorporate Biological Levels?  Interventions 
targeting biological events could be included in SimSmoke as 
our understanding of the science of “below the skin” influences on 
tobacco use and control grows and additional interventions become 
available. For instance, as evidence evolves on genotypes for nicotine 
addiction (40,41), SimSmoke could scale down to the cellular and 
genetic level and portray benefits only in the subset of the population 
likely to be affected. Similarly, genotypes related to lung cancer risk 
(42) or other factors that promote tumor growth could be added 
to the model to reflect the mortality impact of new interventions.

Model 2: Colorectal Cancer Screening
Three independently developed and validated CISNET models 
have been used to address the relative effectiveness and cost-
effectiveness of multiple screening tests for colorectal cancer, each 
with different test characteristics. Computed tomography (CT) 
colonography, the newest and most expensive of the tests, is 
compared with screening with older recommended tests, including 
the fecal occult blood test, flexible sigmoidoscopy, and colonos-
copy (in various combinations) following recommended clinical 
guidelines (43–46).

What Do the Models Look Like?  The models calculate the costs 
and health outcomes from birth to death for multiple birth cohorts 
of individuals in the US population under different screening  
scenarios (46). The natural history of disease is characterized as the 
progression of underlying disease in the absence of screening. As 
simulated individuals age, they face differing probabilities of devel-
oping an adenoma and of those adenomas growing, progressing 
into preclinical colorectal cancer, cancer, and/or resulting in 
cancer death (Figure 2). In any given screening year, the chance 
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that the simulated individual’s adenoma or preclinical cancer is 
detected depends on the sensitivity of the screening test for that 
lesion.

What Are the Results?  In all three models, CT colonography 
was found to be more expensive with fewer life-years gained than 
colonoscopy (46). However, CT colonography was determined to 
be an efficient screening strategy—even at much higher cost—if 
patients were assumed to be 10% or 25% more adherent to CT 
colonography than to other screening tests (46).

How Can the Models Include Additional Biological or Socio­
ecological Levels?  These models include patient level risk of 
disease and compliance with screening and one “below the skin” 
scale component for the growth of adenomas. The models could 
be extended to examine smaller biological scales such as the 
genetic basis of adenoma risk and growth. The analyses also could 
be extended to encompass other ecological levels that influence 
individual opportunities, constraints, and behaviors, including the 
provider level [eg, specifying different rates of recommended 
screening procedures (47)], practice level [eg, varying reminders 
and other office systems to improve screening adherence (48)], and 
policy level [eg, specifying different adoption rates for clinical 
guidelines (49) or insurance type (50,51)].

Model 3: Cervical Cancer Screening
The state-transition models developed by Goldie et al. to assess 
optimal cervical cancer control strategies in the face of multiple 
interactions with underlying health conditions for women infected 
with HIV are an excellent example of modeling across biological 
and socioecological levels (25,26).

What Do the Models Look Like?  First, the models portray the 
cellular process of human papillomavirus (HPV) infection, the 
putative etiological agent in this disease. Immune responses by 
T-cells can clear the infection. If the infection is not cleared, 
the HPV DNA infection persists and has a known probability of 

causing malignant transformations. Next, the models consider the 
natural history of HIV infection in terms of T-cell counts. As HIV 
viral loads increase and T-cell counts decrease over time in the 
course of untreated HIV infection, this biological process interacts 
with the probability of persistent HPV infection and increases 
malignant transformation of cervical cells. The models overlay 
ecological factors, such as use of antiretroviral agents to treat HIV 
and compliance with screening, on these interactive “below the 
skin” cellular mechanisms.

What Are the Results?  The results indicate that frequent Pap 
smear screening is more cost-effective than colposcopy, but that 
screening for HPV and using the results to determine Pap smear 
screening intervals also is cost-effective (25,26). Interestingly, 
results were most sensitive to assumptions about the “below  
the skin” events, such as the progression rates of HPV infection, 
demonstrating the importance of considering the biological 
aspects of disease in multilevel policy modeling.

How Can the Models Include Additional Socioecological 
Levels?  This type of model could be expanded readily to consider 
additional multilevel socioecological influences on high-risk popu-
lations, such as individual sexual behavior, social networks, access 
to HIV treatment, interventions to enhance compliance with HIV 
therapy, and state or federal government policies on HIV prevention 
(52,53). It could also be extended to evaluate the costs of promoting 
increased screening (25,54) and/or the costs of establishing different 
types of screening. Such applications would be of special interest 
to governments in developing countries where cervical cancer is 
still a common killer (55).

Model 4: Breast Cancer Disparities
Despite progress in screening for breast cancer in the United States 
(56), black women continue to have persistently higher breast  
cancer mortality rates than white women despite lower incidence. 
The reasons for this disparity remain uncertain. Two established 
simulation models (57–59) have been developed within CISNET to 

Figure 2.  Schematic for the Cancer 
Intervention Surveillance Network (CISNET) 
Colorectal Cancer Models. Graphical rep-
resentation of natural history of colorectal 
cancer as modeled by MISCAN, SimCRC, 
and CRC-SPIN models. The opportunity to 
intervene in the natural history through 
screening (adenoma detection and removal 
and early detection) is noted by the dot-
ted lines. Screening can either remove a 
precancerous lesion (ie, adenoma), thus 
moving a person to the “No lesion” state, 
or through early detection, which makes 
an undiagnosed cancer clinically detected 
at a potentially earlier stage of disease 
where it is more amenable to treatment. 
Reprinted from Zauber et al. (46).
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illuminate reasons for observed population-level race-specific 
breast cancer mortality disparities. The goal of these two models is 
to ascertain how much of the black–white mortality gap can be 
attributed to differences in mutable factors along various points in 
the cancer control process (Figure 3).

What Do the Models Look Like?  The models begin with esti-
mates of what race-specific breast cancer incidence, and mortality 
trends would have been in the absence of screening and treatment 
and then overlays race-specific screening use and improvements in 
survival associated with treatment. Multiple birth cohorts of black 
and white women are followed for their lifetimes through simula-
tions to depict the US population.

For both races, breast cancer is depicted as having a preclinical 
screen detectable period (sojourn time) and a clinical detection 
point. Based on mammography sensitivity (or thresholds of detec-
tion), screening finds disease in the preclinical screen-detection 
period, resulting in the identification of earlier-stage/smaller  
cancers than what might occur through clinical detection, and to 
breast cancer mortality reductions. Age and tumor size/stage- 
specific treatment have independent impacts on mortality for 
invasive cancers. The models include biological or “below the 

skin” biomarkers of cancer natural history (eg, estrogen receptor 
and HER2 status) to evaluate the relative contribution of biology 
to observed population outcomes.

What Are the Results?  The results of both models indicate that 
simulation of historical improvements in screening and treatment 
decreased mortality to a lesser extent in black than white women. 
The lower mortality impact of these cancer control interventions 
among black women was partly explained by differences in the 
“below the skin” natural history parameters (explaining 45% and 
23% of variation in the first and second modeling projects, respec-
tively), followed by treatment (11% and 21%) and screening use 
(7% and 11%), leaving between 36% and 46% of the difference in 
mortality impact unexplained (60). The investigators concluded 
that the greatest portion of mortality disparities appear to be due 
to differences in “below the skin” biological factors that affect 
natural history.

How Can the Models Incorporate Additional Biological and 
Socioecological Levels?  In future iterations, modelers could 
explicitly examine several multilevel socioecological factors that 
may account for the observed race difference in use of screening 

Figure 3. Schematic for racial disparities in breast cancer care. Reprinted from Mandelblatt et al. (59) with permission from Lippincott, Williams 
and Wilkins.
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over time. These include federal or local policies or programs that 
affect screening access, individual compliance with screening, 
delays in follow-up after abnormal mammograms (46), cultural 
beliefs and attitudes that may lead to irregular use of screening, 
delayed presentation in response to symptoms (61), access to 
emerging therapies, provider behavior, or patient acceptance of 
prescribed adjuvant regimens.

Summary of Model Examples
It is clear from Table 1 and the examples presented here that a 
number of efforts are already underway using computational mod-
eling to study multilevel cancer control issues that link “above the 
skin” with “below the skin” influences. These models already have 
been useful in formulating new policies and guidelines. The colo-
rectal cancer models (Model 2) were used to adjust Medicare cover-
age (46,62) and, along with the breast models (Model 4), the 
screening guidelines issued by the US Preventive Services Task 
Force (63). The cervical cancer models (Model 3) were used to 
support screening recommendations for HIV-infected women. 
The tobacco control models (Model 1) have influenced tobacco 
access regulations in the United States and abroad.

Other recent efforts to advance multilevel modeling include the 
work of the NCI’s Integrative Cancer Biology Program with 
CISNET modelers to bridge the biological and population levels 
(http://icbp.nci.nih.gov). Outside of the cancer field, the 
Archimedes model developed by Eddy et al. (27,28) is a broad 
ambitious modeling approach that considers several chronic diseases 
simultaneously to identify multilevel interventions at the biological, 
clinical, and administrative/policy levels that are likely to have the 
greatest benefits on overall population health.

Challenges and Future Directions
Despite the existence of numerous robust computational modeling 
efforts that have been successful in supporting cancer control policy 
decision-making, a number of methodological, structural, and  
communication obstacles stand in the way of future success for 
these and related multilevel computational modeling efforts.

Methodological Challenges
Cancer is different from other areas of modeling because, with rare 
exceptions (eg, watchful waiting for localized low grade prostate 
cancer), it must be treated. As a result, we are unable to study the 
counterfactual of what happens in the absence of treatment. In 
addition, most preclinical carcinogenetic processes are not directly 
observable. To obtain biomarkers, computational models may have 
to rely upon archival specimens from an era that preceded interven-
tions, international datasets on unexposed populations, or basic 
science models to estimate population parameters. In these situa-
tions, integrative biology modeling of genetic and cellular scales 
may be informative for developing realistic inputs for population 
models of cancer.

Multiple levels of intervention involving patients, practitio-
ners, and policies heighten the complexity of the modeling task 
itself. Integrating data and measuring interactions between levels 
also is problematic. An understanding of these interactions is 
important because it can change the questions as well as the 

answers in cancer care research. Most current computational 
modeling in cancer is based upon linear thinking. Off-the-shelf 
software based upon linear models will not work in considering 
multilevel interventions as it does not allow for interaction terms 
or the amounts of computer memory needed to solve complex 
equations. Multilevel computational modeling presents a substan-
tial learning curve for the modeler for it is not as easy as running 
regression models in multivariable statistical packages such as 
SAS, SPSS, or STATA.

Representing uncertainty also is an issue in multilevel models as 
is finding suitable situations for external validation. Despite tech-
nical advances in high-speed computers, it may take weeks to run 
multiple iterations of complex models with dynamic feedback 
loops between variables at different levels. More efficient compu-
tational algorithms and distributed computer networks (64) are 
needed for this work, meaning that computer scientists are essen-
tial members of multilevel modeling teams.

Structural Challenges
A key structural barrier in this field is that progress in multilevel 
modeling requires cross-disciplinary research wherein biologists, 
clinicians, social scientists, computer scientists, and health services 
researchers work together to address common problems. Yet, the 
super-specialization of science often has investigators on the 
same campus working in unconnected research programs. Such 
discipline-focused research creates a structural obstacle to the 
growth of multilevel modeling. Moreover, shortages of training 
programs that emphasize this approach are a continuing problem. 
The academic home of computational modeling is generally in 
industrial engineering schools, and few established programs 
focus on simulation applications for cancer or other health concerns.

Another structural barrier to successful modeling is the lack of 
grant review and funding infrastructure specific to modeling disci-
plines. With the exception of CISNET and the Integrative Cancer 
Biology Program at NCI, no dedicated funding mechanisms with 
ample set-aside dollars to support multilevel modeling in cancer or 
other health fields have been established.

Communication Challenges
Lastly, learning how to communicate models to patients, providers, 
and policy-makers in understandable and actionable ways remains a 
challenge. Many people believe models are “not real” or simply not 
right. How can we encourage/educate target audiences to trust 
model results and to use them in personal decision making, clinical 
practice, and the support of cancer control interventions? The use 
of multiple models employing common parameters to address the 
same research question is one approach to enhance credibility 
(24,63). Another approach is comparing model projections with 
real-world epidemiological data over time to show the potential for 
models to accurately project health outcomes. Making model struc-
ture and assumptions transparent can also increase credibility. For 
instance, all CISNET models are summarized on the model pro-
filer website (http://cisnet.cancer.gov/modeling/comparative.html) 
so that users or interested parties can readily access model details. 
Another strategy is to work with communication scientists to 
improve the interpretability and messaging of multilevel models for 
diverse audiences.

http://icbp.nci.nih.gov
http://cisnet.cancer.gov/modeling/comparative.html
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Future Prospects
A number of recent developments augur well for overcoming the 
above obstacles and for advancing multilevel modeling in cancer 
and other health areas. The National Institutes of Health Office of 
Behavioral and Social Science Research (OBSSR) has taken a lead-
ership role in promoting interdisciplinary research among behav-
ioral, social, and biological scientists and fostering systems science 
approaches to public health problems (9). A new funding mecha-
nism has been created to encourage R03 and R21 research applica-
tions using computational modeling, network analyses, and other 
systems science approaches to protect and improve population 
health (http://grants.nih.gov/grants/guide/pa-files/PAR-08-224.
html). Annual weeklong training institutes sponsored by OBSSR 
are hosted by a different university each year to expose students and 
researchers to systems science tools. OBSSR also sponsored a  
special issue of the American Journal of Public Health in July 2010 to 
showcase system science approaches to tobacco control.

These developments are promising but are likely to be inade-
quate to nurture and sustain the vision for multilevel modeling as 
presented in the various articles in this supplement. Still needed are 
opportunities to create a learning community among multilevel 
modelers to promote the sharing of ideas, data, and common mea-
surement and analysis strategies. Collaboration can help create a 
common language for describing and shaping multilevel computa-
tional modeling. Currently, a number of discipline-based traditions 
and modeling vocabularies associated with computer simulations 
use the same procedures and approaches but call them by different 
names and metaphors. This steepens the learning curve and 
impedes cross-discipline communication and collaboration.

The collaborative modeling approach underlying CISNET 
exemplifies how common strategies can be promoted, but we also 
need to allow for distributed modeling, where innovative approaches of 
individual investigators or local teams can push the envelope of conven-
tion and orthodoxy in cancer research. We also need to encourage 
modelers to link to people in practice or policy circles as well as patients 
who could help motivate the questions addressed by multilevel models.

One cautionary note is that we must be selective in pursuing a 
multilevel modeling agenda. Modeling must be driven by a focus on 
core problems identified by collaborations with policy makers and 
clinicians and grounded in strong evidence for effectiveness, rather 
than a serendipitous search for connections that build ever bigger and 
bigger models that become hopelessly complex, tenuous, and unpro-
ductive. A great strength of computational modeling is that numerous 
data sources and time periods can be combined to create realistic 
estimates to inform policy making as well as individual patient choice.

However, much of the data needed to measure causal relation-
ships for complex multilevel modeling do not now exist. Current 
efforts to expand comparative effectiveness research in health care 
(65) may produce the types of data that can inform these modeling 
efforts in the next decade. More compelling data and variables, such 
as costs of interventions and improvements or institutional measures 
and pathways that resonate with clinicians and policy makers, will 
promote “actionable” findings. Furthermore, we need to develop 
even more advanced methods for conducting sensitivity analyses, 
given the increased level of complexity and uncertainty associated 
with multilevel simulation models. Finally, we need models of 

cancer that aid in design of new and better interventions to lessen its 
occurrence and mitigate the burden of disease when it does occur.
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