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Abstract
Electron cryo-microscopy (cryo-EM) experiments yield low-resolution (3–30Å) 3D-density maps
of macromolecules. These density maps are segmented to identify structurally distinct proteins,
protein domains, and sub-units. Such partitioning aids the inference of protein motions and guides
fitting of high-resolution atomistic structures. Cryo-EM density map segmentation has
traditionally required tedious and subjective manual partitioning or semi-supervised computational
methods, while validation of resulting segmentations has remained an open problem in this field.
Our network-based bias-free segmentation method for cryo-EM density map segmentation, Nhs
(Network-based hierarchical segmentation), provides the user with a multi-scale partitioning,
reflecting local and global clustering, while requiring no user input. This approach models each
map as a graph, where map voxels constitute nodes and edges connect neighboring voxels. Nhs
initiates Markov diffusion (or random walk) on the weighted graph. As Markov probabilities
homogenize through diffusion, an intrinsic segmentation emerges. We validate the segmentations
with ground-truth maps based on atomistic models. When implemented on density maps in the
2010 Cryo-EM Modeling Challenge, Nhs efficiently and objectively partitions macromolecules
into structurally and functionally relevant sub-regions at multiple scales.

Introduction
Cryo-EM reconstructions of macromolecules are increasing in resolution (1), extending their
application from rigid-body docking to generation of atomistic structural models
independent of prior structural information (1–3). Specifically, secondary structure can be
annotated for resolutions better than 9Å, and for resolutions better than 4Å, de novo
structure determination is possible. At lower resolutions, cryo-EM density maps still convey
general macromolecular shape and assist the fitting of atomistic structures within the
molecule, useful especially when cryo-EM maps suggest a novel functional state (2).
Because this multi-scale organization of macromolecular components can give structural
information, suggest hypotheses of molecular motions, or offer functional cues, locating
individual sub-units within density maps is critical for subsequent analysis.

Segmentation of individual sub-units within cryo-EM density maps is a challenging problem
that has traditionally been accomplished by tedious and subjective manual partitioning.
Recently, automatic and semi-automatic segmentation techniques, where some former
structural insight is employed, have improved upon manual partitioning (31). The watershed
diffusion method of Pintillie et al. provides fast segmentations given a small amount of user
guidance (4,5). Bajaj’s multiseeded fast-matching method likewise produces reliable
segmentations when provided with symmetry information (6–8). An unsupervised method is
thus necessary for those cases where such prior structural information is not available.

NIH Public Access
Author Manuscript
Biopolymers. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as:
Biopolymers. 2012 September ; 97(9): 732–741. doi:10.1002/bip.22041.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We propose a simple Markov diffusion framework to segment cryo-EM density maps into
meaningful sub-regions (9). Our segmentation algorithm for locating structural sub-regions
within molecules is termed Nhs: network-based hierarchical segmentation. The hierarchical
nature of Nhs generates an increasingly coarser set of segmentations ranging from locally
interacting regions to globally connected molecules (Fig. 1) with no user supervision. The
segmentation at the appropriate level of detail can then be used for fitting atomic models,
identifying secondary structure, detecting structural homologues, etc. This approach is an
adaptation of our earlier work developing spectral graph partitioning algorithms for
segmenting natural images, understanding protein dynamics and allosteric propagation, and
relating signal propagation on a protein structure to its equilibrium dynamics (10–11). We
present our results on the cryo-EM maps used in the 2010 Cryo-EM Modeling Challenge
(1).

We model the cryo-EM map, a three-dimensional voxel-grid of intensities, as a weighted
undirected graph and build an unsupervised hierarchical elastic network model. Each density
map voxel is represented as a graph vertex, and edges are defined between the 26 voxels in
its standard neighborhood. Edge weights, or affinities, between neighboring vertices are a
function of intensity difference. By modeling the density map as a graph, we can divide the
graph into clusters such that vertices within clusters have high affinity edges, and vertices
between clusters have low affinity edges. We perform this partitioning by constructing a
Markov transition matrix over the edge weights and initiating Markov diffusion (or random
walk) on the graph. As Markov probabilities homogenize through diffusion, an implicit
segmentation emerges. By choosing a set of nodes representative of each segment, and
initiating Markov diffusion again from each coarser set of nodes, a hierarchical network
model is built. Together, subsequent levels of the hierarchy constitute a multi-resolution
representation of map sub-regions. Unlike many existing segmentation algorithms, no a
priori predictions for the total number of segments are required.

Results
Nhs produces a hierarchy of increasingly coarser map segmentations for each Challenge
cryo-EM map, where each level provides a segmentation based on more global interactions
than the previous level. Figure 1 shows the hierarchy of segmentations, along with the
affinity maps used in computation of the hierarchy, for GroEL+GroES at 7.7Å. Results on a
synthetically generated map are presented in Figure 2. A summary of our results on the
cryo-EM maps used in the 2010 Cryo-EM Challenge is provided in Figure 3.

Validation
Following the method described by Pintilie et al. (5), we synthesized ground truth maps for
each cryo-EM map using atomistic coordinates contained in the corresponding PDB file, and
used these maps to evaluate our segmentations. That is, this validation protocol requires a
cryo-EM density map whose subunit arrangement is known and whose subunit structures
have been solved atomistically. Each cryo-EM density map voxel within 2Å of an atom in
the corresponding PDB structure was assigned to that atom, in keeping with the practice that
molecular surfaces extend approximately this distance from constituent atoms. Note that a
ground-truth map so constructed is only an approximation. For example, a voxel’s intensity
can be impacted by peripheral atoms with masses greater than that of the closest atom,
causing misclassified intensity. According to protein and subunit assignments for individual
atoms found in the literature (12,14–18), each voxel assigned to a particular atom was
labeled as belonging to the region that the atom belonged to, to form a ground truth
partitioned map.
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Determining the ground-truth partitioning
As a macromolecular structure can be partitioned in multiple ways (by sub-units, monomers,
domains), there is no unique and objective ground truth segmentation for each map. For
example, Figure 4 shows two informative partitionings of the 8Å Mm-cpn map. In the first
column, each monomer is segmented into its apical, intermediate, and equatorial domains
yielding 48 segments (12,24). The ground-truth map for this partitioning is shown in the
second row, and the hierarchy level with segmentation closest to this domain-based
partitioning is shown in the third row. In the second column, the 8Å Mm-cpn map has been
partitioned into individual monomers, and the hierarchy level with the closest segmentation
to the monomer-based partitioning is shown in the bottom row. As the hierarchy progresses,
the individual monomers are grouped together lengthwise (third column). This lengthwise
grouping might reflect inter-ring communication between aligned sub-units. The adaptive
nature inherent to Nhs’ hierarchical protocol is thus highly valuable for maps with structural
and functional features at various scales.

Scoring
The shape-match score for each sub-unit i of the ground-truth map is computed according to

the equation , where Gi corresponds to the ith known sub-unit in the ground-
truth segmentation, and Pi corresponds to the most similar segment in the predicted
segmentation to known sub-unit i (13,5). The overall shape-match score for a map is given

as , where n is the number of known sub-units.

In Figure 2, we present a segmentation by Nhs on a simulated 8Å cryo-EM map based on
3IYF.pdb (12, 29,30). In the bottom left panel, the shape match score for each of the 16
monomers is shown (highest possible score is 1.0). We see that Nhs performs well on this
synthetic map. Encouraged by results on simulated maps, such as the one shown here, we
tested our method on the Challenge maps.

Segmentation of Challenge Maps
In Figure 3, segmentation results are shown for eleven of the thirteen cryo-EM maps from
the 2010 Challenge: GroEL at 4 Å (14), GroEL+GroES at 7.7 Å (15), GroEL+GroES at 23Å
(16), Mm-cpn at 4Å (12), Mm-cpn at 8Å (12), ribosome complex at 6.4 Å (17), ribosome
complex at 8.9Å (18), ribosome complex at 7.4 Å (19), VP6 from rotavirus at 3.8 Å (20),
Aquaporin at 3.0 Å (21), and Epsilon-15 phage capsid at 7.3 Å (22). Corresponding PDB
files were used to create ground-truth partitionings for each map.

For the GroEL and GroEL+GroES maps, Nhs identifies the individual domains of the
monomers (Fig. 3) (25). In the GroEL map at 4Å resolution, Nhs receives the highest shape-
match score for its segmentation of each monomer into apical, intermediate, and equatorial
domains. Because of the high resolution of this map, it has many disconnected high intensity
regions at the intensity threshold used (see Methods). These small isolated regions were
each assigned to their own cluster, lowering the shape-match score. However, as can be seen
from the top view, the overall segmentation into seven monomers in each ring is clear. The
GroEL+GroES 7.7 Å map was segmented into 9 levels (see also Fig. 1). The highest scoring
non-trivial segmentation level was Level 5, whose shape-match score with respect to the
domain-based ground truth partitioning received a low segmentation score due to moderate
over-segmentation. The next (coarser) hierarchy level (Level 6) captures the equatorial and
apical domains of each monomer, but does not assign most intermediate domains to unique
clusters. We suspect that the intermediate domains were not captured as independent
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segments because of the low electron density in these regions resulting from the flexibility
of this domain. For the GroEL+GroES 23.5Å map, the shape-match score again reflects the
lack of recognition of intermediate domains due to low intensity in these regions.

The segmentations of the Mm-cpn maps by Nhc received relatively high shape-match scores
(Fig. 2,3). Due to the low intensity threshold at which segmentation was performed, the lid
regions of the 4.3Å Mm-cpn map were separated from their monomers, and thus were
assigned to a different region, reducing the shape-match score for this map. For the 8 Å
Mm-cpn map, the only misclassification was in the interior regions of the equatorial
domains, which have a high degree of connectivity between monomers and thus are difficult
to distinguish by a network-based model.

The hierarchical network model was able to resolve the small and large ribosomal subunits
for each ribosome complex map (Fig. 3). For the 6.4Å map, PDB structures 3FIN and 3FIC
were available to use as ground-truth models for each subunit, resulting in a high
segmentation score. Small segments are visible between the two sub-units, possibly
representing densities from the elongation factor complex trapped in the ribosome complex.
The 8.9Å ribosome segmentation that has the highest shape-match score to the ground truth
map derived from 2P8W has several components, possibly representing proteins contained
in this complex. By visual inspection, the 7.4 Å ribosome was correctly segmented, however
the PDB file for the signal recognition particle receptor was not conducive to scoring
because the protein captured by the PDB was mainly outside of the high density ribosome
region, and these voxels were thresholded out due to low intensity.

The segmentation of the rotavirus captured the three interconnecting regions (Fig. 3). Since
a PDB map was only available for a single VP6 monomer, the shape-match score was not
applicable here (23). Similarly, in Aquaporin and Epsilon-15 phage, PDB files
corresponding to the entire cryo-EM map were not available at the time of this submission,
so a ground-truth map was not generated for these maps. In the case of Aquaporin, Nhs
found individual sub-units of the map. For Epsilon-15, Nhs was able to find domains
approximately representative of the icosahedral symmetry, without any user input outside of
the map.

Discussion
Symmetry

In Step 3 of the Nhs Algorithm, a set of representative nodes is chosen to be carried on to
the next hierarchy level (see Material and Methods). These nodes are chosen based on the
stationary distribution of the Markov chain on the network at that hierarchy level, which
relates to the degree of connectivity of each node. As such, the representative nodes are
currently not chosen in a way that directly reflects the natural symmetry of the cryo-EM map
(e.g. 7-fold symmetry in GroEL, 8-fold symmetry in Mm-cpn). That is, nodes are chosen
based on local environment, without using global information such as symmetry. Thus, the
resulting segmentations have no guarantee of symmetry. This can be seen in Figure 1, by
comparing the segmentations between each of the GroEL monomers, as well as by
comparing the shape-match scores between the Mm-cpn monomers in Fig. 2. Enforcing
symmetry should improve the accuracy of the segmentations, as the average connectivity of
each voxel over each of the symmetric monomers would be used to select representative
nodes, resulting in a stronger signal of the underlying structure. Because an asset of Nhs is
its ability to reasonably segment maps without any user input or prior knowledge of
structure, we have chosen not to incorporate user provided symmetry information at this
stage. Future work will involve implementing an unsupervised symmetry detection step, to
ensure that representative nodes are chosen symmetrically in each hierarchy level.
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Comparison to other segmentation tools
By visual inspection, segmentations by Nhs capture multi-scale structural organization of
macromolecules. However, the shape-match scores of our segmentations seem low when
compared to segmentation scores received by semi-supervised methods (4–8). It is important
to note that many previously reported segmentation scores were for simulated cryo-EM
maps, as well as experimental maps. Nhs segmentation scores fall in a similar range as other
methods on experimental cryo-EM maps (for example, Fig. 2). Lower scores for
experimental maps versus simulated maps could reflect difficulties in accurately scoring
cryo-EM maps using PDB structures. Noise in experimental maps that is not present in
simulated maps also contributes to the discrepancy in scores between the two map types.

Cryo-EM map resolution
Nhs performed similarly on an array of map resolutions for the same macromolecule (Fig.
3). For GroEL and GroEL+GroES at 4, 7.7, and 23.5Å resolutions, Nhs detected individual
domains of the Hsp60 monomers. For ribosomes of varying resolution, Nhs identified the
small and large sub-units, as well as complexed proteins. Since Nhs finds segments using
connectivity within the map, and not the actual map shape or intensities, resolution does not
affect its ability to detect underlying structures.

Future Work
As the sub-regions found in each level of the hierarchy highlight the core structural regions
of the protein, they can also be used as anchor points for fitting high-resolution structures
into cryo-EM maps. Other future work involves inference of secondary structure from
characteristic patterns in affinity maps. We also seek to improve the segmentation by
identifying symmetry in the cryo-EM maps and using the symmetry to guide kernel
selection. Incorporation of symmetry information has proven beneficial in past
implementations of hierarchical network segmentation for atomistic structures (32).

Conclusion
Nhs provides reliable segmentations of cryo-EM maps without requiring user knowledge of
the underlying map structure. Several segmentation methods are available which provide
useful segmentations, given some user input. The advantage of our method is that it provides
a hierarchy of reasonable segmentations of the map with no input from the user except the
map. The output from this method can, for instance, provide user knowledge which can then
guide more accurate segmentation methods requiring more input. Future improvements to
this method will detect map symmetry and choose nodes in each level based on symmetric
regions, with the goal of producing high accuracy, unsupervised segmentations of cryo-EM
maps.

Material and Methods
We use a hierarchical method based on a Markov diffusion process to find a representative
set of nodes with which the density map can be represented as a graph (9–11). We approach
segmentation as a graph clustering problem where each density map voxel is associated with
a graph vertex (node), and edges are defined by the standard 26-neighborhood of each voxel.
Edge weights (affinities) between neighboring vertices are a function of intensity difference.
From the computed edge weights, we construct a Markov transition matrix, which gives the
probability of signal-travel between any two voxels (nodes). Using this transition matrix, we
build a hierarchical network model, in which subsequent hierarchy levels contain
increasingly coarser sets of nodes, giving a multi-resolution network model of the density
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map. Nodes within the same cluster are connected by strong edges over many paths, while
nodes between clusters are connected by only few paths along weak edges.

Preprocessing
Input: cryo-EM map

We begin by thresholding small voxels in the density maps to reduce the total number of
voxels, thereby decreasing computation time and memory expense. Thresholds are chosen
by default as a function of the maximum map value (see below). All remaining non-zero
voxels are considered nodes in a graph, and we construct an edge between each voxel and its

26 neighbors in 3D-space. The edge weights are defined by: , where vi gives
each voxel intensity and σi = 1.5 × median (|vi − vj|), ∀j neighbors of i, describes the local
environment around each voxel. A high edge weight means that a voxel pair has a low
Euclidean distance and similar intensities, thus indicating the likelihood that the voxel pair
belongs to the same structural subunit. The affinities together define a (nvoxel × nvoxel) non-
negative affinity matrix A = (aij), where nvoxel is the number of non-zero voxels. The
affinity matrix is extremely sparse in that it only contains distances between adjacent voxels;
each row i has at most 26 non-zero entries.

We next determine each connected component of the network. Connected components are
sets of nodes in which each node can be reached by every other node along a connected
path. If two nodes are in unique connected components, then there is no path between them,
and they will not be assigned to the same cluster. Typically, our small-value threshold is low
enough that the entire map remains one connected component. However, since matrix
operations become more expensive as matrix size increases, we can greatly increase
computational efficiency by segmenting disconnected sections of the network separately.

Network-based hierarchical segmentation
For each dominant connected component, we perform hierarchical diffusion to iteratively
reduce the network into increasingly coarser sets of representative nodes. Consider each
voxel from this connected component as a node. Let n0 be the number of nodes in the
connected component. Take the rows and columns from A corresponding to the nodes in this
connected component to build an affinity matrix A0 of size (n0 × n0).

Algorithm: Nhs

Input: A0, n0.

Initiation: Compute the initial degree matrix  and the

stationary distribution  of the Markov chain. The degree matrix reflects the
connectivity of the graph in that its diagonal contains the total weight of connections with
each node. Nodes with high degree can be seen as hubs, and nodes with very low degree can
be seen as isolates. The stationary distribution, which is the normalized degree vector, gives
the probability of a Markov Chain residing in a particular node after infinite random walk
steps.
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For example, in Figure 1, the hierarchical segmentation of the GroEL+GroES 7.7Å map
with Nhs is shown. The far left figure shows the density map after thresholding intensities
less than the computed threshold, 0.75. The initial affinity matrix A0 is shown beneath the
map. For this map, there were n0 = 254724 voxels in the single dominant connected
component. At this zoon, the matrix appears diagonal because each voxel only has edges to
its 26 neighboring voxels.

Iteration:

For t = 1 until done:

1. Compute the diagonal degree matrix Dt−1, with entries

and the Markov transition matrix .

2. Diffuse the Markov transition matrix by repeated multiplication Mt−1 = Mt−1 ×
Mt−1. Diffusion reveals distant connectivity and promotes cluster behavior by
homogenizing probabilities within natural clusters.

3. Prepare a kernel matrix Kt to carry network information from level (t −1) of the
hierarchy to level (t). First, select nodes a set of nodes corresponding to local peaks
of the stationary distribution such that no selected node has probability greater than
pt of being reached from any other selected nodes according to Mt−1. Then, use the
columns (kernels) of the diffused Markov transition matrix (Mt−1) corresponding to
these selected nodes to form the (nt−1 × nt) kernel matrix Kt, where nt is the number
of kernels found with nt ≪ nt−1. The probability bound pt is determined in each
iteration based on the degree of similarity of nodes between the previous two
hierarchy levels. It is adjusted to encourage a high degree of network coarsening
between iterations.

4. Solve τ⃗t−1 = Kt τ⃗t for τ⃗t with an expectation-maximization algorithm to find a low-
dimensional representation τ⃗t of the stationary distribution τ⃗t−1 [10].

5. Compute new affinity and Markov matrices At and Mt, each of size (nt × nt)using τ⃗t
[10]:  and ,

where  is the transpose of Kt and diag(τ⃗t) indicates a diagonal matrix formed
from the vector τ⃗t.

6. t → t + 1.

Termination: End if nt ≤ 5. Let T = t. At this point, the component has been divided into
less than six segments.

At each hierarchy level, the model gives a probability distribution for the likelihood that a
voxel belongs to any distinct sub-region of the structure and thus provides a soft partitioning
of the density map. This soft partitioning is elicited by iterating backwards along the
hierarchy in order to compute an nt−1 × nt ownership matrix Wt for each hierarchy level t, in
which Wt (i,j) gives the probability that node i in the connected component belongs to
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segment j at level t of the hierarchy, t = 1,…,T: , where .
To project the ownership map onto the original set of nodes, compute W0 = W1 × W2 × … ×
WT, where W0 is a (n0 × nT)matrix.

For segmentation visualization, assign each voxel to the segment for which it has maximal
ownership probability to determine a hard partitioning. For the segmentation results shown
in Figures 1–5, the hard partitioning is used.

Output: Hierarchy of affinity matrices and ownership matrices, A0, …, AT and W0, …,WT.

Intensity threshold
Before creating the affinity matrix, all small values are removed from the map. Since many
voxels in the areas of the map containing no actual molecular density (e.g. the region of the
map surrounding the molecule) are non-zero due to noise, small-value thresholding
significantly reduces the number of non-zero voxels in the map, which in turn reduces the
size of the initial affinity matrix (nvoxels × nvoxels). The intensity threshold τ for small values
is a tunable parameter. In this paper, we used the default threshold determined for each map
as .315 × emmax, where emmax is the maximum intensity found in the em map. An
alternative intensity threshold is the recommended viewing contour level from the EMBD.
Our default threshold was determined heuristically, and typically captures approximately the
same set of voxels as the recommended contour level (Table 1).

Choosing a high intensity threshold for segmentation allows the algorithm to run faster and
require less memory, as the affinity matrix is (nvoxels × nvoxels). However, the threshold
should be low enough that significant details in the map are still present. In Figure 5, we
show the segmentation of GroEL+GroES at 23.5Å using three different intensity thresholds
τ. Highest scoring intensity maps are shown for two ground-truth partitionings of the GroEL
+GroES maps. By visual inspection, the accuracy of the segmentation with respect to
domains increases slightly with increasing τ (see row one), however as the threshold
increases, the amount of intensity left in the region corresponding to the intermediate
domains decreases. Thus, τ should not be chosen so high that significant densities voxels
disappear. Overall, the change in shape-match score with respect to intensity threshold is
small, indicating that the accuracy of the resulting segmentation is not very sensitive to
intensity threshold. The major improvement by choosing a higher intensity threshold is in
speed, not accuracy.

Choosing a hierarchy level
Determining which hierarchy level (or levels) to use for further analysis is left to the user.
Metrics are available for determining the best level of clustering based on number of graph
edges between clusters versus number of graph edges within clusters, e.g. normalized cut
(9). As discussed above, different levels of the hierarchy can give different insight into
structural and functional organization of the macromolecule.

Ground truth maps
The ground truth maps were determined using the PDB IDs indicated by the Challenge. For
GroEL and GroEL+GroES, residues 6–133 and 409–523 were assigned to the equatorial
domain, residues 134–190 and 377–408 were assigned to the intermediate domain, and
residues 191–576 were assigned to the apical domain (27,14–16). For the 4Å closed Mm–
cpn structure, residues 1–141 and 400–523 were assigned to the equatorial domain, 142–210
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and 362–399 to the intermediate domain, and 211–361 to the apical domain (12,24,28). For
the 8Å open Mm-cpn structure, residues 1–141 and 378–521 were assigned to the equatorial
domain, 142–210 and 340–377 to the intermediate domain, and 211–339 to the apical
domain (12,24,28). For the 6.4Å and 8.9Å ribosome maps, each PDB chain was considered
a domain (17,18). For the remaining maps, no PDB structure was found that covered the
majority of the map, hindering scoring with our method.

Implementation
A Matlab implementation of Nhs with a worked example is available by emailing the
authors. Required input is the cryo-EM map. Optional input is the intensity threshold, τ, for
small values. The algorithm outputs a hierarchy of increasingly coarser map segmentations,
with soft and hard cluster assignments at each hierarchy level, as well as MRC files for
visualization of each hierarchy level. TOM Toolbox (26) is required for reading and writing
MRC file. Depending on cryo-EM map size and sparseness, segmentation takes between 30
minutes and 12 hours on an eight-core, 2.7GHz, 2Gig RAM linux-based desktop
workstation.
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Figure 1. Network-based hierarchical segmentation of GroEL+GroES at 7.7Å
The affinity map and cluster assignments are shown for each hierarchy level. The number of
nodes in the network is given for each level. Importantly, in level t there are nt nodes, thus
the segmented map has nt clusters and the affinity matrix At is (nt × nt). At level 1, each of
the 254,724 voxels in the map are assigned to their own cluster, however, the map is shown
in gray for visualization purposes. Levels two and three are left out of the diagram due to
space considerations.
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Figure 2. Segmentation of simulated 8Å cryo-EM-map
An 8Å cryo-EM map was simulated by isotropic smoothing of the Mm-cpn PDB structure:
3IYF.pdb (12,30). In the top panel, the left image shows the PDB structure (white) inside the
simulated map. The middle and right images shows the side and top views of the map
segmentation at hierarchy level 6/8. All maps are shown at the intensity threshold (τ) at
which they were segmented. In the bottom panel, the shape-match score for each of the 16
Mm-cpn chains is shown for the simulated and the experimental 8Å Mm-cpn cryo-EM
maps. The mean score is reported for each map below the graph.
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Figure 3. Segmentations of Challenge maps
Colored regions correspond to unique clusters. For each map, the hierarchy level with the
highest scoring segmentation is shown (third column). In the second column, the hierarchy
level is given out of the total number of hierarchy levels for that Nhs segmentation, as well
as the shape-match score for this segmentation. In the first column, the ground-truth
partitioning of the map, for which the shape-match score was calculated is shown. Ground-
truth maps and predicted segmentations are shown at the intensity threshold used for the
segmentation. For GroEL at 4Å and Rotavirus, top-views of the segmented map are shown
in the fourth column. For Mm-cpn at 4.3Å, Ribosome at 6.8Å, and Epsilon-15 Phage at
7.3Å, the map is shown at a lower intensity threshold for clarity in the fourth column.
Figures generated in Matlab and Chimera with TOM Toolbox (26).

Burger and Chennubhotla Page 13

Biopolymers. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Segmentation of the 8Å Mm-cpn map at three hierarchy levels
The ground-truth partitioning of Mm-cpn can be defined structurally at two levels. The first
row shows the atomistic partitioning in the PDB structure (3IYF) at the domain level
(column one) and the monomer level (column two). In the upper-left hand corner, the apical
domain is shown in blue, the intermediate domain in pink, and the equatorial domain in
green (12). The second row shows the ground truth map derived from the above atomistic
partitioning. In the third row, segmentation of the Mm-cpn map is shown at three hierarchy
levels, along with the shape-match score. The first column shows the segmentation at
hierarchy level 5 out of 9, which scored highest with respect to the above domain-based
ground truth partitioning. The second column show the segmentation at hierarchy level 7,
which scored highest with respect to the monomer-based ground truth partitioning. The third
column show the segmentation at hierarchy level 9 out of 9, and its scores with respect the
domain-based and monomer-based partitionings, respectively.
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Figure 5. Segmentation of GroEL+GroES at 23.5 Å at three intensity thresholds, τ
The threshold τ = 0.087 is our computed default threshold for this map. The threshold τ =
0.029 is the contour level recommended for visualization in the EMBD (1046). The first
rows shows the resulting segmentation at the hierarchy level scoring highest for the domain-
based ground truth partitioning of GroEL+GroES, and the second row shows the resulting
segmentation at the hierarchy level scoring highest for the component-based ground truth
partitioning of GroEL+GroES. For each segmentation, the hierarchy level out of the total
number of levels is given.
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