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Abstract

Individual-based epidemiology models are increasingly used in the study of influenza epidemics. Several studies on
influenza dynamics and evaluation of intervention measures have used the same incubation and infectious period
distribution parameters based on the natural history of influenza. A sensitivity analysis evaluating the influence of slight
changes to these parameters (in addition to the transmissibility) would be useful for future studies and real-time modeling
during an influenza pandemic. In this study, we examined individual and joint effects of parameters and ranked parameters
based on their influence on the dynamics of simulated epidemics. We also compared the sensitivity of the model across
synthetic social networks for Montgomery County in Virginia and New York City (and surrounding metropolitan regions)
with demographic and rural-urban differences. In addition, we studied the effects of changing the mean infectious period
on age-specific epidemics. The research was performed from a public health standpoint using three relevant measures: time
to peak, peak infected proportion and total attack rate. We also used statistical methods in the design and analysis of the
experiments. The results showed that: (i) minute changes in the transmissibility and mean infectious period significantly
influenced the attack rate; (ii) the mean of the incubation period distribution appeared to be sufficient for determining its
effects on the dynamics of epidemics; (iii) the infectious period distribution had the strongest influence on the structure of
the epidemic curves; (iv) the sensitivity of the individual-based model was consistent across social networks investigated in
this study and (v) age-specific epidemics were sensitive to changes in the mean infectious period irrespective of the
susceptibility of the other age groups. These findings suggest that small changes in some of the disease model parameters
can significantly influence the uncertainty observed in real-time forecasting and predicting of the characteristics of an
epidemic.
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Introduction

Sensitivity analysis is the study of the contribution of different

parameters to the uncertainty present in the outcome of a system

[1,2]. Various scientific fields use sensitivity and uncertainty

analysis to: (i) highlight important and remove irrelevant data, (ii)

optimize the design of a system and (iii) rank by importance the

influence of various parameters on the behavior of a system [3,4].

The scope of a sensitivity analysis procedure can be local or global.

Local analysis aims to examine the effects of local deviations of a

parameter or a chosen trajectory in the parameter space [5].

Alternatively, global analysis is used to evaluate the entire

parameter space in addition to interactions between parameters

to determine all of the system’s critical points [3,6]. Methods for

sensitivity analysis can be either statistical or deterministic [2,7].

However, selection of methods depends on the purpose and system

under study. Typically, complex systems (models) are computa-

tionally expensive which tends to limit the scope of a sensitivity

analysis.

In this study, we perform sensitivity analysis on a complex

individual-based stochastic epidemiology model for the study of

influenza epidemics. Individual-based models are increasingly

used in the study of the dynamics of infectious diseases and

evaluation of methods for controlling the spread [8]. For a few

examples, see [9], [10] and [11]. These models capture human-to-

human disease transmission by creating synthetic populations with

time-varying contact networks [12]. The level of detail used in

these models increases the complexity but also enables the model

to more realistically capture the heterogeneity present in the

natural system [8]. Although the level of realism is beneficial, the

behavior of the systems can be challenging to explore analytically

due to the large number of parameters [2]. In addition, validation

of parameters used in these models tends to depend on qualitative

comparison of model behavior and expert opinion [13].

In several studies, the sensitivity analysis of individual-based

models of epidemic dynamics have been used to evaluate the effect

of disease parameters on public policy related questions. For

example, for a model aimed at simulating Smallpox epidemics, the

sensitivity analysis could focus on model assumptions relating to
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how changes in individual behavior after infection might influence

the observed outcomes such as in the study by Burke et al. [14].

For individual-based models used in the study of influenza-like

epidemics, the sensitivity analysis could focus on changes in

interventions and response strategies such as in the studies by

Halloran et al. [15] and Germann et al. [16]. In this study we aim

to explore the sensitivity of an individual-based epidemiology

model to changes in the assumptions made regarding the

characteristics of the disease. The disease model is one of the

two major components of the individual-based model. The other is

a state-of-the-art behavioral model which consists of synthetic

populations and time-varying social networks. There have been

several studies validating the structural aspects of the individual-

based model [15,17,18] and the sufficiency of the amount of detail

used in its development [19]. However, there have not been any

studies exploring the epidemiological and mathematical assump-

tions relating to the underlying process describing disease

transmission.

Parameters
We perform sensitivity analysis on the parameters of a

networked Susceptible-Exposed-Infectious-Recovered (SEIR) dis-

ease model. The four disease states in the SEIR model (Figure 1)

are used in describing within host disease progression and between

host influenza transmission in the social network [12]. To simplify

the disease process, three parameters are used: transmissibility,

incubation period distribution and infectious period distribution.

The transmissibility is the diffusion intensity of a disease through a

population. The transmissibility is usually measured using the

reproductive number - the number of secondary cases for each

primary case. The incubation period is the interval during which

infected individuals cannot spread the disease and usually lasts

between 1–4 days for seasonal influenza [20]. The infectious

period duration is the period during which infected individuals can

transmit the disease to susceptible individuals. During typical

seasonal influenza epidemics, infectious individuals can shed the

virus a day before onset ‘‘through 5–10 days after illness onset’’

[20]. In this model, the incubation and infectious periods are

described using discrete probability distributions since individuals

in the population tend to have different incubation and infectious

period durations based on their age and health status. The initial

(base case) parameters based on the natural history of seasonal

influenza have been used in several studies [15,19,21,22]. The

base case incubation period distribution is defined as follows:

tE?I = 1,2, or 3 days with probability 0:3,0:5 or 0:2, respectively.

This implies an infected individual can have an incubation period

duration of 1,2, or 3 days with probability 0:3,0:5 or 0:2. Likewise,

the infectious period distribution is given by: tI?R = 3,4,5 or 6
days with probability 0:3,0:4,0:2 or 0:1, respectively. To our

knowledge, there is no defined standard for performing sensitivity

analysis on parameters which are non-parameterized discrete

distributions (in contrast to parameterized distributions like the

Poisson or the binomial), especially not in individual-based models.

Therefore, we use a combination of statistical methods and present

a sensitivity analysis study which provides a framework for future

studies.

Aims and Relevance
This study is motivated by the need to improve methods for

real-time modeling and predicting during a pandemic [23]. The

usefulness of real-time modeling was illustrated during the 2009

influenza pandemic using both compartmental models [24] and

individual-based models [25]. To improve real-time epidemic

modeling using individual-based models, we need an in-depth

knowledge of the effects of the disease parameters on the dynamics

of predicted epidemics. We therefore explore the following aims: (i)

evaluate individual and joint effects, and rank parameters based on

influence on simulated epidemics and (ii) compare the sensitivity of

the model across age groups and social networks with demo-

graphic differences. Studies have indicated that differences in the

transmission of the 2009 H1N1(A) virus in various regions was

partly due to differences in population demographics [26,27]. In

addition, several studies have suggested that school children tend

to influence the propagation of influenza [28–31]. Both observa-

tions are further investigated in this study under different

parameter combinations. Comparison of the sensitivity across

networks with demographic and urban-rural differences is essential

since this would indicate whether results observed for one social

network are reproducible in another. The experiments and

analysis are expected to further our knowledge of how to improve

real-time modeling of epidemics using such models.

A good understanding of how the disease parameters influence

the dynamics of simulated epidemics would aid in the prediction of

the epidemic curve and estimation of parameters during an

epidemic of a novel influenza virus. The epidemic curve for the

purpose of this study is the daily number of infected persons for the

duration of an epidemic. There are several possible approaches for

real-time estimation of disease parameters during an epidemic

[24,32,33]. However, uncertainty in the data collected during an

epidemic can result in extremely unreliable results [23]. In

addition to improving input data used in prediction, a study of

how minute changes in the model parameters affect the predicted

outcomes would be invaluable. For instance, [21] proposed a real-

time epidemic curve prediction method based on matching

surveillance data for an ongoing epidemic to epidemics simulated

using parameters from previous outbreaks. If the new epidemic

cannot be matched to any of the simulated cases, then a

combination of expert opinion and search algorithms are used in

suggesting new parameters. A sensitivity analysis study would

enable easy assessment of the initial values and selection of the

parameter space for the search algorithm.

To accomplish these aims, we explore the space of possible

incubation and infectious period distributions by generating

distributions with the same mean and also by perturbing the

probabilities of the base case distribution. This process is further

discussed in the problem definition. We use mono-factorial (one-

factor-at-a-time) and full factorial designs to study the effects of

each parameter and joint effects due to interactions between

parameters. We also use principal components clustering, analysis

of variance, and Pearson correlation to determine the level of

sensitivity in the model [2]. Moreover, we use the epidemic curve

as the main outcome measure. These procedures and reasons for

selecting them are discussed in later sections.

Figure 1. The SEIR disease model used in describing disease
progression within the individual-based model. Individuals move
through four health states. Susceptible individuals become exposed to
the disease due to contact with an infected individual. After being
exposed, an individual becomes infectious. An infectious person
recovers at the end of the infectious period. Recovered individuals
can no longer spread the disease.
doi:10.1371/journal.pone.0045414.g001

Sensitivity Analysis of an Individual-Based Model

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e45414



The complexities of this study lie in quantifying the sensitivity of

an individual-based model to changes in parameters which are

discrete probability distributions. As shown in Figure 2, each

individual in the population is randomly assigned an incubation

and infectious period duration sampled from a probability

distribution. For each replicate of an epidemic simulation,

individuals receive new samples from the incubation and infectious

period distribution. Variations in these parameters add to the

stochasticity present in the model. Unlike most studies where the

difficulty of sensitivity analysis is introduced by the number of

parameters, in this study the complexity lies in the model and type

of parameters. To our knowledge, no previous studies have

focused on quantifying the sensitivity of an individual-based model

to changes in parameters which are discrete probability distribu-

tions.

Overview of the Individual-based Model
The process of developing the individual-based model is

described briefly since it is not a novel contribution of this work.

A more detailed description of the individual-based model can be

found in [12] and the supporting information. The individual-

based epidemiology model consists of the social network and the

disease model. The disease model is described in the next section.

The model includes representation of each individual in a

population along with activity schedules describing their move-

ments. Contacts that occur between individuals as they move

about their daily schedule are represented using time-varying

contact networks. These contacts can result in disease transmission

depending on the duration, type of contact and health state of the

individuals. The main steps involved in the construction of the

individual-based model are: creation of the synthetic population;

activity and location assignment; the definition of an infectious

disease model and interventions both pharmaceutical and non-

pharmaceutical used in controlling the propagation of the disease.

The synthetic population is created using demographic infor-

mation, survey and land use data. Synthetic individuals are

defined with specific sets of demographic variables and assigned to

households based on US census data provided in SF3 and PUMA

(Public Use Microdata Area) files [34]. Each individual is assigned

to a household. Some of the demographic information available

for each individual in the synthetic population includes age,

education level, and household income. The synthetic populations

are created to represent the true population as realistically as

possible, while maintaining confidentiality. A census collected at

the block level of the synthetic population is statistically

indistinguishable from the census data [17]. Individuals in the

synthetic population interact with each other and their environ-

ment to produce time-varying social contact networks. Further

information on the creation of the synthetic social network can be

found in [17], [35] and [36].

In addition to having specific demographic information, each

node in the synthetic population is also allocated activities based

on thousands of responses to a time-use survey for a specific

geographical region. As expected, there will be differences in the

time-use survey collected in different geographical regions such as

New York City (and surrounding metropolitan regions) and

Montgomery County in Virginia due to demographic differences

(hereafter referred to as New York and Montgomery County). The

National Household Transportation survey is used in this model to

create the activity templates. Activities can include shopping,

work, daycare, etc. Individuals in the synthetic populations are

matched to the survey households using decision trees based on

demographic variables. Activities are then assigned realistic

geographical locations using a gravity model based on land-use

data [17]. In addition, each activity is assigned a start and end

time, resulting in a minute-by-minute schedule for each synthetic

individual. Currently, this modeling approach is considered the de

facto standard for travel demand models in transportation science

[11].

The social contact network results from interactions between

individuals in the synthetic population based on their activity

schedules. Individuals are represented as vertices in a graph and

edges are used to describe interactions between individuals

(Figure 2). The modeling approaches used in each step of creating

the individual-based model can be found in [11] and the

supporting information. Additional information can also be found

in [37] and [38].

Disease Model
Using a computational model such as the basic SEIR model

(Figure 1), disease transmission is explained within the previously

described network. This implies that each individual moves

through four disease states (susceptible, exposed, infectious and

recovered), and transmission is dependent on the contact between

two individuals in the susceptible and infectious states. The

transition between disease states is probabilistic and timed (e.g.

represented by a probability distribution), and can also depend on

the demographics of an individual (such as their age, work and

health status). As individuals go about their different activities

(such as shopping, and work) they come in contact with other

individuals. Through this process, the disease can be transmitted

from an infected individual to a susceptible individual. See

(Figure 2) for an example illustrating disease transmission between

nodes in a basic network.

For the disease model used in this study, the probability that an

infectious person i infects a susceptible person j is given by:

Pr(w(i,j))~1{(1{t)w(i,j) ð1Þ

where t is the probability of transmission per unit of contact time

between persons i and j [12]. w(i,j) is the contact duration between

i and j measured in seconds. The SEIR model is one of the

simplest disease models which can be used for this individual-

based model. Additional information can be added to the disease

model to better capture different infectious diseases. In addition,

Figure 2. Example of SEIR model describing between host
disease transmission. There are four individuals/nodes in the contact
network and five edges. Different colors indicate different health states.
Also each node is randomly assigned an incubation and infectious
period (xi ,yi) sampled from a discrete distribution. For simplicity, each
of the nodes in this example has an incubation period of 0 days and an
infectious period of 2 days. On day 0, node A is infectious while all other
nodes are susceptible. On day one, node C is infected due to contact
with node A and on day two, node A recovers, while nodes B, C and D
are infectious. There are no susceptible nodes after day two. On day
three, node C recovers. Finally on day four, all nodes recover. Unlike this
example, the networks used in this study have approximately 76000
and 20 million nodes.
doi:10.1371/journal.pone.0045414.g002
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intervention options such as vaccination, antiviral and social

distancing are included in the model to control disease spread.

Single interventions or a combination of interventions can be

introduced either at the start or during a simulated epidemic.

Simulations are run by randomly selecting a number of people

to introduce the disease into the population. During each

simulation, we keep track of information on all contacts, duration

of contact, and which contacts result in infection. Information on

the contacts resulting in disease transmission, the vulnerability of

the nodes, the epidemic size and epidemic curve are some of the

information used in studying the dynamics of an epidemic.

Problem Definition
The following formulation is used in defining the problem.

Given a distribution C: a vector with finite support

(p1,p2,p3, . . . ,pk) where
Pk

i~1 pi~1: k is the number of days

and pi
0s are the probabilities of observing each day. In terms of the

incubation (infectious) period distribution, (p1,p2,p3, . . . ,pk) are

the probabilities that an infected (infectious) individual will have an

incubation (infectious) period of k days.

There are several possible techniques for generating new

distributions depending on the aim of the study. A likely procedure

would involve placing a probability distribution such as the beta

density [39] over C. New distributions can be created by changing

the shape parameters. This implies that a new distribution for the

incubation and infectious period is defined by systematically

generating new vectors, (q1,::::qk) such that
Pk

i~1 qi~1. If this

process is carried out naively, an infinite number of possible

distributions can be generated. A simple approximation is to use a

step size d to perturb one qi to another. The mean of the

distribution is shifted by a few days using such perturbations. This

method can be used to study how changes in the mean of the

incubation and infectious periods affect the behavior of the model.

An alternative to the previously described procedure would

involve defining the mean duration of incubation or infectiousness

while randomly generating new distributions with different

variances. This technique would enable the study of the effects

of the variance of the incubation and infectious period distribu-

tions on the dynamics of the epidemics. In addition, the random

generation of distributions would result in distributions with

different shapes which might not be epidemiologically relevant for

influenza. However, this allows for a mathematically exploration

of the parameter space. It also enables the applicability of this

procedure to models of other infectious diseases with parameters

that are distinct from those based on the natural history of

influenza. In this study, we use both perturbations of the qis and

random generation around the same mean. We selected these

procedures based on their simplicity and results from preliminary

studies which indicated that these techniques are sufficient for

investigating the aims in this study.

The above procedures are for the incubation and infectious

period distributions only. For the transmissibility, which is a real

number, values are selected to simulate epidemics similar to

seasonal influenza, previous pandemics and more extreme

epidemics.

To perform sensitivity analysis on these three quantities, we

explore the mapping ½xi,z(xi)�, i~1,2, . . . ,I , where xi represents

the parameters: transmissibility, infectious period distribution, and

the incubation period distribution [2]. z(xi) are the epidemic

curves resulting from different parameter combinations. See

Table 1 for a summary of the notations used in this study.

Sensitivity analysis involving non-parameterized discrete distri-

butions present special problems that inhibit the uses of standard

techniques such as Latin Hypercube Sampling [40]. The difficulty

arises due to the mathematical dependence between probabilities

representing the distribution (e.g. the sum of any two probabilities

must be less than or equal to 1). Therefore we did not consider

using such a design.

Methods and Analysis

We used statistical methods and tests in the design and analysis

of the experiments in this study. Since no statistical methods are

universally accepted as infallible, we chose methods based on their

applicability to the study [6]. As previously mentioned, for the

study design we used factorial experiments [41]. Mono-factorial

experiments were used in studying the sensitivity of the model to

each of the parameters. A full factorial design was used in

evaluating the influence of factor interactions on the observed

outcomes. In addition, to find underlying groupings within the

collection of curves from all factorial experiments, we used

principal components clustering [42]. The groupings of curves

with similar structures aided in determining the influence of the

different parameters on the shape and form of the epidemic

curves. These procedures are described below.

Public Health Measures
As earlier stated, the epidemic curves were used as model

outcomes z(xi). To facilitate comparison of the epidemic curves,

we performed the analysis from a public health standpoint using

three relevant measures: peak infected proportion, time to peak or

peak time and total attack rate or total infected proportion as

shown in Figure 3. The attack rate = infected-counts/population size.

The peak infected proportion indicates the point of maximum

demand of public health resources such as nurses and hospitals

during an epidemic. The peak time suggests the available time for

implementing control measures such as vaccines, antivirals, and

sequestration to achieve optimal effectiveness. Lastly, the total

attack rate can be used to quantify the disease’s effect based on the

morbidity and mortality rates [19,43]. These measures are also

useful for real-time forecasting and prediction of the impact of an

epidemic.

Analysis of variance (ANOVA) was used to evaluate differences

in the mean of the public health measures given changes in the

parameters. In its simplest form, ANOVA is an extension of the t-

test. ANOVA is typically used to test whether the means of several

groups are equal. The groups in this study were the different sets of

epidemics/experiments resulting from changes in the parameters.

We tested whether the means of the various peak infected

proportions, peak times and attack rates for the different sets of

epidemics were equal. If a statistically significant difference was

observed, we used a pairwise t-test with Bonferroni correction to

find which pairs of experiments were statistically different.

Table 1. Table of notations.

Notation Description

t time

n,k counts

t unit of contact time

p,g probability

xi,yi factor

z(xi) epidemic curves

doi:10.1371/journal.pone.0045414.t001
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Social Networks
We used two synthetic social networks in order to compare

possible effects of demographic and rural-urban differences. The

demographic information for the synthetic populations in the

social networks were based on the population of Montgomery

County and New York with approximately 76000 and 20 million

synthetic individuals respectively. The network for Montgomery

County is available at http://ndssl.vbi.vt.edu/opendata/index.

php. The same disease model parameters were used in simulating

epidemics over the synthetic social networks. As previously

mentioned, random sampling was used in the assignment of the

incubation and infectious period to the nodes in the network.

Random assignment was selected instead of targeted assignment

because it is simpler to implement, and increases the flexibility of

designing and running experiments. In addition, random assign-

ment of these parameters has been used in most studies

[10,11,19,21,22].

Factorial Experiments
In the mono-factorial design, we varied a single parameter and

held the others fixed. In the first set of experiments, we altered the

incubation and infectious period parameters by shifting the mean

by a single day. The main reason for doing this was to evaluate

how changes in the mean infectious and incubation period

distribution would affect the dynamics of simulated epidemics.

This was investigated for two reasons: (i) the natural history of

infection for the 2009 H1N1(A) pandemic was similar to that for

seasonal influenza [44] and (ii) typically the mean incubation and

infectious period are reported during an influenza epidemic, not

the entire distribution.

We varied each of the parameters over five values and studied

the effects of these changes to the dynamics of the simulated

epidemics. First, using five transmissibility values, one incubation

period distribution and one infectious period distribution, we

simulated five sets of epidemics. The five transmissibility values

were in the range: 4:6|10{5 to 8:6|10{5 per sec/contact time.

As earlier mentioned, these values were selected to simulate

epidemics similar to previous pandemics and more extreme

outbreaks. Next, to evaluate the effects of the infectious period

distribution on the epidemic curve, we experimented with five

infectious period distributions, a fixed transmissibility and one

incubation period distribution. The mean of the infectious period

was altered across two to six days. Recall that the mean of the base

case infectious period distribution was four days. So the new

distributions either had a mean that was greater or less by a day or

two compared to the base case. Finally, to evaluate the effects of

the incubation period, we generated five incubation period

distributions while holding the transmissibility and infectious

period distribution fixed. The mean incubation period fluctuated

between one to five days. All epidemics were simulated over both

social networks. In addition, each epidemic was replicated twenty-

five times. These experiments are labeled as Exp.1–3 in Table 2.

The results from this set of analyses led to the second set of

experiments.

In the second set of experiments, we further assessed the effects

of the mean and variance of the incubation and infectious period

distributions on the dynamics of an epidemic. To evaluate the

effects of the variance of the infectious period duration on the

dynamics of the simulated epidemics, we randomly created

thirteen infectious period and twelve incubation period distribu-

tions. The infectious period distributions were defined with

possible infectious durations between two and six days. We

randomly assigned probabilities to observing each day such that

the mean infectious period was four days. Similarly, we also

defined incubation period distributions with possible incubation

durations between one and three days. The probabilities of

observing each of these days in the synthetic population was

defined such that the mean incubation period was two for all

distributions.

We simulated twenty-six epidemics using each of the infectious

period distributions, two similar incubation period distributions

and one transmissibility. Each epidemic was replicated twenty-five

times. These experiments are labeled Exp.5 in Table 2. Next, to

study the influence of the variance of the incubation period

distributions on the dynamics of simulated epidemics, we simuated

twelve epidemics with twenty-five replicates each (Exp.4 in

Table 2). Each epidemic was simulated using one of the incubation

period distributions, a single transmissibility and one infectious

period distribution. The mean of the incubation and infectious

period distributions were set at two and four days respectively

because those were the means of the base case distributions [15].

We analyzed how the variance of these distributions affected the

dynamics of the epidemics. The simulated epidemics were

compared based on the results from an ANOVA and t-test with

Bonferroni correction for multiple comparisons. We tested for

significant differences in the mean of the total attack rate, peak

infected proportion and time to peak.

Using a full factorial design, we varied each of the parameters

across three levels, resulting in twenty-seven combinations/

experiments. The parameters used in the full factorial experiments

were generated by shifting the mean of the base case distributions

by a single day. This resulted in infectious period distributions with

means of three, four and five days. The incubation period

distributions had a mean of one, two and three days. This

variation in the parameters was done for the same reason as the

first set of experiments. Each parameter was defined at three levels

as shown in Exp.6 in Table 2. The parameter levels were labeled:

(t1, t2, t3), (inc1, inc2, inc3) and (inf1, inf2, inf3). The epidemics

each had fifty replicates and were simulated for a duration of three

hundred and fifty days so as to accommodate epidemics with

durations longer than the typical influenza season in the United

States. The epidemics were analyzed using ANOVA and

clustering with principal components.

As previously stated, due to observations made during the 2009

H1N1 pandemic, we also evaluated the sensitivity of the model

based on disease spread within age groups. The four age groups

were: pre-schoolers, school-agers, adults and seniors. The

Figure 3. Public health measures (peak infected proportion,
peak time and total attack rate) used in comparing epidemic
curves.
doi:10.1371/journal.pone.0045414.g003
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Table 2. Summary of Experimental Design.

Labels Experiment Description Transmissibility Incubation Period Infectious Period

Distribution Distribution

Exp.1 Mono-factorial experiment 4:6|10{5 1:0.3 2:0.5 3:0.2 3:0.3 4:0.4 5:0.2 6:0.1

with focus on slight changes 5:6|10{5

to the transmissibility 6:6|10{5

7:6|10{5

8:6|10{5

Exp.2 Mono-factorial experiment to 6:0|10{5 1:0.3 2:0.5 3:0.2 3:0.3 4:0.4 5:0.2 6:0.1

evaluate the effect of changes 0:0.3 1:0.5 2:0.2

to the mean of the incubation 2:0.3 3:0.5 4:0.2

period distribution 3:0.3 4:0.5 5:0.2

4:0.3 5:0.5 6:0.2

Exp.3 Mono-factorial experiment to 6:0|10{5 1:0.3 2:0.5 3:0.2 3:0.3 4:0.4 5:0.2 6:0.1

investigate the effect of changes 2:0.3 3:0.4 4:0.2 5:0.1

to the mean of the infectious 1:0.3 2:0.4 3:0.2 4:0.1

period distribution 4:0.3 5:0.4 6:0.2 7:0.1

5:0.3 6:0.4 7:0.2 8:0.1

Exp.4 Mono-factorial experiment to 6:0|10{5 1:0.3 2:0.5 3:0.2 3:0.3 4:0.4 5:0.2 6:0.1

study the effect of fixing the 1:0.2 2:0.5 3:0.3

mean while changing the 1:0.3 2:0.4 3:0.3

variance and shape of the 1:0.325 2:0.45 3:0.225

incubation period distribution 1:0.25 2:0.40 3:0.35

1:0.3335 2:0.333 3:0.3335

1:0.35 2:0.3 3:0.35

1:0.4 2:0.2 3:0.4

1:0.375 2:0.25 3:0.375

1:0.333 2:0.334 3:0.333

1:0.2 2:0.4 3:0.4

1:0.233 2:0.3 3:0.467

Exp.5 Mono-factorial experiment to 6:0|10{5 0:0.223 1:0.405 2:0.372 2:0.1 3:0.2 4:0.3 5:0.4

study the effect of fixing the 0:0.123 1:0.605 2:0.272 2:0.15 3:0.2 4:0.3 5:0.2 6:0.15

mean while changing the 2:0.1 3:0.2 4:0.4 5:0.2 6:0.1

variance and shape of the 3:0.2 4:0.6 5:0.2

infectious period distribution 3:0.13 4:0.74 5:0.13

2:0.2 3:0.2 4:0.2 5:0.2 6:0.2

3:0 4:1 5:0

3:0.17 4:0.66 5:0.17

3:0.1 4:0.8 5:0.1

3:0.4 4:0.2 5:0.4

3:0.5 4:0 5:0.5

3:0.25 4:0.5 5:0.25

3:0.333 4:0.334 5:0.333

Exp.6 Full factorial experiment to 6:6|10{5 [t1] 1:0.3 2:0.5 3:0.2[inc1] 3:0.3 4:0.4 5:0.2 6:0.1 [inf1]

investigate the impact of 7:6|10{5 [t2] 3:0.3 4:0.5 5:0.2[inc2] 2:0.3 3:0.4 4:0.2 5:0.1 [inf2]

interactions between parameters 8:6|10{5 [t3] 2:0.3 3:0.5 4:0.2[inc3] 1:0.3 2:0.4 3:0.2 4:0.1 [inf3]

and rank parameters by

influence

The experimental description indicates the type of statistical design and the parameter under focus. We present the incubation and infectious period distributions as
follows: k : pi where k is the day and p the probability.
doi:10.1371/journal.pone.0045414.t002
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epidemics were simulated using the parameters for Exp.3 in

Table 2 because the full factorial analysis indicated that the

infectious period distribution had the strongest influence on the

epidemics compared to the other parameters. There was one

transmissibility, one incubation period distribution and five

infectious period distributions. The infectious period distributions

had different mean durations ranging from two to six days. We

evaluated how differences in the mean infectious period duration

affected the dynamics of the age-specific epidemics. For each of

the age-groups, we compared the time to peak, total and peak

infected proportions. We performed this analysis under three

scenarios. In the first case, we assigned the same susceptibility to all

age-groups. In the second scenario, children and elderly were

allowed a higher susceptibility. In the third case, only children had

a higher susceptibility compared to all other age groups. These

settings were modeled based on observations made during

seasonal influenza epidemics and the 2009 H1N1 pandemic. In

addition, several studies have suggested that school-age children

are highly susceptible to infectious disease spread due to regular

incidence of close proximity interactions [30]. We therefore

studied how the epidemic dynamics for each age group (especially

children) varied with changes in the infectious period distribution

and age-specific susceptibility.

All experiments were implemented in the individual-based

model under the base case scenario: no interventions were

introduced to control the spread of the epidemic. To capture the

heterogeneity present in the model and elucidate the influence of

the social networks, each epidemic was replicated between 25 to

200 times. See Table 2 for a summary of the parameters used in

these epidemics and Table 3 for a summary of the various

components involved in the analysis.

Principal Components Clustering
To uncover the parameter with the most significant influence on

the structure of the epidemic curves, we used principal compo-

nents clustering to find underlying groupings within the 1350

epidemic curves from the full factorial experiments. Typically,

replicates of the same epidemic tend to have similar characteris-

tics. Therefore, one would expect epidemics with the same

parameters to fall into the same groups if clustered. However, this

is not always the case due to the stochastic nature of the model and

imperfection of clustering algorithms. In this study, we expected

that by clustering the epidemic curves, we would observe patterns

in the distribution of epidemics into different clusters based on the

levels of the parameters. The parameter having the strongest

influence on the structure of the epidemic curves should result in

groupings based on different levels.

Epidemic curves can be viewed as time series since infected-

counts are collected over fixed time intervals (e.g. on a daily or

weekly basis). The daily infected-counts can be represented as a

vector. The process of clustering based on principal component

analysis was carried out as follows: first we estimated principal

components based on the variance-covariance matrix of the

vectors representing the epidemic curves. Next, we fit a linear

regression equation to centered daily infected-counts for each

epidemic curve to the nonlinear principal components. Lastly, the

regression coefficients were clustered into groups using k-medoids,

which is a robust version of the k-means algorithm. For additional

information on this process see [42]. Several other clustering

approaches could be used, however, the principal components

clustering method was selected because the process captures curves

with similar structures and the regression coefficients provide a

description of the characteristics of curves within each cluster. The

clustering was based on the first six principal components since

those explained over 80% of the variance. Using additional

components did not improve the clustering. We decided to use

nine clusters after experimenting with different groupings.

Increasing the number of clusters failed to provide better

separation.

Results

We present the results by outcome. Recall that the aims of the

study are to: (i) evaluate individual and joint effects, and rank

parameters based on influence on simulated epidemics and (ii)

compare the sensitivity of the model across age groups and social

networks with demographic differences. The results are presented

only for New York since the observations are similar to that for

Montgomery County as discussed in a later section.

Finding 1. The transmissibility and mean infectious
period duration significantly affects the peak time, peak
infected proportion and total attack rate. In contrast, an
increase in the mean incubation duration does not
significantly influence the total attack rate, but slightly
influences the peak time and peak infected proportion.

Support. Figures 4 and 5 display mean epidemic curves from

the first three mono-factorial experiments (Exp.1–3) in Table 2.

Per Figure 4, increasing the transmissibility by a value of

1:0|10{5 per sec/contact time raises the total attack rate by

½6:3%{26:5%�. No overlap is observed between the ranges of the

attack rates from the five sets of epidemics. A pairwise comparison

using the t-test reveals statistical significant differences

(Pv0:0001) for all pairs.

Figure 4 also displays the results for the incubation and

infectious period distributions based on the mean of the

distributions. In general, raising the mean of the incubation

period distribution does not significantly increase the variability

observed in the attack rates. This is because an increase in the

incubation duration does not affect the infectious duration.

Although it takes a longer duration to become infectious, the

time required to spread the disease is not affected, thereby

resulting in similar attack rates. In contrast, an increase in the

mean of the infectious period raises the total attack rate. Since

more individuals have a longer infectious period, the disease tends

to affect a larger proportion of susceptible individuals in the

population.

Table 3. Summary of the Various Components in the
Analysis.

Components Description

Social Networks Montgomery County (VA) and New York City

Factorial Experiments Mono-factorial experiments and

one full factorial experiment

Public Health Measures Peak infected proportion(peak infected
proportion),

time to peak (peak time)

and total attack rate (total infected proportion)

Statistical Methods Analysis of variance (ANOVA), Pearson Correlation,

T-tests with Bonferroni adjustment

and Principal Components Clustering

doi:10.1371/journal.pone.0045414.t003
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The results for the peak time and peak infected proportion are

displayed in Figure 5. Epidemics with a higher transmissibility

tend to peak sooner, and have a higher morbidity rate compared

to epidemics with a lower transmission rate. Pairwise t-tests to

evaluate differences in the means of these measures suggests

statistical significant differences (Pv0:0001). This indicates that

the transmissibility has a major impact on the dynamics of the

simulated epidemics, as would be expected. Though the attack

rates for the incubation period experiments are not statistically

significantly different per ANOVA, the mean peak time and peak

infected proportions are statistically significantly different

(Pv0:0001). This implies that changing the mean incubation

period does not significantly affect the total number of people

infected but rather alters the shape of the epidemic curves.

Furthermore, changes in the infectious period distributions

affects the peak time and peak infected proportion in a similar

manner as the transmissibility. The peak infected proportion rises

with an increase in the mean infectious period. Also, epidemics

with higher mean infectious periods tend to peak earlier compared

to epidemics with a lower mean infectious period. A pairwise

comparison using the t-test indicates that the peak infected

proportion, peak time and attack rates are statistically significantly

different (Pv0:0001) for all pairs.

Observations on the transmissibility and mean infectious period

are not surprising. The basic reproduction number (R0) increases

with an increase in the transmissibility with estimated mean values

of 1:66, 1:75, 1:95, 2:15 and 2:54 corresponding to transmissibility

values of 4:6|10{5 to 8:6|10{5 per sec/contact time. The

mean R0 values are 0:73, 1:27, 1:62, 1:89 and 2:26 for mean

infectious periods of 2, 3, 4, 5 and 6 days respectively. However,

no pattern is observed in the R0 values for epidemics involving

changes in the mean incubation period. The R0 fell within a range

of 1 to 3:4 for replicates of each of the epidemics. The mean R0

represents the mean initial effective reproduction number (effec-

tive R). Plots of effective R for Exp.1–3 are given in Figure S7.

These observations suggest that the mean infectious and

incubation durations might have a role on the dynamics of the

simulated epidemics. Therefore, we further investigate the effects

Figure 4. Results for mono-factorial experiments for each of
the factors: (A) transmissibility, (B) incubation period distribu-
tion and (C) infectious period distribution. Each curve represents
the mean attack rate over time based on 25 replicates of each
simulation. (A) shows that an increase in the transmissibility increases
the attack rate. (B) shows that changing the mean of the incubation
period has a minimal effect on the total attack rate and (C) indicates
that an increase in the mean infectious duration results in an increase in
the attack rate. Simulations with mean infectious period of 2 days failed
to become epidemics.
doi:10.1371/journal.pone.0045414.g004

Figure 5. Results for mono-factorial experiments for each of
the factors: (A) transmissibility, (B) incubation period distribu-
tion and (C) infectious period distribution. Each curve represents
the mean epidemic curve from 25 replicates of each experiment. (A)
Increasing the transmissibility shortens the peak time and increases the
peak infected proportion. (B) A reduction in the mean infectious period
results in earlier peaks and increases in the peak infected proportion. (C)
An increase in the mean infectious duration results in shorter peak
times and increases the peak infected proportion.
doi:10.1371/journal.pone.0045414.g005
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of fixing the mean infectious and incubation periods as discussed in

the next section.

Finding 2. The mean of the incubation period
distribution appears to be the sole determinant of its
effects on the simulated epidemics. In contrast, the mean
and variance of the infectious period distribution are
needed to determine its influence on epidemic
dynamics.

Support. Figure 6 displays the mean epidemic curves

resulting from simulated epidemics with similar mean incubation

periods (Exp.4 in Table 2). The mean epidemic curves presented

in Figure 6 are based on twenty-five replicates of each experiment.

An ANOVA on the total attack rate indicates lack of statistically

significant differences (P~0:514). Similar results are observed for

peak time and peak-infected proportions.

Moreover, a plot of the variance of the incubation period

distribution against the mean attack rates (Figure 6) suggest a weak

relationship with a Pearson correlation coefficient r of 20.289. A

similar observation is also made between the variance of the

incubation period distribution, mean peak time (r = 20.263) and

mean peak infected proportions (r = 0.146) (Figure S1). This

suggests that changes in the variance of the incubation period

distribution does not have a strong influence on the total attack

rate, peak time and peak infected proportions. These results also

allude to the idea that solely changing the shape of the incubation

period distribution while holding the mean incubation period fixed

might not significantly influence epidemic prediction. Further-

more, changing the base case incubation period, which has been

used in several studies [21,22,31], might not affect the results in

these studies if the mean of the incubation period distribution

remained the same.

The results based on comparing epidemics resulting from

infectious period distributions with the same mean values (Exp.5 in

Table 2) are described in Figure 7 based on the mean epidemic

curves. The epidemics appear to have similar shapes. An ANOVA

indicates that at least one of the mean peak time, peak infected

proportions and total attack rates is statistically significantly

different (Pv0:0001) from the others. Since there are two

incubation period distributions, we compare epidemics with the

same incubation period distribution. The results are also

significantly different for all public health measures.

In addition, a plot of the variance of the infectious period

distributions against these measures suggests that the mean of the

infectious period is not the sole influence on these measures.

Rather, the total and peak infected proportions decrease with an

increase in the variance of the infectious period distribution

(r = 20.99 and 20.99). On the contrary, the peak time increases

with a raise in the variance of the infectious period distribution

(r = 0.95) (Figure S2). These outcomes demonstrate that the

dynamics of simulated epidemics might be sensitive to the mean,

variance and shape of the infectious period distribution. These

observations are contrary to that observed for the incubation

period distribution where the mean of the distribution appears to

be the sole determinant of its effects on the epidemic outcome.

Finding 3. Compared to the other parameters, the
infectious period distribution exerts the strongest
influence on the total attack rate and structure of the
epidemic curves.

Support. The epidemics simulated based on the full factorial

design (Exp.6 in Table 2) fail to have unique shapes (Figure S3).

This indicates that a one-to-one mapping does not exist between

the factor combinations and shape of the epidemic curves. In

general, combinations of high transmissibility and long mean

infectious periods result in epidemics which peak sooner and have

a higher peak infected proportion. Epidemics with low transmis-

sibility, long mean incubation periods and short infectious periods

peak later and have lower peak infected proportions. Epidemics

from all other factor combinations fall between. In addition,

epidemics with the same transmissibility and infectious period

distributions have similar mean total attack rates. For example, an

ANOVA on the total attack rates of three sets of epidemics with

the same transmissibility and infectious period distribution

indicated a lack of statistical significant difference (P = 0.871).

An ANOVA on the total attack rates, peak infected proportions,

and peak times indicates that the mean of at least one of the

experiments is statistically significantly different from the others

(Pv0:0001). A pairwise comparison to find which experimental

pairs are significantly different would have resulted in three

hundred and fifty one comparisons. To simplify our analysis, we

present the contributions to the variance of each of the measures in

Figure 6. Results from mono-factorial experiments focused on
changes in the variance of the incubation period distribution.
(A) The mean total attack rates plotted over time. The total attack rates
are not statistically significantly different across all 12 epidemics. (B)
Epidemic curves showing the infected proportion over time. (C) A weak
negative relationship is observed between the variance of the
distributions and attack rates. These results indicate that epidemics
with similar mean incubation periods can have similar attack rates even
with differences in the variance of the distributions.
doi:10.1371/journal.pone.0045414.g006
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Table 4 and investigate the factor with the strongest impact on the

structure of the epidemic curves.

Per Table 4, the infectious period distribution explains the

highest proportion of variance observed in the peak time, peak

infected proportion and total attack rates. The parameters are

ranked by variance explained in Figure 8. In terms of parameter

combinations, transmissibility and infectious period distribution

describes the highest proportion of variance for the total attack

rate and peak time. On the other hand, the combination of the

infectious and incubation periods explains the highest proportion

of variance observed in the peak infected proportion (Table S1).

However, the values noted for the interactions are much smaller

than those for individual parameters. The results therefore indicate

that the individual parameters explain most of the variance

observed in the three public health measures.

To reaffirm the findings based on the ANOVA, we use principal

components clustering to find underlying groupings within

epidemic curves from all experiments. Epidemic curves from the

twenty-seven experiments appear to be randomly distributed

across clusters, irrespective of parameter combinations (Figure S4).

Except for one cluster, there are more than two sets of parameter

combinations in all the clusters. However, in most cases, the

epidemic curves in the same clusters have mean infectious period

distributions with a difference of one day. These observations

suggest that the infectious period distributions have some influence

on the clustering.

The clustering in Figure 9 is color coded based on the levels of

the infectious period distribution. Note that except for two clusters,

all others have one or two levels of the infectious period

distribution. In most clusters, we observe groupings of epidemic

curves with mean infectious periods of three and four days or four

and five days. In one cluster, all epidemics have a mean infectious

period of five days. Furthermore, note that the curves in Figure 9

are grouped by peak time and spread, indicating that the

clustering captured the structure of the epidemic curves.

We also visualized the clustering based on the levels of the

transmissibility and incubation period distributions (Figures S5

and S6). Unlike the groupings observed in the levels of the

infectious period distribution, most of the clusters contain all levels

of the incubation period distribution and the transmissibility. This

implies that there is no particular influence of these parameters on

the shape of the epidemic curves. These results therefore allude to

the idea that the infectious period distribution exerts the strongest

impact on the total attack rate and shape of the epidemic curves.

Finding 4. The model sensitivity is consistent across
social networks with demographic and rural-urban
differences.

Support. The same trends are observed across all experi-

ments for both Montgomery County and New York. Although

Montgomery County and New York have both demographic and

rural-urban differences, these differences are not apparent in the

epidemic outcomes. In Table 5, we present the Pearson

correlation coefficients indicating the similarities between the

results observed over the two social networks. The columns are

labeled based on the notations used in Table 2. Note the high

correlations signifying that the trend observed in the results is

almost identical in most situations. For example, the column for

Exp.1 showed that an increase in the transmissibility on average

results in a shorter peak time, an increase in the total and peak

infected proportions. This is because increasing the transmission

value increases the probability of infections in the population.

The lowest correlations are observed for Exp.4, where we study

the effect of the mean and variance of the incubation period

Figure 7. Results from mono-factorial experiments focused on
changes in the variance of the infectious period distribution.
(A) Mean attack rates for 24 epidemics with the same mean infectious
period. (B) Mean epidemic curves showing daily infected proportion
and (C) a plot of the infectious period variance against the attack rate.
The means of the total attack rate, time to peak and peak infected
proportion are all statistically significantly different based on an ANOVA
and pairwise t-test. In addition, an increase in the variance results in a
decrease in the total attack rate and peak infected proportion. These
observations suggest that epidemics with the same mean infectious
period can have different dynamics.
doi:10.1371/journal.pone.0045414.g007

Table 4. Analysis of contributions of the parameters to the
variance observed in the total attack rate, peak proportion
infected, and peak time.

Factor Total Attack Rate
Peak Infected
Proportion Peak Day

Total Variance 25.36 6:48|10{2 5:06|106

Transmissibility 2.659 0.0063 4:25|105

Infectious period 21.67 0.0511 3:23|106

Incubation period 0.008 0.0058 6:46|105

These are based on the full factorial design. The first row shows the total
variance in each of the three outcome measures, while the rows beneath
display the variance explained by each factor. Note that the infectious period
explains the highest proportion of variance observed in all three public health
measures.
doi:10.1371/journal.pone.0045414.t004
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distribution on the three public health measures. The conclusions

drawn from this set of analysis indicate that the incubation period

distributions result in epidemics with similar peak proportion

infected and total attack rates. There is no trend observed between

the three public health measures and changes in the variances;

therefore the lack of significant correlation. However, the overall

observations are similar across the social networks. This therefore

suggests that the results observed in this sensitivity study are not

restricted to a particular network but can easily be applicable to

others under certain assumptions.

Finding 5. School-age children have the highest age-
specific attack rates irrespective of mean infectious
period and susceptibility of the other age groups.

Support. In Figures 10 and 11, we display the mean epidemic

curves for five sets of epidemics simulated under three scenarios.

The five sets of epidemics are based on varying the mean

infectious period between 2–6 days. Note that the outbreaks with

mean infectious duration of two days are not displayed since the

simulations failed to become epidemics. The three scenarios are

based on: assigning the same disease susceptibility to all age groups

(Figures 10(a) and 11(a)), assigning a higher susceptibility to school-

age children and elderly (Figures 10(b) and 11(b)) and defining a

higher susceptibility only for school-age children (Figure 10(c) and

11(c)). These will be called first, second and third scenarios for the

remainder of this section. The discussions are focused on how

these changes affect the school-age epidemics relative to the other

groups.

School-age children have the highest age-specific total attack

rates for all epidemics across all scenarios. Preschoolers have the

second highest age-specific total attack rates. Adults have third

highest age-specific total attack rates and the elderly have the

lowest attack rates. For example, under the first scenario,

epidemics for which the population have a mean infectious period

of five days, school-agers, preschoolers, adults and elderly have a

mean age-specific total attack rate of approximately 90%, 65%,

47% and 35% respectively. Similar attack rates are observed

under the other two scenarios. Allowing school-age children to

have a higher susceptibility compared to other age groups does not

result in higher attack rates compared to the case in which all age

groups have the same susceptibility. These findings suggest that

neither increasing the mean infectious period nor changing the

susceptibility affects the trend of disease spread observed across

age groups. The high attack rates observed for school-age children

could be attributed to the network degree and average contact

time distributions. Children have a mean degree of 37:9 and

average person contact time of 14493 seconds. This is higher than

the average degree of 34:5 and contact time of 8533 seconds

observed for adults. Since children have a higher average contact

time and tend to be more connected, they are also more likely to

become infected.

Figure 8. Plot of the mean total attack rate against all factor combinations. t stands for transmissibility, infc is an abbreviation for infectious
period and inc represents the incubation period. The parameters are labeled according to Table 2. The factors are arranged by influence where the
infectious period has the most influence on the total attack rate and the incubation period has the least influence on the total attack rate.
doi:10.1371/journal.pone.0045414.g008
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The overall trend of disease spread is similar across all three

scenarios. The trends observed in the attack rates and peak times

are similar for all sets of epidemics and age groups (r§0:90). In

addition, under the first scenario, the following pairs do not have

statistical significantly different peak times for epidemics with

mean infectious duration of three days: (preschoolers, seniors),

(preschoolers, adults) and (adults, seniors) with P~0:23,1:00 and

0.16 respectively. For epidemics with mean infectious duration of

four days, we do not observe statistical significant differences in the

following age group pairs: (preschoolers, seniors), (preschoolers,

adults) and (adults, seniors) with P = 0.183, 1.00 and 0.094

respectively. The same pairs do not have statistically different

peak times (P = 1.00) for epidemics with mean infectious periods of

five and six days. Note that the school-age population is not

included in any of the pairs with similar peak times. On the

contrary, all pairwise comparisons of the total attack rates resulted

in statistically significant differences across all age groups and

epidemics (Pv0:0001). P-values of one are due to Bonferroni

adjustment.

Per Figures 10 and 11, longer mean infectious periods result in

shorter times to peak and higher attack rates. However, the total

and peak infected proportions differ between scenarios for each

Figure 9. The epidemic curves from all 27 factorial experiments grouped using principal components cluster analysis. Note that
curves in each cluster are grouped by time to peak and spread. Different colors are used to differentiate curves with different levels of the infectious
period distribution. Green, orange and purple are used to represent epidemics with mean infectious period of five, four and three days respectively.
In most cases, two levels of the infectious period are observed within each cluster.
doi:10.1371/journal.pone.0045414.g009
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epidemic. The attack rates for school-agers appear to be more

practically similar between scenarios (1) and (2), although a

pairwise comparison of the means indicate statistical significant

differences (Pv0:0001). Epidemics with mean infectious period

durations of five and six days seem to have more similar attack

rates compared to epidemics with mean infectious duration of

three and four days. Lastly, the peak time steadily shortened with

an increase in the mean infectious period.

Discussion

In this study, we performed sensitivity analysis on discrete

probability distributions parameters for an individual-based model

for influenza. The major findings in this study were: (i) minute

changes in the disease parameters significantly increased the peak

proportion infected, total attack rate and time to peak. (ii)

Knowing the mean of the incubation period distribution appeared

to be sufficient in predicting its effects on the dynamics of a

simulated epidemic. (iii) The characteristics of the infectious period

distribution affected the total attack rate and structure of the

epidemic curves. (iv) The sensitivity of the individual-based model

was independent of the demographical aspects of the social

networks. (v) Differences in age-group susceptibility did not

influence the overall trend of disease severity observed within

the population. These observations can aid in improving real-time

epidemic modeling using similar models.

Two important measures to predict during an epidemic are the

time to peak and the total attack rate [25]. However, to make

accurate predictions of these measures, we need good estimates of

parameters such as the transmissibility, incubation and infectious

period. Typically, these parameters are estimated using household

transmission data [45]. These are usually observational studies and

not experimental studies. Understanding that the models can be

highly sensitive to small changes in the parameters can aid in

mitigating some of the bias usually observed in observational

studies. In addition, upon estimation of the parameters, interven-

tion strategies can be evaluated to control the spread of the

epidemic.

The uncertainty in real-time epidemic modeling and predictions

in the early stages of an outbreak are partly due to the

imperfection of incidence data [23]. However, incomplete

knowledge of the effects of the parameters can also influence

predicted outcomes. Since there is not a one-to-one mapping of

epidemic characteristics to disease parameters, different parameter

combinations can produce epidemics with similar characteristics.

Therefore, both biological details on the virus and epidemiological

data are needed to improve real-time epidemic modeling [23].

However, this study is not without limitations. The space

explored for the parameters in the experiments was limited since

in most cases, differences in the mean incubation and infectious

period distributions lay between 1–3 days. More extreme

differences might be observed if more extensive distributions were

used. However, one can argue that using parameters which are

similar provides a more strenuous analysis on the system, since

parameters with significant influences would be more distinguish-

able from those with minute influences. In addition, assumptions

about the disease model were simplified for this study. Additional

layers can be included to describe different compartments of the

population, such as infected asymptomatic and infected symp-

tomatic individuals. Furthermore, future studies can also evaluate

sensitivity in the presence of various intervention strategies and

also with additional information such as school opening dates by

region [46].

In addition, since network structure has been shown to influence

disease dynamics [43,47,48], a study evaluating the joint effects of

changes to the network structure and the disease parameters

would also be beneficial.

The results in this study add to the growing literature of real-

time modeling of epidemics [21,24,32,33]. These methods are

essential for pandemic planning and improving public policy

decisions. In addition, this study provides a framework from which

Table 5. Pearson correlation between the trends observed in
the results for Montgomery County and New York.

Experiments

Measures Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

Total attack rate 1.000 0.965 0.983 0.479 0.993

Peak attack rate 0.996 0.991 0.987 0.211 0.995

Peak time 0.996 0.999 0.998 0.751 0.921

The labels of the experiments are based on the labeling used in Table 2.
Experiments using the two social networks result in similar outcomes.
doi:10.1371/journal.pone.0045414.t005

Figure 10. Age-specific mean epidemic curves presented by
mean infectious duration. In (A), all age groups have the same
disease susceptibility, (B) school-age children and elderly have a higher
susceptibility and (C) school-age children have a higher susceptibility to
the disease. Children have the highest mean peak infected proportion
irrespective of the mean infectious period duration and susceptibility of
the other age groups.
doi:10.1371/journal.pone.0045414.g010
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future studies can build on for more complex sensitivity analysis on

individual-based models with discrete probability distribution

parameters. Network models based on urban transportation

systems, ad hoc communication and computing systems, and

public health which use a probabilistic structure to describe

interaction between nodes can all benefit from this study [49].

Furthermore, the level of sensitivity of this model to slight changes

in these parameters reaffirms the idea that studies about epidemics

using individual-based models are suggestions and not precise

predictions, which could benefit public health pandemic planning.

Supporting Information

Figure S1 Results from mono-factorial experiments
(Exp.4 in Table 2) focused on changes in the variance
of the incubation period distribution. (A) Plot of the

variance of the incubation period distribution against the peak

proportion infected and (B) plot of variance of the incubation

period distribution against the peak time. No obvious pattern is

observed in the relationship between the two measures and the

incubation period variance.

(EPS)

Figure S2 Results from mono-factorial experiments
(Exp.5 in Table 2) focused on changes in the variance
of the infectious period distributions. (A) Plot of the

variance of the infectious period distribution against the peak

proportion infected and (B) figure of the variance of the infectious

period distribution against the peak time. Note, the linear trend

between the two measures and the variance of the infectious

period.

(EPS)

Figure S3 Mean epidemic curves from 50 replicates of
each full factorial experiment (Exp.6 in Table 2). Each

outbreak is simulated for a duration of 350 days so as to

accommodate outbreaks that are similar to previous influenza

pandemics, seasonal epidemics and more extreme outbreaks. (A)

shows the total proportion of the population infected over time. (B)

is the daily proportion of infected individuals. Although the

parameters used in producing the epidemics are different, the

resulting dynamics are similar for some of the epidemics.

(EPS)

Figure S4 The epidemic curves from all 27 factorial
experiments are grouped using principal components
cluster analysis. Note that curves in each cluster are grouped

by peak time and spread. Different colors are used to differentiate

curves resulting from replicates of each of the 27 epidemics.

Epidemic curves from all experiments appear to be randomly

distributed across clusters, irrespective of parameter combinations.

(EPS)

Figure S5 The epidemic curves from all 27 factorial
experiments are grouped using principal components
cluster analysis. Different colors are used to differentiate curves

from different transmissibility levels. Unlike the groupings

observed in the levels of the infectious period distribution

(Figure 9), no apparent groupings of factor levels were observed

for the transmissibility.

(EPS)

Figure S6 The epidemic curves from all 27 factorial
experiments are grouped using principal components
cluster analysis. Different colors are used to differentiate curves

from different incubation period distributions. Unlike the

groupings observed in the levels of the infectious period

distribution (Figure 9), no obvious groupings of factor levels were

observed for the incubation period distribution.

(EPS)

Figure S7 The effective reproduction number R(t) for
mono-factorial experiments for each of the factors: (A)
transmissibility, (B) incubation period distribution and
(C) infectious period distribution. Each curve represents the

mean effective reproduction number based on 25 replicates of

each experiment. (A) shows the effective reproduction number

given changes in the transmissibility from 4:6to8:6|10{5 per

sec/contact time, (B) illustrates the effective reproduction as the

mean of the incubation period distribution changes between 2 to 6

days and (C) is the effective reproduction as the mean of the

infectious period distributions varies between 1 and 5 days.

(EPS)

Figure S8 Degree distribution for children (A) and
adults (B) in the NY social network.The long tails are

consistent with what one would expect in the real world. The

higher mean degree observed in children might be the reason for

the higher age-specific attack rates observed in children.

(EPS)

Figure 11. Age-specific mean total attack rates presented by
mean infectious duration. In (A), all age groups have the same
disease susceptibility, (B) school-age children and elderly have a higher
susceptibility and (C) school-age children have a higher susceptibility to
the disease. Children had the highest mean age-specific total attack rate
across all epidemics irrespective of the mean infectious period duration
and susceptibility of the other age groups.
doi:10.1371/journal.pone.0045414.g011
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Model S1 Description of the individual-based model
used in this study.
(TEX)

Table S1 Analysis of contributions of the parameters to
the variance observed in the total attack rate, peak
proportion infected, and peak time. The first row shows the

total variance in each of the three outcome measures, while the

rows beneath display the fraction of the total variance explained

by each factor. t is used to represent transmissibility, inc

abbreviates incubation period distribution and infc represents

the infectious period distribution. The infectious period distribu-

tion explains the highest proportion of the variation observed in all

three measures.

(TEX)
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