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Precise Feature Based Time Scales and Frequency
Decorrelation Lead to a Sparse Auditory Code
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Sparse redundancy reducing codes have been proposed as efficient strategies for representing sensory stimuli. A prevailing hypothesis
suggests that sensory representations shift from dense redundant codes in the periphery to selective sparse codes in cortex. We propose
an alternative framework where sparseness and redundancy depend on sensory integration time scales and demonstrate that the central
nucleus of the inferior colliculus (ICC) of cats encodes sound features by precise sparse spike trains. Direct comparisons with auditory
cortical neurons demonstrate that ICC responses were sparse and uncorrelated as long as the spike train time scales were matched to the
sensory integration time scales relevant to ICC neurons. Intriguingly, correlated spiking in the ICC was substantially lower than predicted
by linear or nonlinear models and strictly observed for neurons with best frequencies within a “critical band,” the hallmark of perceptual
frequency resolution in mammals. This is consistent with a sparse asynchronous code throughout much of the ICC and a complementary
correlation code within a critical band that may allow grouping of perceptually relevant cues.

Introduction

Mammals face a daunting task of identifying behaviorally rele-
vant sound cues that they rely on for communication and sur-
vival. How neural populations efficiently achieve this seemingly
complex task is unclear. Sparse coding and redundancy reduction
are two candidate strategies that may allow for an efficient usage
of neural resources (Attneave, 1954; Barlow, 1961, 2001; Levy and
Baxter, 1996; Olshausen and Field, 2004).

Sparse redundancy reducing codes are those in which action
potentials occur infrequently and independently from neuron to
neuron leading to low levels of metabolic activity and high com-
putational efficiency. Concise definitions of sparse coding have
been recently proposed of which a number of requirements need
to be satisfied (Willmore and Tolhurst, 2001; Willmore et al.,
2011). First, single neurons can exhibit lifetime sparse responses
in which a neuron is silent for most stimuli and produces strong
activity for only a small subset of stimuli. Second, population
sparseness places constraints on the activity pattern of a neural
population by requiring that neural responses are uncorrelated
from neuron to neuron and few neurons are active (Willmore et
al,, 2011).

Theoretical studies have proposed that frequency-tuning
properties in the cochlea can be predicted by an efficient sparse
population code (Smith and Lewicki, 2006) and similar predic-
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tions have been made for the representation of spectrotemporal
sound modulations in the auditory cortex (Klein et al., 2003).
Although experimental evidence has implicated sparse and re-
dundancy reducing strategies in auditory cortex (Chechik et al.,
2006; Hromadka et al., 2008) there is conflicting experimental
evidence for such strategies in subcortical levels of the mamma-
lian auditory system (Chechik et al., 2006; Holmstrom et al.,
2010). One hypothesis is that sensory structures are hierarchically
organized to increase selectivity from the periphery to cortex in a
manner that increases sparseness and decreases redundancy (Att-
neave, 1954; Barlow, 1961). This view is partly based on the ob-
servation that sensory driven spike rates tend to decrease from
peripheral to central levels, yet such a view gives little consider-
ation to the time scales of the features being encoded at each
structure. This is particularly relevant to hearing where percep-
tually relevant temporal cues span roughly three orders of mag-
nitude (~1-1000 Hz) and likewise selectivity for temporal cues
and response precision vary systematically over several orders of
magnitude from the auditory nerve to auditory cortex (Joris et al.,
2004).

We propose a novel framework for sparse coding and re-
sponse redundancy that explicitly accounts for sensory time scale
that are relevant to each neural structure. Specifically, we propose
that sparseness and response redundancy need to be measured at
time scales comparable to the sensory integration time scales of a
particular structure. We apply this framework to study the role of
sparse coding and synchronous activity in the central nucleus of
the inferior colliculus (ICC). We demonstrate complemen-
tary principles whereby sparse uncorrelated activity dominates
throughout most of the ICC and temporally sparse yet correlated
activity provides a mechanism for binding acoustic features
within the limits of the perceptual critical band frequency reso-
lution (Fletcher, 1940; Yost and Shofner, 2009).
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Materials and Methods

Surgical procedure

Animals were housed and handled according to approved procedures by
the University of Connecticut Animal Care and Use Committee and in
accordance with National Institutes of Health and the American Veteri-
nary Medical Association guidelines.

The experimental procedures have been outlined in detail previously
(Rodriguez et al., 2010). Briefly, female adult cats (N = 6) were initially
anesthetized with a mixture of Ketamine (10 mg/kg) and Acepromazine
(0.28 mg/kg i.m.) and were subsequently maintained in a surgical state
with either sodium pentobarbital (30 mg/kg, N = 2) or isoflurane gas
mixture (3—4%, N = 4). An endotracheal tube was inserted to minimize
respiratory noise. The inferior colliculus (IC) was exposed by aspirating
the overlying cortical tissue and the bony tentorium. Following surgery,
the animal was maintained in a nonreflexive state by continuous infusion
of Ketamine (2 mg - kg "' - h ') and Diazepam (3mg-kg '-h ™ '),ina
lactated ringers solution (4 mg - kg ~' - h ~"). Biological data (heart rate,
temperature, breathing rate, and reflexes) was monitored throughout the
experiment and the infusion rate was adjusted accordingly.

Acoustic stimuli and delivery

Sounds were delivered in a sound-shielded chamber (IAC) via hollow
ear-bars (Kopf Instruments). The system was calibrated (flat spectrum
between 200 Hz and 40 kHz, =3 dB) with a Finite Impulse Response
(FIR) inverse Filter (implemented on a Tucker-Davis Technologies RX6
Multifunction Processor). Sounds were delivered with either a Tucker-
Davis Technologies RX6 or a RME DIGI 9652, through dynamic speaker
drivers (Beyer DT770).

We first presented a random sequence of pure tones (100 ms duration
tone pips with 300 ms inter-tone interval spanning 1-32 kHz and 5-85
dB SPL in 1/8 octave and 10 dB steps) to measure the frequency response
area of each unit and to verify the tonotopic gradient of the ICC (Mer-
zenich and Reid, 1974; Semple and Aitkin, 1979). Next, a Dynamic Mov-
ing Ripple (DMR) sound was presented dichotically to measure the
spectrotemporal preferences of the ICC as previously described (Escabi
and Schreiner, 2002). The DMR is a time-varying broadband sounds
(1-40 kHz; 96 kHz sampling rate) containing spectral (0—4 cycles/oc-
tave) and temporal (0-500 Hz) modulations that have been shown to
efficiently activate ICC neurons and are prominent features in natural
sounds (Rodriguez et al., 2010). For this study, a 10 min sequence of the
DMR was presented twice (Trial A and Trial B, 20 min in total) at fixed
intensity (80 dB SPL, 65 dB spectrum level per 1/3 octave). As described
below, this allows us to estimate the spike timing precision and reliability
of aneural response to the stimulus using shuffled correlogram methods.

Electrophysiology
Neural recordings were performed over a period of 24-72 h. Acute
4-tetrode (16 channel) recording probes (two shanks with two tetrode
sites on each, 150 wm spacing, impedance 1.5-3.5 M() at 1 kHz, Neu-
roNexus Technologies,) were used to record neuronal activity from the
ICC. The probes were first positioned on the surface of the IC with the
assistance of a stereotaxic frame (Kopf Instruments) at an angle of ~30°
relative to the sagittal plane (orthogonal to the frequency-band lamina)
(Schreiner and Langner, 1997). Electrodes were inserted into the IC with
a LSS 6000 Inchiworm (Burleigh EXFO). Efforts were made to sample
different regions ICC by moving the electrode along the Mediolateral and
rostral-caudal axis. Figure 1a shows a picture of the IC exposure from one
of the experiments with the recording positions (white circles). At each
penetration location we advanced the probe depth and recorded only
from locations that followed a clear tonotopic gradient consistent with
the central nucleus (Merzenich and Reid, 1974; Semple and Aitkin, 1979)
and which exhibited well isolated single units (1.2 average number of
units per site; sorted offline, see below). The probes were advanced until
the end of the probe was reached (3 mm total length). Best frequencies
with this recording strategy were confined to the range 1.3-16.7 kHz
(median 6.5 kHz).

Neural responses were digitized and recorded with a RX5 Pentusa Base
station (Tucker-Davis Technologies) followed by offline analysis in
MATLAB (MathWorks Inc.). The continuous neural traces were digitally
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bandpass filtered (300-5000 Hz) and cross-channel covariance was com-
puted across tetrode channels. Vectors consisting of the instantaneous
channel voltages across the tetrode array that exceeded a hyperellipsoidal
threshold of 5 were used to detect candidate action potentials and spike
waveforms (1.5 ms width) were aligned and sorted using peak values and
first principle components with a automated clustering software
(KlustaKwik software) (Harris et al., 2000). Sorted units were classified as
single units only if the waveform signal-to-noise ratio exceeded 5 (14 dB).

Spectrotemporal receptive fields (STRFs) were obtained using spike-
triggered averaging of the DMR envelope (Escabi and Schreiner, 2002). To
assure that STRFs were of high quality and that neurons responded reliably
we only considered phase-locked neurons with significant STRFs (signal-to-
noise ratio >5 or 14 dB). We have shown previously that some IC neurons
do not phase-lock to the spectrotemporal sound modulations so that the
STREF cannot be used to measure response sensitivity (Escabi and Schreiner,
2002). Furthermore, to avoid adaptation effects that could potentially distort
the measured spike train cross- and autocorrelograms (see below) we re-
quired that spike rates were consistent between the two response trials (spike
rate difference smaller than 30% of each other).

To compare ICC response with those from auditory cortex, neural data
were also obtained from a previous study in the cat that used the dynamic
moving ripple sound (Miller et al., 2002) (N = 57 units). These auditory
cortical data were subjected to the same analysis as the ICC data to quantify
the degree of sparseness in cortical responses, as described below.

Integration time

The integration time (IT) of each neuron is defined as the time over which
the sound history has a direct effect on the neuron’s response (Theunissen
and Miller, 1995). It is computed from the neurons spectrotemporal recep-
tive field and includes inhibitory and excitatory components of the STRF
using procedures outlined previously (Rodriguez et al., 2010). Briefly, STRFs
for the contralateral ear of identified ICC single neurons were obtained using
spike-triggered averaging (Escabi and Schreiner, 2002). For each STRF we
first derived the power distribution of the analytic STRF

p(t,x) = |STRF(t,x) + i + H{STRE(t,x)}% (1)

where H{ - } is the Hilbert transform. The temporal power marginal was
obtained by collapsing p(t,x) along the spectral dimensions and normal-
izing for unit area,

pt) = [p(t,x)dx/[[p(t,x)dtdx. (2)

The neuron’s IT is then estimated as the duration of this temporal com-
ponent where the power exceeds 10% relative to the peak.

Encoding time and firing reliability

We also estimated the encoding time (ET) of each neuron. The encoding
time represents the time window over which the spike train conveys
information about a particular stimulus feature (Theunissen and Miller,
1995). Conceptually the ET corresponds to the time window over which
the neural response is updated to represent dynamic variations in the
stimulus. The ET can be estimated from the correlation time of the
response which we measured using a shuffled correlogram algorithm.
We first measured the spike timing precision and firing reliability of each
neuron using a shuffled correlogram algorithm applied to responses
from two trials of the DMR (Trial A and B). We will use the spike timing
precision for reliable spikes as a metric of the ET since it represents the
time scale over which stimulus driven spikes are temporally correlated.

The spike train autocorrelogram was first obtained as:

AA + BB
d)aum(T) = M) (3)

where ¢y, (1) = (ry(t)ry(t + 7)) is the cross-correlogram between trial X
and Y, ry(t) is the spike train for trial X, r,(¢) is the spike train for trial Y,
and (+) = 1/T [ - dtis the time average operator. The shuffled au-
tocorrelogram was then computed as

AB + BA
d)shufﬂed(T) = M~ (4)
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The precision and reliability of firing was esti-
mated by fitting the shuffled autocorrelogram to
a Gaussian model of the form (Elhilali et al.,
2004)

d)model(T) = A+ p- A 76*72,40-2,

(5)

where p is the firing reliability, A is the firing
rate and o is the spike timing jitter variance.
The parameter o-and p were obtained by model
to the experimentally measured shuffled corre-
logram using constrained least-squares opti-
mization where A = L/T and o > 0, and 0 =
p = 1. The ET is defined as twice the SD of the
estimated spike timing jitter (20).

Sparse coding analysis
We tested for the possibility that neural re-
sponses in the ICC are sparse across the neural
population. To examine the role of spike train
time scales on sparseness we computed sparse b
metrics while varying the analysis resolution of
the neural spike trains. Subsequently, we will
use this analysis to propose and demonstrate
that neural responses are sparse when charac-
terized at the relevant sensory integration time
scales (i.e., neuronal integration time).
Lifetime sparseness. We considered two re-
sponse criteria in our definition of a lifetime
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sparse code for a single neuron. First, we re-
quire that only a small fraction of stimulus ep-
ochs are active, which is a way of minimizing
the L, norm of the response, or equivalently, c
minimizing the number of nonzero active ep-
ochs. We impose a second sparseness criterion
by requiring that few action potentials are gen-
erated for each relevant stimulus epoch. This
sparseness criterion reduces the L, norm of the
response which is equivalent to minimizing the
number of action potentials that are generated
for each acoustic feature. In the most extreme
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case, neurons would produce one spike per fea-
ture. Thus, a neuron is considered maximally
lifetime sparse if it responds only to a small
fraction of all possible sound features in the
stimulus ensemble and each response consists
of only a few action potentials. Below, we
develop two sparseness metrics that inde-
pendently assess how each of these criteria
contribute to sparse responses.

The first sparseness metric used quantifies
the number of active stimulus epochs (crite-
rion 1). Specifically, we consider the possibility
that only a small fraction of relevant time ep-
ochs are activated throughout the duration of
the stimulus. Relevant time epochs are defined
by the neuron’s integration time because it rep-
resents the time window of the sensory features being encoded. The
temporal activity fraction (TAF) is defined as
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where values near one correspond to dense codes (i.e., 100% epochs are
active, i.e., they contain 1 or more spikes) while a temporal sparse codes
has a TAF near zero (few epochs are active).
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Recording configuration and single-unit selection. a, Tetrode arrays were inserted at on orientation orthogonal to the
dorsolateral surface of the IC. Electrode penetrations are illustrated for one experiment (white and red dots) along with the
surrounding brain structures (SC, superior colliculus; BIC, brachium of the inferior colliculus; (B, cerebellum). b, ¢, The classification
of single units is shown for two recording locations along electrode tracts b and ¢ (red dots in a). Two well isolated single units are
observed in both recording locations. The peak amplitudes for each of the classified single-unit waveforms are shown for the two
recording channels with the largest amplitudes (left) and spike waveforms are shown as density histograms (middle, black = low
probability; orange = high probability) for each of the four channels. Spectrotemporal receptive fields are illustrated for each of
the isolated units (far right). For site b the receptive fields are structurally similar. Both neurons have similar tuning around 2.5
octaves, exhibit similar timing (~15 ms duration), and both exhibit lateral inhibition at frequencies above and below their best
frequency. By comparison, the neurons recorded at site ¢ are different both in terms of their timing and their tuning bandwidth.

The second sparseness metric used attempts to measure the number of
action potentials generated per acoustic feature (criterion 2). We note that
the integration time of the neuron corresponds to the temporal window over
which relevant sensory features are integrated. Thus a temporally sparse
response requires that few action potentials are evoked for a single integra-
tion time. We define the temporal sparseness index (TSI) according to:

TSI = [7 fis(t)dt, (7)

where fi¢;(#) is the neuron’s interspike interval (ISI) distribution function
and 7 is the analysis temporal resolution. Conceptually, the TSI repre-
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sents the proportion of the spikes with ISIs greater than a reference time
window 7 For our analysis, we will consider the case where T = integra-
tion time of IC neurons. For this scenario a TSI corresponds to a tempo-
rally sparse response. A TSI of 1 corresponds to all interspike intervals
falling outside one integration time window indicating a one spike per
feature code, whereas a value near 0 corresponds to a large fraction of
interspike intervals falling within an integration time window, indicating
a non-sparse code or rate code (multiple spikes per feature).

For the purpose of comparing our results with more conventional sparse-
ness metrics we also measured the metric proposed by Vinje and Gallant (2000):

S 1 ELrP 8

- E[rz]a ( )
which is a measure of the extensiveness of the tails of the response distri-
bution (S is bounded between 0 and 1; values near one indicate extensive
tails). In Equation 8, E[-] is the expected value operator and r is the
neurons response. We also measured the spike train skewness

HG - )
Y = E[(r — [r)? (9)

which measures the amount of deviation from symmetry in the response
distribution. Larger values correspond to sparser responses with strong
epochs of neural activity that occur infrequently.

Finally, each of the lifetime sparse metrics was estimated at multiple
analysis resolutions by varying the analysis bin size (1 ms to 1 s, using
nonoverlapping bins) or 7 (for the TSTand TAF; 1 msto 1s). This allowed
us to characterize how each of the lifetime sparseness metrics depends on
the spike train analysis resolution.

Population sparseness. Sparseness was also measured for the population of
neurons in the ICC. We first considered how many neurons are active for each
relevant sound epoch (bin in the spike train). The population activity fraction is
defined as the average fraction of active neurons across all sound epochs. Values
near zero indicate a sparse code with few neurons firing for a given sound epoch
while values near one are consistent with a dense code. For comparison, we also
estimated the population response skewness and used the population sparseness
metric proposed by Weliky et al. (2003). These two population sparseness met-
rics are identical in form to Equations 8 and 9 with the exception that the expec-
tations are taken across neurons (at a fixed time point in the spike train). Each of
the population sparseness metrics was estimated at multiple analysis resolutions.
The analysis bin size was varied from 1 ms to 1 s to examine how each of the
population sparseness metrics varies with spike train analysis time scale.

Normalized spike train cross-covariance

The shuffled cross-covariance (SCC) between the spike trains of single
units was computed to evaluate the level of stimulus-driven response
correlation (neuron 1 versus neuron 2). The SCC between the spike
trains of two neurons is defined as

14,28 t Pipaa
bn(7) = Pus, (7 ) L (T),

where 1 and 2 designates the neuron, A and B designates the stimulus
trial. Here ¢y (1) = ((ry(t) — Ay) - (ry(t + ) — Ay)) is the spike train
cross-covariance (i.e., cross-correlation with means removed), and Ay
and Ay are the measured spike rates. The trial shuffling is performed to
isolate stimulus driven correlations. The SCC was normalized as

¢12(7)
\¢1A,IB(O) : ¢2A,28(0),

sothat —1 = C,,(7) = 1. The spike train correlation index (CI) is defined
as C,, = max[C,,(7)] and the spike train correlation delay was defined as
the delay that maximizes C,,(7) (7, = arg max[C,,(7)]). The spike
train correlation width was defined as the duration over which C,,(7)
exceeds 10% relative to the covariance peak.

Significance testing was performed by considering a random spike
train with matched firing rate and interspike intervals as a null hypothe-
sis. To do this, random spike trains were generated by shuffling the

Ci(1) = (10)
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interspike intervals from the original spike trains from neuron 1 and 2.
The normalized cross-covariance was computed and the procedure was
bootstrapped by iteratively shuffling the original spike trains. Error
bounds were computed and significant correlations were found at a
chance level of p < 0.0001. This strict criterion is chosen to minimize the
number of false correlations that would result because of the large num-
ber of pairs tested (n = 7750 pairs).

Receptive field cross-covariance

A metric of receptive field similarity was defined to characterize the di-
versity of spectrotemporal features across the neural population. The
receptive field cross-covariance function is first obtained by cross-
correlating the STRFs between two units (1 and 2) according to

®,,(1,x) = [[STRF,(t,x) - STRE,(t + 7,x + x)dtdx,
(11)

where 7 and x are temporal and spectral delays, respectively. The nor-
malized receptive field cross-covariance (RFCC) is then obtained as:

= ®,(7,0)

Cp(1) = o o) (12)
where o7 and o3 correspond to the STRF variances (ie., 07 =
JJSTRE,(t,x) *dtdx). It will be shown below that under the assumption of
linear processing, the spike train cross-covariance for the neuron pair is
related to the receptive field cross-covariance according to

612(7) = Cpy(7). (13)

More generally, it is demonstrated that C,,(1) = C,,(7) whenever the
neurons do not share a common nonlinearity, in which case the RECC
serves as a upper bound on the SCC (i.e., Eq. 10). As a metric of receptive
field similarity, the receptive field correlation index is defined by the
maximum value of C,,(7). Conceptually, the receptive field CI corre-
sponds to the correlation coefficient between the STRFs of two neurons
after the temporal delays have been aligned for maximum correlation.
Finally, the STRF correlation delay was defined by the delay at the max-
imum of C,,(7) and the STRF correlation width was defined as the tem-
poral extent over which the C,,(7) values exceed 10% relative to the peak.

Below we demonstrate that the RECC serves as an upper bound on the
SCC. Consider two hypothetical neurons in which the time-varying fir-
ing rate is linearly related to the neuron’s spectrotemporal receptive field:

7(t) = A\, + [[STRF,(s,x) - S(t — s,x)dsdx

7,(t) = A, + [[STRF,(s,x) * S(t — s,x)dsdx, (14)

where A, and A, represent the mean spike rates, S(t,x) is the sound spec-
trotemporal envelope normalized for zero mean, x represents the fre-
quency of the sound in octaves, and STRF, (t,x) and STRF,(#,x) are the
STRFs of neuron 1 and 2, respectively. The above equations correspond
to a temporal convolution between the STRF and sound at each fre-
quency and a subsequent integration across all frequency channels. For
the dynamic moving ripple sound used in this study we have previously
shown that the envelope covariance has impulsive properties so that
dgs(T,X) = 07+ 8(7) - 8(x) (Escabi and Schreiner, 2002). Thus it can be
shown that the linear model spike train cross-covariance is

lez(T) = E[(?](t) = M)(r(t + 7') - )\2)]
SIS SSTRF (s, x;)STRF,(s,,x,) E[S(t —

S, X))
S(t + 7 — syx,)]dsdx ds,dx,
= ol [[[[STRF (s;,x,)STRF,(s5,x,)8(s; — s, + 7)

8(x; — xy)ds dx ds,dx,
= o + [[STRF,(s,x)STRF,(7 + s,x)dsdx

= 0l - D(1,0), (15)
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where ®,,(1,x) = [[ STRF,(s,x)STRF,(7 + s,x + x)dsdx is the re-
ceptive field cross-covariance function (units of spikes*/s?). Thus the
spike train cross-covariance between two neurons can be linearly
predicted by correlating the receptive fields and considering the
cross-section of the receptive field cross-covariance function about
zero frequency shift (x = 0).

We next demonstrate that the normalized receptive field cross-
covariance (Eq. 12; unit-less, bounded between —1 and 1) serves as an
upper bound for the empirically measured normalized spike train cross-
covariance whenever neurons do not share a common nonlinearity. It
has been shown that the linearly predicted spike train variances obey the
relationships o, = 0, - 0y and 0,, = 0, * 0, (Escabi and Schreiner, 2002),
so that normalized predicted spike train cross-covariance is equivalent to
the normalized receptive field cross-covariance at zero frequency shift

4)12(7)

g, g,

0'3 - ®y,(7,0)

ol ot 0y

Cp(n) = = CIZ(T) (16)

1 2

for linear neurons. Noting that the real neural responses deviate from the
linear prediction as a consequence of nonlinearities or neural variability/
noise, the spike train output can be represented as

ri(t) = A, + J[STRF,(s,x) + S(t — s,x)dsdx + e(t)
r(t) = A, + [[STRF,(s,x) *+ S(t — s,x)drdx + e,(t),
(17)

where e,(t) and e,(t) correspond to the errors between the linearly pre-
dicted responses and the true responses. Under the assumption that the
error terms are independent between the two neurons and the neural
responses it follows that

®,,(7,0)
\//(U% + O’?.) : (O’% + sz)x

= ®,,(7,0)

Cp(1) = = Cp(n) =

g * 0,

(18)
where C,,(7) corresponds to the empirically measured normalized
spike train cross-covariance, which contains the influence of neural
variability and nonlinearities. Thus the linear predicted normalized
cross-covariance serves as an upper bound for the empirical spike
train covariance.

Nonlinear neuron model

We used a nonlinear spectrotemporal integrate-and-fire (STIF) neuron
model to test whether nonlinear mechanisms and neural variability con-
tribute to sparse coding and response decorrelation in the IC. We have
outlined the details of the model implementation previously (Escabi et
al,, 2005) and will describe it briefly with focus on the relevant details for
the current implementation.

The STIF model consists of a synaptic spectrotemporal receptive field
that accounts for the presynaptic integration of each IC neuron and an
integrate-and-fire compartment that accounts for the membrane inte-
gration and nonlinear spike generation. For each neuron, the synaptic
STREF is obtained by deconvolving the cell membrane impulse response
from the original STRF. To simulate the model, the sound spectrogram is
passed through the linear synaptic STRF and the resulting intracellular
current is used to drive the nonlinear integrate-and-fire compartment
resulting in an output spike train.

Two variants of the model were used that included distinct forms of
spiking timing noise. The first variant of the model (Model 1) was used to
test whether firing reliability and spike-timing errors potentially contrib-
uted to the lack of correlation strength that we observed across the ICC
neural population. It is possible, that lack of correlated activity between
two neurons results either because the spike trains are temporally asyn-
chronous or alternately because spike timing and/or reliability errors
stochastically reduce the likelihood of correlated activity. In this variant
of the model, the cell membrane time constant was selected at random
for each neuron (3—15 ms) and the intracellular noise current was zero.
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Spike generation was modeled as a stochastic process with spike timing
and firing reliability errors. When the cell membrane voltage reached the
cell threshold an action potential was generated with probability p (i.e.,
the firing reliability) and normally distributed spike timing error was
introduced (i.e., jitter; o ms SD). The firing reliability and jitter param-
eters (0 and p) were taken directly from the empirically measured values
for each neuron. Finally, the spike threshold voltage of the model was
iteratively adjusted so that the simulated-neuron firing rate was matched
to that of the real ICC neuron. Given that each model neuron is simulated
with the empirically measured STRF from real ICC neurons, the resulting
simulation produces a neural population with receptive field correlation,
firing rates, firing reliability and spike timing precision that match the
ICC neural population.

The second variant of the model (Model 2) was implemented as
described previously where intracellular noise (normally distributed)
was linearly added to the synaptic current (Escabi et al., 2005). To
generate a simulated neural population with firing rates and spiking
statistics that are representative of those observed in the cat ICC, we
randomly sampled the parameters of the integrate-and-fire compart-
ment for each neuron using the optimal parameter ranges that previ-
ously matched ICC responses (Escabi et al., 2005). The parameters of
the model were uniformly distributed and chosen at random for each
neuron and included the signal-to-noise ratio (—15 to 0 dB) and
membrane time constant (3—15 ms). The spike threshold voltage of
the model was iteratively adjusted for each neuron so that the simu-
lated firing rate matched that of the original ICC neuron. This simu-
lated neural population thus has receptive field correlations and firing
rates that are identical to the ICC population (because we used the
measured STRFs) and spike train statistics that match those previ-
ously reported for the ICC.

Results

We examined whether spectrotemporal acoustic features are rep-
resented by sparse spike trains in the ICC and consider the pos-
sibility that stimulus driven responses are spatio-temporally
sparse across the ICC volume. An example case shows the record-
ing configuration. A top-down view of the IC is shown in one
animal with the corresponding tetrode penetration locations
(Fig. 1a, white circles). Spike waveforms and peak waveform am-
plitudes are shown from two recording locations (along penetra-
tion marked b and ¢, red), each containing two well isolated single
neurons (Fig. 1b,c). Dynamic moving ripple sounds were pre-
sented while recording neural responses from each position. This
dynamic stimulus contains spectral and temporal features com-
monly found in natural sounds (Rodriguez et al., 2010) that ef-
fectively drive ICC neurons and which can be used to estimate
STRFs (Escabi and Schreiner, 2002). STRF shapes were quite var-
ied across the ICC volume and exhibited a wide range of prefer-
ences as indicated in previous studies (Qiu et al., 2003; Rodriguez
etal, 2010), raising the possibility that sound features are repre-
sented by sparse coding strategies in this midbrain structure.
STRFs could exhibit lateral inhibitory sidebands (Figs. 10, units 1
and 2; 2b—d) and on-off or off-on temporal response patterns
(Figs. 1¢, unit 15 2a). The two neurons recorded from site b have
similar tuning [best frequency (BF) = 2.4 vs 2.6 octave; band-
width (BW) = 0.25 vs 0.27 octave], response timing (integration
time = 14.4 vs 15.9 ms), and both have prominent lateral
inhibitory sidebands. By comparison, the units from site c are
quite different in terms of tuning (BF = 0.7 vs 1.1 octave;
BW = 0.51 vs 0.23 octave) and timing (integration time = 3.3
vs 12.6 ms; response delay = 5 vs 10 ms) and the general
structure of the excitatory and inhibitory receptive field do-
mains are quite different.
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receptive field arrangements (left). Neurons can be exceedingly fast with short integration times (@ and b), or can have substan-
tially longer integration times (c and d). A variety of receptive field shapes are also observed, such as the presence of lateral
inhibition (b—d), temporal inhibition (a—c), or obliquely oriented STRFs (d). In the middle panels, shuffled autocorrelograms
illustrate the presence of reliable and precise spike timing (black). In all neurons studied, the shuffled autocorrelograms exhibit a
sharp central peak with timing precision as low as a few hundred microseconds (a, middle) or more typically a few milliseconds (b
and ). For reference, the spike train autocorrelograms are also shown (central impulse removed, gray). The relationships between
interspike intervals, integration times, and encoding times are consistent with temporally sparse responses (right). The interspike
interval distributions are shown with the correspond integration (dashed vertical red line) and encoding times (dashed vertical
black line). As seen for all neurons, the IT is larger than the ET and most interspike intervals exceed an integration time. Thus on
average, there is one precisely timed spike per integration time. In all cases, TSIs are near 1 (noted above each panel).

ICC neurons exhibit temporally precise and lifetime

sparse spiking

We first tested the hypothesis that ICC spike trains are lifetime
sparse; that is, single ICC neurons respond to few acoustic
features and produce relatively few responses over time. In
contrast to conventional definitions of sparseness (Willmore
and Tolhurst, 2001; Olshausen and Field, 2004) we propose
that a neuron’s sensory ITs and ETs (Theunissen and Miller,
1995) are key attributes that need to be factored in definitions
of sparse coding. Specifically, we argue that sparseness needs
to be measured at the feature integration time scales for each
neuron. The IT of an auditory neuron corresponds to the time
window over which the sound history has a direct effect on the
neural response and thus it provides a direct measure of
the net duration of the meaningful sound features. In contrast,
the ET corresponds to the response time window necessary to
independently encode each of the relevant sound features and
over which neural responses are temporally correlated. The
relevance of considering the sensory integration and encoding
time for definitions of sparse coding can be demonstrated by
considering a hypothetical cortical neuron with IT of 100 ms.
Imagine one could speed up time by a factor of 10 so that the
hypothetical neuron now has an IT of 10 ms (comparable to
ICC integration time; Rodriguez et al., 2010) and produces
neural response with 10 times higher firing rate. Is this hypo-
thetical time-rescaled neuron less sparse than the original cor-
tical neuron? We propose that it is not because, although the

dle; see Materials and Methods). ET could
be as low as a few hundred microseconds
for the most precise neurons (e.g., Fig. 2a)
although it was more typically on the or-
der of a few milliseconds (Fig. 2b—d). In all
four cases, the ET was substantially
smaller than the corresponding IT. Thus,
even though these example neurons could
integrate sound features over tens of mil-
liseconds the resulting spike trains exhib-
ited stimulus phase-locked responses that
were substantially more precise.

Two separate stimulus—response criteria were considered to
quantify the degree of sparseness in ICC responses: neurons with
sparse response patterns should 1) contain relatively few spikes
for each stimulus driven response and 2) respond to few sound
features over time. Criterion 1 requires that few action potentials
fall within a single IT so that, for the average acoustic feature,
relatively few spikes are generated. To satisfy criterion 2 we re-
quire that, for nonoverlapping sound epochs lasting a single IT
only a small fraction of all possible epochs activate the neuron
over the entire sound duration. We considered criteria 1 first by
comparing the ISIs with the integration time of the example neu-
rons (Fig. 2, right). As can be seen for each neuron, the majority
of ISIs exceeded the neuron’s IT indicating that for the average
acoustic feature there is typically only 1 precisely timed spike
generated. The TSI quantifies this as the fraction of action poten-
tials with ISIs that exceeded the IT of the neuron (see Materials
and Methods). For instance, for neuron ¢ there were 6935 pre-
cisely timed spikes (2.7 ms ET), among which 6674 spikes have
interspike interval larger than the IT of 14.7 ms. Thus for 96% of
the stimulus-evoked responses (TSI = 0.96) there is precisely 1
spike per sound feature consistent with a temporally sparse neu-
ral code. In addition, neural firing was infrequent through the
duration of the stimulus. The TAF (see Materials and Methods)
corresponds to the proportion of active time epochs. Each time
epoch is referenced on the neuron’s integration time since it rep-
resents the net duration of the average sound feature for each
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Figure 3.  Reliable and precise spike timing is consistent with lifetime sparse spike trains. a, b, Integration times are always larger than the encoding times (a) and smaller than the average

interspike interval (b). ¢, Interspike intervals (118 ms, median) were an order of magnitude larger than the corresponding integration time (9.3 ms, median) and almost two orders of magnitude
larger than the spike timing precision (1.9 ms, median). The notchesin the box plot designate the median 95% confidence interval while the limits of the box determine the upper and lower quartiles.
Whisker lengths are set to 1.5 times the interquartile range, and neurons that exceeded this range are shown as +. d, The reliability of precise spike timing extended from near zero (minimum
observed = 0.004) to 0.63 (mean 0.27). e, The joint distribution of TAF (mean = 0.09) and TSI (mean = 0.93) for all ICC neurons is indicative of temporal sparse spike trains.

neuron. As an example, the neuron of Figure 2d responds to
sounds features lasting ~24 ms (i.e., its IT). The TAF of this
neuron was near zero (0.05) indicating that there are relatively
few active time epochs (i.e., 5%) throughout the duration of the
dynamic ripple sound. Similar behavior is seen for the example
neurons, all of which exhibited precise spike timing, a TSI near or
equal to 1 (a—d, TSI = 0.99, 1.0, 0.96, 0.88 respectively) and TAF
near zero (a—d, TAF = 0.03, 0.02, 0.09, 0.05).

Summary statistics demonstrate that ICC neurons exhibit life-
time sparse spiking on a feature-to-feature basis where neurons
produce on average one precisely timed action potential per
sound feature and relatively few responses over time (Fig. 3).
Across the ICC population the ET was substantially smaller than
the neuron’s IT (Fig. 3a,c; Wilcoxon rank sum, p < 0.01) and
these were always smaller than the corresponding ISI (Fig. 3b,¢;
Wilcoxon rank sum, p < 0.01). ET (mean = 2.2 ms, median = 1.9
ms) was approximately an order of magnitude smaller than the
ITs (mean = 10 ms, median = 9.3 ms), while ISIs (mean = 208
ms, median = 118 ms) where more than an order of magnitude
larger (Fig. 3¢). This high temporal precision was accompanied
by a modest level of spiking reliability (Fig. 3d; mean = 0.27,
median = 0.27). ET and IT were weakly correlated (Fig. 3a; r =
0.33 = 0.11, p < 0.001) indicating a modest relationship between
encoding precision and the time course of the encoded features. A
weak correlation was also observed between IT and ISIs (r =
0.3 = 0.1, p < 0.001). These firing patterns are consistent with
temporally precise sparse spiking as confirmed by the temporal
sparse indices and temporal activity fractions (Fig. 3e). At time
scales corresponding to the integration time of each neuron TSIs
were skewed toward 1 (mean = 0.93, median = 0.95) indicating
that on average > 90% of the sound-evoked responses consisted
of a single action potential (one spike per feature). Furthermore,
TAFs were near zero (average = 0.09) indicating that each neu-

ron was active for only 9% of all possible time epochs in the
sound.

The population activity is sparse

As demonstrated individual single neurons produce lifetime
sparse spike trains. Here we asked whether the ICC produces
population sparse activity. That is, at any instant in time “are few
neurons active per sound feature?”

If sparse coding is preserved across the neural population
only a small subset of neurons should be active for any given
stimulus feature. To determine whether this condition was
satisfied we measured the proportion of active neurons at time
scales comparable to the average ICC integration time (10 ms).
The population activity is illustrated as a population dot-
raster for a one second segment of the sound (neurons order
according to BF; 10 ms bin width; Fig. 4a). The spiking pat-
terns appear to be distributed randomly across neurons and
time with no discernible structure. Furthermore, the distribu-
tion of spikes per 10 ms bin was highly skewed (Fig. 4b) where
neurons tended to produce mostly 0 (black) or 1 (orange)
spike. Zero spikes were the most likely to occur (90%) and
single spikes were observed for 9.5% of epochs while 0.5% of
active epochs contained two or more spikes (Fig. 4b). This
finding supports the hypothesis that for time scales corre-
sponding to the average ICC integration time neurons tended
to produce typically 1 spike for the average acoustic feature.
Furthermore, only a small fraction of the population of cells
was active for any 10 ms epoch (Fig. 4c). The population ac-
tivity fraction (AF) varied from 0 to 26% over the duration of
the stimulus (average = 10%). That is, for the average ICC
integration time, on average 10% of neurons were active and
each of the active neurons tended to produce 1 spike.



Chen et al. ® Sparse Auditory Code

[\
(o

spike 10°
spikes

Probability
22

Neuron BF (kHz)

5 10
0 500 1000 012345
C Time (ms) Number of spikes
[
2
£ 3\01100
o (2]
G £
€ g 50
B g
[
o 0
2 4 6 8 100 05
Time (min) Probability
Figure 4.  The population activity is spatiotemporally sparse. a, A 1 s segment of the popu-

lation dot-raster to the dynamic moving ripple sound is shown with neurons ordered according
to best frequency. Most neurons produce zero (black) or one (orange) spike and rarely two
spikes are observed (white) per 10 ms sound epoch. As can be seen, the population raster
appears to be spatiotemporally uncorrelated. b, The distribution of spikes per 10 ms sound
epoch for the entire ICC population. Zero (90%) and one (9.5%) spike are the most common,
while >2 spikesrarely occur (0.5%). In ¢, the population activity fraction (i.e., the percentage of
active neurons) is shown as a function of time (10 ms resolution) over the duration of the
stimulus. The population activity fraction has a mean of 10% and does not exceed 26%. Ten
millisecond epochs were chosen for the analysis because these represent the average integra-
tion time for ICC neurons (Fig. 3¢).

Sparseness depends on the sensory integration and encoding
time scales

In cortex, coding of stimulus features can occur at integration
and encoding time scales on the order of ~50 and ~20 ms, re-
spectively (Sen et al., 2001; Miller et al., 2002; Elhilali et al., 2004;
Jadhav et al., 2009). The analysis reported above suggests that
sparse coding in the ICC should occur on much shorter time
scales, approximately an order of magnitude faster (IT and ET of
~10 and 2 ms, respectively; Fig. 3¢). This is to be expected, be-
cause ICC neurons can phase-lock to sound features that are
approximately an order of magnitude faster than those reported
for auditory cortex (Joris et al., 2004). Thus we propose that
sparseness depends strongly on the sensory integration and/or
encoding time scales both of which need to be factored in defini-
tions of sparse coding.

We first demonstrate that measures of sparseness in the
ICC depend strongly on the analysis time scale. Smaller anal-
ysis bin widths resulted in a lower TAF (i.e., a smaller percent-
age of active bins; Fig. 54) and an increase in TSI (Fig. 5b). The
spike train lifetime sparseness index (S; see Materials and
Methods, Fig. 5¢) and skewness (d) (Willmore and Tolhurst,
2001) both decrease monotonically with increasing spike train
bin width which indicate a sparser spike train for smaller bin
widths. At time scales corresponding to the integration time of
ICC neurons, ICC spike trains are exceedingly sparse (median
TAF = 0.08; TSI = 0.95; S = 0.92; skewness = 3.3; dashed
lines = 10 ms, Fig. 5a—d). Yet, when the spike train analysis is
performed at time scales corresponding to a typical integra-
tion time for auditory cortex (triangles, 50 ms) spike trains are
substantially less sparse (median TAF = 0.37; TSI = 0.63; S =
0.53; skewness = 1.34).

The population sparseness also decreased monotonically
with increasing bin width (Fig. 5e—g). At ICC integration time
scales (dashed lines = 10 ms) the neural population activity is
sparse (population AF = 10%; population sparseness, Sp =
0.91; population skewness = 2.97). However, at time scales
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typically associated with cortical integration (triangles, 50 ms)
the measured population sparseness is substantially reduced
(population AF = 40%; S, = 0.68; population skewness =
1.51). This reduction in the “apparent” sparseness can be ex-
plained by the fact that larger bin widths will tend to exceed
the response correlation time so that neural responses are
effectively average over multiple independent stimulus—re-
sponse epochs.

While the results suggest that neural activity in the ICC can
be exceedingly sparse, it is unclear whether or not sparseness is
further enhanced in the transition to auditory cortex. Based on
classic models it is expected that cortical activity should be
sparser. Yet, sensory integration times have not been previ-
ously factored in definitions of sparseness, which Figure 5
demonstrates play a critical role. We thus compared our ICC
results with data from a previous primary auditory cortex (A1)
study in the cat using the same class of dynamic moving ripple
sounds (Miller et al., 2002). The median integration time for
Al neurons was substantially larger than ICC (52 ms versus 9.3
ms; p < 0.001, Wilcoxon rank sum), which suggests that cor-
tical neurons respond selectively to slower features in the dy-
namic moving ripple sounds. In Figure 6, we compared each of
the sparseness metrics for the ICC and Al neural populations
(ICC = continuous black, A1= continuous gray). Here, the
results are plotted as a function of normalized analysis resolu-
tion (normalized by the ICC and A1 integration time, respec-
tively). All of the sparseness indices exhibit similar behavior
although the TSI was lower and the asymptotic values for the
Al population sparseness and skewness were higher for Al.
The higher population sparseness for large time scales in Al
indicates that cortical population responses are somewhat
variable at large time scales. Interestingly, when sparseness is
measured at the integration time of ICC or A1 (vertical dashed
line, normalized analysis resolution = 1) all of the sparseness
index with the exception of TSI are closely matched between
both structures, with a slight bias toward sparser results for
ICC. We also measured the IC sparseness metrics after nor-
malizing by the cortical time scale (dashed gray curve). As can
be seen, this leads to a reduction in the amount of apparent
sparseness for ICC as it shifts all of the curves toward lower
sparseness values. Thus, at the feature integration time scales
relevant for the ICC neural activity was equally or possibly
sparser than auditory cortex. These results demonstrate sparse
coding on a time scale comparable to the sound integration
time and suggest that sparse coding can be conserved across
neural structures.

Response decorrelation: receptive field correlation is
necessary but not sufficient for correlated spiking

We next examined how redundant-correlated neural activity
contributes to a sparse sound representation within the ICC. Al-
though sparseness and response redundancy within a neural pop-
ulation are typically treated as separate coding issues these may in
fact be related (Willmore et al., 2011). Specifically, population
sparse activity requires that neurons respond in an uncorrelated
fashion to maximize the amount of sparseness across a neural
population. We thus characterized the amount of redundant-
correlated firing within the ICC and examine how receptive field
structure contributes to correlated firing.

Pairs of neurons with similar receptive fields often responded
to the moving ripple sound in an uncorrelated fashion consistent
with a nonredundant representation of the sound envelope. For
example, Figure 7a shows a pair of neurons with similar STRFs
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Figure7. Relationship between correlated spiking and receptive field correlation. a— d, Example STRFs are shown for pairs of neurons (neuron 1and 2, left). The spike train correlation index is

predicted by performing a two-dimensional cross-covariance between the STRF of each neuron (panel 3) and subsequently selecting the temporal covariance about zero frequency difference (red
horizontal line, panel 3). For the neurons shown in a, the receptive fields are displaced in frequency and the predicted and actual spike train correlation indices are zero. In b, the neurons are highly
overlapped in frequency; however, STRFs fail to predict the lack of correlation observed between the neural spike trains. By comparison, the STRFs from the neuron pair shown in ¢ are highly
correlated. For this example pair, the sign (i.e., positive correlation index) and time course of the spike train cross-covariance (black, right) is accurately predicted from the STRFs’ cross-covariance
(red, right). Finally, example d shows that the receptive fields can predict the sign and timing even when the spike train cross-covariance is negative. e, Joint histogram showing the relationship
between spike train and receptive field correlation indices. Spike train and receptive field correlation indices are near zero for the majority of neuron pairs (black contour encompasses 90% of pairs).

that lacks correlated spiking. The pair had similar spectral band-
widths (0.26 octaves, 0.35 octaves), integration times (22 and 16
ms), as well as lateral inhibitory domains. Despite the similarities,
the RFCC peak is displaced by ~1 octave as a result of the best
frequency mismatch between the two neurons (Fig. 7a; third col-
umn). Consequently, the two neurons responded to sounds in a
largely uncorrelated fashion as indicated by the lack of significant
peak in the spike train SCC (see Materials and Methods; boot-
strap t test, NS; Bin size of 0.25 ms was used for both SCC and
RFCC computations). This behavior is expected because of the
lack of frequency overlap and can be predicted by considering the
RFCC about zero frequency shift (far right; red curve, superim-
posed on top of the black), which corresponds to the predicted
spike train cross-covariance between the pair under the assump-
tion that the neurons behave linearly (see Materials and Meth-
ods). A second example demonstrates that even when neurons
have similar STRFs and there is a match in best frequencies, neu-
ral responses can be uncorrelated (Fig. 7b). This pair exhibited a
strong receptive field cross-covariance centered about zero fre-
quency shift (far right, red). However, the spike trains for this pair
were not significantly correlated (far right, black bootstrap t test,
NS). Uncorrelated firing was not strictly the rule, however, as
evident in a third example neuron pair with similar STRFs and
overlapping best frequency and a significant SCC (Fig. 7¢). This
example pair had significant SCC and the linear receptive field
model predicted the time course of the SCC (far right, red =
predicted, black = actual). Finally, in some cases spike trains were
negatively correlated and this behavior was predicted by the lin-
ear STRF model (Fig. 7d). For this example, an excitatory recep-
tive field peak in neuron 1 overlaps and inhibitory receptive field
peak in neuron 2 leading to a negative predicted correlation.

Although the resulting linear RFCC prediction (far right, red)
differs in absolute amplitude the peak timing and width of the
SCC is similar.

Significant correlated firing (bootstrap t test, p < 0.0001) was
only observed in a small subset of neuron pairs from our sample
(5%; n = 393 of 7750 pairs). For most pairs in the neural popu-
lation the distribution of receptive field and spike train correla-
tion index values were centered about zero (Fig. 7e, 90% within
black contour) consistent with the general hypothesis that the
ICC population activity is globally uncorrelated. However, for
the 5% of neurons pairs that exhibited statistically significant
spike train correlation index the time course and peak of the SCC
were well predicted by the linear STRF (Fig. 8). The similarity
indices between the RFCC and the SCC were between 0.5 and 1
(Fig. 8a; median = 0.8) for most pairs (91%) indicating that the
time course of the SCC was well accounted by the linearly pre-
dicted RF covariance. Furthermore, the delay and width of the
linearly predicted RFCC are strongly correlated with the actual
measured delay and width from the SCC (Fig. 8b, correlation
delay, r = 0.87 = 0.03, p < 0.01; 8¢, correlation width, r = 0.53 =
0.04, p < 0.01). Although the linear STRF model partially ac-
counted for the spike train CI (Fig. 84, r = 0.56 = 0.04, p < 0.01),
the spike train CI is substantially smaller than the receptive field
CI (median 0.16 vs 0.45, Fig. 8¢; Wilcoxon rank sum, p < 0.01)
implying a reduction in the amount of correlated activity relative
to alinear processing model. Furthermore the absolute sign of the
correlation index (+ or —) was well accounted by the linear
model (97% correct prediction). As seen in Figure 84, the linear
receptive field CI sets an upper bound on the magnitude of the
spike train CI, which is consistent with theoretical predictions
(see Materials and Methods for proof). This was true for most
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Figure8. The receptive field cross-covariance function predicts correlated spiking between

neuron pairs with statistically significant SCC. a, The receptive field cross-covariance accurately
predicts the shape of the spike train cross-covariance for neurons with statistically significant
spike train correlation (p << 0.0001, bootstrap t test). The distribution of similarity indices
between the actual and linear predicted cross-covariance functions are mostly >0.5 (me-
dian = 0.8). b, ¢, The spike train correlation delay (b) and width (c) are both accurately pre-
dicted by the receptive field covariance. d, The linear receptive field correlation index provides
an upper bound for the magnitude of the measured spike train correlation index and accounts
for the sign (+ or —) in 97% of pairs. e, The receptive field Cl was significantly larger than the
spike train Cl (Wilcoxon rank sum, p << 0.01). The notches in the box plot designate the median
95% confidence intervals and the limits of the box determine the upper and lower quartiles.
Whisker lengths are set to 1.5 times the interquartile range and neurons that exceeded this
range are shown as +.

pairs that had positive spike train CI (true for 87% of pairs).
Similarly, most pairs with negative spike train CI were bounded
below by the receptive field CI (true for 86% of pairs).

The results show that a linear receptive field model can pro-
vide some predictive power of neuron-to-neuron correlations
when they are present and that receptive field correlation is a
necessary although not sufficient condition for correlated spik-
ing. The overwhelming low amount of correlated activity and the
fact that ICC responses are substantially less correlated than ex-
pected from a linear processing model imply that ICC spike trains
are temporally decorrelated.

Organizational principles governing correlated firing

and decorrelation

The widespread lack of correlation (95% of pairs) between neu-
ron pairs is indicative of low redundancy within the ICC neural
population. However, significant correlated firing was observed
and could be partly predicted for a small subset of neurons. Sev-
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Figure9.  Correlated spiking depends on best frequency match but is independent of lami-

nar distance. a, The spike train Cl is shown as a function of best frequency difference. Neurons
withasignificant spike train Cl (red) are largely confined to =0.33 octave frequency differences
(for 82% of neurons) and had a SD of BF differences of 0.34 octave. b, The receptive field CI
exhibits a Mexican-hat profile with most positive correlations confined to =0.3 octave range
while negative correlations peak at =0.45 octave. Red dots correspond to neurons with signif-
icant spike train CI, while the gray curve corresponds to the median receptive field cross-
covariance as a function of BF difference. For neuron pairs with correlated spiking (red dotsin a
and b), spike train (c) and receptive field (d) Cl are independent of distance along laminar
dimension of the ICC (rostrocaudal and dorsomedial to ventrolateral axis).

eral factors could contribute to this correlated neural activity. On
the one hand it is possible that correlated activity is randomly
distributed across the neural population. Alternately, it is possi-
ble that sound preferences or organizational constraints of the
ICC contribute to correlated neural activity. For example,
neuron-to-neuron correlations could be a function of distance
where neighboring neurons receive common input and thus po-
tentially have higher correlation. We thus asked how and if cor-
related activity is systematically related to neural preferences and
ICC organization.

A small population of neuron pairs with highly similar STRFs
and matched best frequencies exhibited a high degree of correla-
tion. Of all neuron pairs, only 5% (N = 393 of 7750) exhibited
statistically significant spike train correlation and the linear STRF
model accurately predicted the time course of the SCC (Fig. 8).
When plotted as a function of the best frequency difference, sig-
nificant spike train correlations tend to occur only for neurons
with similar BF (Fig. 9a; red dots, p < 0.0001; black, NS). The SD
of BF differences from significantly correlated neuron pairs is
0.34 octave and 82% of statistically significant correlations fall
within *=1/3 octave BF difference (Fig. 94, vertical dashed lines).
Intriguingly, the strongest receptive field correlation indices fall
within the same 1/3 octave boundary and the presence of negative
receptive field correlations were most pronounced at 0.45 octave
BF difference (Fig. 9b). The average receptive field correlation
index across all pairs resembles a “Mexican hat” function (Fig. 90,
gray line) with the strongest positive peak at 0 octaves and nega-
tive peak at 0.45 octaves. Thus, within ~1/3 octave, neurons have
receptive fields with highly overlapped excitatory domains lead-
ing to a positive receptive field correlation (Fig. 7c). However, for
best frequency disparities of ~0.45 octaves, the excitatory and
inhibitory domains of neuron pairs tend to overlap spectrally
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Figure 10.  Neural simulation showing how spiking nonlinearities and spike timing noise contribute to correlated firing. The

STRF of each ICC neuron was used to linearly filter the dynamic ripple sound and an integrate-and-fire compartment was used to
generate action potentials (see Materials and Methods). For model 1, spike timing jitter and firing reliability were added to each
spike so as to match the measured values of each ICCneuron. For model 2, additive intracellular noise was added to the integrate-
and-fire compartment. Significant correlated firing (red dots; p << 0.0001) was widespread for model 1 (a) and 2 (b) even for
neuron pairs with distant frequencies. This contrasts results for the ICC (c), where significant correlations are largely confined to 1/3

octave. Red dots represent neuron pairs with significant correlation (p << 0.00071).

leading to a negative receptive field correlation (Fig. 7d). For large
BF differences neurons do not overlap spectrally and thus the
receptive field correlations approach zero (Fig. 7a). Finally, even
for neuron pairs within 1/3 octave only 21% (325 of 1565) had a
significant spike train correlation index which is substantially
lower than expected from the receptive field CI alone. Thus, best
frequency match alone is not a guarantee for spike train cor-
relation implying that even neurons with overlapped receptive
fields had spike trains that are largely uncorrelated (Fig. 7b).

The distance between recording locations may contribute to
the strength of correlation as previously observed in auditory
cortex (Tomita and Eggermont, 2005; Rothschild et al., 2010). In
the ICC, anatomical laminar organization sets substrate for fre-
quency organization (Oliver and Morest, 1984; Brown et al.,
1997) and it is possible that the spike train correlation index
varies with distance within a frequency-band lamina. Within
each lamina neurons have similar frequencies typically within
~0.3 octave in cats (Schreiner and Langner, 1997) which closely
matches the observed BF difference between significantly corre-
lated neuron pairs (Fig. 94, red). Presumably recording locations
with nearby coordinates would exhibit stronger correlations
while far way neurons would be less likely to be correlated. We
tested for this possibility by considering neuron pairs with a sig-
nificant correlation (i.e., within ~1/3 octave) and examining the
relationship between correlation index and distance at orienta-
tions orthogonal to the ICC tonotopic axis (stereotaxically refer-
enced positions along the laminar dimension, i.e., rostrocaudal
and mediolateral extent). Figure 9, c and d, demonstrates that the
strength of correlation does not vary systematically with distance
at orientations orthogonal to the frequency dimension. The me-
dian spike train and receptive field correlation index were largely
similar and independent of distance (Wilcoxon rank sum with
Bonferroni correction, NS).

Thus for neurons pairs that exhibit significant correlated ac-
tivity, spike train correlation strength varies with distance only
along the tonotopic dimension and yet are independent at or-
thogonal orientations that extend along the ICC frequency-band
lamina.

The contribution of spiking nonlinearities and spike timing
variability to correlated firing and decorrelation

We next examined whether nonlinear mechanisms and/or spike
timing variability potentially contribute to general lack of corre-
lated firing across the ICC. On the one hand, it is possible that
stochastic firing properties can reduce the strength of correlated
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activity between neurons (Jadhav et al,,
2009) such that low firing reliability
and/or spike timing errors can potentially
reduce the likelihood of coincident firing,
resulting in low correlation. Alternately, if
nonlinearities in the cell integration are
uniquely different for two neurons (i.e.,
5  different dynamics, different spike thresh-
old levels etc.) the resulting spike train
correlation could be substantially lower
than expected from the receptive field
correlation alone (Eq. 18 in Materials and
Methods). We thus hypothesized that
such factors could account for the low
amount and pattern of correlated firing in
the ICC.

In the first simulation, we tested
whether firing reliability and spike timing
errors can account for the widespread lack of correlation ob-
served in the ICC. We tested for this possibility by generating
simulated spike trains with matched receptive field correlation,
firing reliability, temporal precision, and firing rates as for each
ICC neuron (see Materials and Methods). Each neuron in the
population was simulated by linearly filtering the dynamic ripple
sound with the corresponding ICC STRF and the resulting out-
put was used to drive a nonlinear integrate-and-fire neuron
model with stochastic spike generation mechanism (with
matched reliability, jitter, firing rate; see Materials and Methods).
In contrast to our original hypothesis, the model exacerbated the
amount of correlated activity between neurons. Unlike the ICC
population (Fig. 10¢), where significant correlated activity is low
and largely confined to 1/3 octave, widespread correlations are
observed even for neuron pairs with distant BFs (Model 1, Fig.
10a). On average, 54% of all simulated neuron pairs and 71% of
pairs within 1/3 octave exhibited significant spike train correla-
tion (p < 0.0001, bootstrap ¢ test; red dots). The time course of
the spike train correlations for this model were substantially
broader than for ICC neurons indicating that they resulted from
slow fluctuations in firing rate between neurons (400 ms versus 9
ms spike train correlation width; p < 0.001, Wilcoxon rank sum).
We speculate that the temporally broad and strong correlated
activity for this model results because the dynamic ripple sound
has strong across-frequency channel correlations that vary dy-
namically (at rates up to 3 Hz) (Escabi and Schreiner, 2002) and
which can potentially coactivate distant neurons. We tested for
this possibility by simulating the neural population with spec-
trally uncorrelated ripple noise sounds (Escabi and Schreiner,
2002). There was an overwhelming reduction in the total amount
of correlated activity (9% of pairs, data not shown) and an in-
crease in the fraction of correlated pairs falling within 1/3 octave
(82% of significant pairs). Furthermore, there was a dramatic
reduction in the correlation width (median = 7.5 ms). This sug-
gests that the broad temporal correlations (400 ms) observed for
the dynamic moving ripple sound in the model resulted from the
across-channel correlations in the sound.

The large amount of correlated activity for the model suggests
that firing reliability and spike timing errors are not sufficient on
their own to decorrelate neural response as observed in the ICC
neural population. We thus tested whether others forms of neural
variability could account for the observed pattern of correlated
activity within the ICC. The second simulation used a similar
nonlinear model, with the exception that the stochastic spike
generation was replaced with an additive intracellular noise cur-
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rent (Escabi et al., 2005). For this simulation, each STRF was used
to linearly generate a synaptic current to the dynamic ripple
sound so that the receptive field correlation between neurons was
matched to the ICC. The stimulus-driven synaptic current was
then combined with an additive intracellular noise current and
the resulting current was used to drive a nonlinear integrate-and-
fire neuron model (see Materials and Methods). Compared with
the first model, a dramatic reduction in the amount of correlated
firing between neuron pairs is observed (Model 2, Fig. 10b). Yet,
substantial correlations were still present for distant BFs and the
total fraction of correlated pairs (14% of pairs, p < 0.0001) was
still larger than the ICC (5%, p < 0.0001). Locally correlated
firing was also more pronounced for this model than the ICC,
since 44% of pairs within 1/3 octave exhibited correlated firing
(compared with 21% for ICC). The lower number of correlated
pairs for the ICC was not the result of greater spike timing noise
since firing reliability was actually higher (median = 0.15 versus
0.27, p < 0.001 Wilcoxon rank sum) and spike-timing jitter com-
parable (median = 2.0 versus 2.0 ms, p > 0.56, Wilcoxon rank
sum) for ICC neurons compared with this model.

The results suggest that nonlinear mechanisms beyond those
included in the present models further decorrelate neural re-
sponses within the ICC population and imply that the temporal
patterning of spikes between ICC neurons are intrinsically
uncorrelated.

Discussion

Neural representations have been proposed to shift hierarchically
from peripheral to central structures in a manner that increases
sparseness and decreases redundancy (Barlow, 1972). Efficient
sparse coding strategies also predict that receptive fields are
spatio-temporally compact in cortical areas (Olshausen and
Field, 1996). Experimental evidence is mounting in support of
sparse coding in cortical structures where neurons tend to exhibit
long integration times, low firing rates, and can produce just a few
low probability sensory driven responses (Hromédka et al., 2008;
Jadhav et al., 2009). Our results demonstrate that even in the
auditory midbrain neural activity can be exceedingly sparse once
the relevant sensory integration time scales are identified. Al-
though ICC neural receptive fields are approximately an order of
magnitude faster than their auditory cortical counterparts (Joris
et al., 2004) they have similar spectral and temporal structure
(Miller etal., 2002; Qiu et al., 2003). Furthermore, receptive fields
in the ICC are spectrotemporally compact (Qiu et al., 2003) and
are optimized for efficiently encoding structural features in nat-
ural sounds (Lesica and Grothe, 2008; Holmstrom et al., 2010;
Rodriguez et al., 2010). Direct comparison between ICC and au-
ditory cortex demonstrates that both structures can be equally
sparse as long as their sensory integration time scales are factored.
Together these properties are indicative of similar sparse encod-
ing in the auditory midbrain at time scales that are approximately
an order of magnitude faster than auditory cortex.

The role of time scales in sparse representations

This study emphasizes the importance of considering sensory
integration time scales in definitions of sparse coding. There are
two primary time windows governing the sensory integration
and response of a neuron (Theunissen and Miller, 1995) and we
propose that these need to be factored in definitions of sparse-
ness. Here, we choose the integration time as a reference window
for the sparseness analysis for two reasons. First, by choosing the
integration time we can link the sparseness metrics to the relevant
acoustic features, which is a primary goal of the proposed frame-
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work. Second, the integration time provides a more conservative
estimate of sparseness. Had we chosen the encoding time we
would always obtain “sparser” results. Thus the encoding time
can be viewed as setting an upper bound while the integration
time a lower bound on sparseness. If the analysis window exceeds
integration time, the responses will be averaged over independent
stimulus—response events, thus limiting the viable information
about each stimulus feature. By comparison, for analysis resolu-
tions smaller than the encoding time noise becomes a limiting
factor.

Within the ICC neural activity was exceedingly sparse at time
scales of ~2—-10 ms. On average a 2 ms response window was
capable of representing sensory features lasting ~10 ms. At these
time scales, single neurons were lifetime sparse producing on
average a single precisely timed action potential per acoustic fea-
ture. Furthermore, at the average integration time scale for the
ICC (10 ms) the population activity was sparse with only 10% of
the neurons coactive. Thus, it can be argued that sparseness
should be measured at spike train time scales that convey sensory
information to recipient neural structures, which for the ICC
corresponds to a window of up to ~10 ms. Given that the fastest
frequency that neurons phase-lock to decreases systematically
from the auditory nerve to cortex (Joris et al., 2004), these finding
raise the possibility that sparse encoding scales hierarchically
across neural structures with different sensory encoding time
scales and is not an exclusive property of high-level auditory
cortices.

Functional implications of correlated responses

and decorrelation

According to classic hypothesis redundancy should be high in
peripheral and subcortical structures such as the ICC (Barlow,
1972; Chechik et al., 2006). Contrary to this expectation we find
that the vast majority of ICC neuron pairs have uncorrelated
spike trains (95%). This low correlation is consistent with the
observed heterogeneity responses in the IC (Holmstrom et al.,
2010) and contrasts a previous study where strong correlated
activity in the ICC was proposed to span several octaves (Chechik
et al., 2006). In that study, acoustic signals were synthetically
shifted in frequency to match each neuron’s BF, which may have
contributed to the observed high correlation.

Decorrelation may be an important feature of the ICC that
promotes efficient signaling to the thalamus. Although correlated
activity was restricted to neuron pairs within ~1/3 octave, fre-
quency match and receptive field correlation alone is not a guar-
antee of correlated spiking. Only 21% of neuron pairs with
matched BF had significant correlations (Fig. 9a) and the mea-
sured spike train correlations were substantially lower than ex-
pected from linear integration mechanisms (Fig. 8¢). Anatomical
factors such as long-range inhibitory connections (Battaglia et al.,
2007) may contribute by restricting correlated firing within each
frequency lamina. Such a mechanism can in theory be imple-
mented through a network of stellate cells with extensive collat-
erals (Oliver and Morest, 1984) and a vast network of inhibitory
circuits (Pollak et al., 2002; Tto et al., 2009).

The dichotomy between patterns of globally decorrelated and
locally correlated activity within the limits of a critical band may
serve to encode complementary sound features and may be con-
strained by anatomic laminar organization of the ICC (Oliver
and Morest, 1984; Malmierca et al., 1993; Brown et al., 1997).
Precisely correlated activity for a small subset of neuron pairs
with overlapping BF may provide a mechanism for binding
acoustic features within the frequency limits of a critical band.
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Perceptually, critical band resolution contributes to loudness
perception and detection of signals in noise (Fletcher, 1940;
Zwicker etal., 1957; Hall et al., 1984) and sets the limiting spectral
resolution required for recognition of vowels (van Veen and
Houtgast, 1985). The predominant pattern of temporally uncor-
related sparse responses may also be beneficial because it would
minimize encoding redundancies between frequency channels
and increase efficiency. Given that the IC is the most metaboli-
cally active structure in the brain (Kety, 1962) and is uniquely
positioned to process fast temporal sound cues from numerous
brainstem inputs (Joris et al., 2004) such an efficient representa-
tion may drastically reduce its high metabolic demands.

The role of neural variability and nonlinearities

The results also imply that intrinsic nonlinearities and their in-
teractions with neural variability contribute toward decorrelating
neural spike trains. Unlike the ICC, widespread correlated activ-
ity was observed for our nonlinear model simulations. Two fac-
tors contributed to these distant neural correlations. First, the
dynamic moving ripple sound has periods of strong correlations
across frequency channels (Escabiand Schreiner, 2002) which is a
common feature of natural sounds (Attias and Schreiner, 1998;
Nelken et al., 1999; Singh and Theunissen, 2003). Second, inter-
actions between the spike threshold nonlinearity and the form of
neural variability included in the model exacerbate the amount of
correlated activity.

Interactions between the spike generating nonlinearity and
neural variability can greatly impact the amount and type of cor-
related activity. Specifically, in model 1 the neural variability was
decoupled from the nonlinearity (jitter and reliability were added
after the nonlinearity) while for model 2 the noise preceded the
nonlinearity (additive subthreshold noise current before spike
threshold). Intriguingly, when the nonlinearity is decoupled
from the noise as for model 1, correlated activity was far more
prevalent (54% of pairs) and there was far more correlation
across distant frequencies (>1/3 octave). By comparison, when
the noise is coupled with the nonlinearity the results are much
closer to those observed in the ICC. This coupled form of noise is
more realistic since neural variability largely originates bottom
up through presynaptic spike train variability or stochastic prop-
erties of synaptic vesicle release (Stevens and Zador, 1998; Zador,
1998). Yet, even for this model, correlated activity was higher and
more widespread across distant frequencies than the ICC popu-
lation. This suggests that other nonlinearities beyond spike gen-
erating mechanism must contribute toward decorrelation and
implies that ICC can effectively reduce broad correlations across
frequency channels that are present in natural sounds (Attias
and Schreiner, 1998; Nelken et al., 1999; Singh and Theunis-
sen, 2003).

One mechanism that could contribute to decorrelation is re-
cruitment of modulatory responses within the nonclassical re-
ceptive field. In primary visual cortex, natural scenes that activate
the nonclassical receptive field increases sparseness and decorre-
late neural responses (Vinje and Gallant, 2002). A recent study
demonstrated the presence of nonclassical tuning in the songbird
auditory midbrain (Schneider and Woolley, 2011), which sup-
ports this possibility.

Opverall, the modeling results suggest that certain nonlineari-
ties are more effective at decorrelating neural responses and that
spike threshold nonlinearity and spike timing errors do not fully
account for the exceedingly low amount of correlated ICC activ-
ity. Future studies are needed to decipher the mechanisms for
how this is achieved in the ICC.
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Summary

These results support the efficient coding hypothesis in which a
goal of sensory coding is to provide efficient representations of
the natural world (Barlow, 1961). Within the ICC sparse redun-
dancy reducing mechanisms and correlated firing coexist at time
scales of a few to tens of milliseconds. Such a strategy likely pro-
motes efficient signaling of fine acoustic details, reduces energy
consumption, and likely contributes to perceptual frequency res-
olution in mammals.
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