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Abstract

Accurate determination of micrograph focuses is essential for averaging multiple images to reach
high-resolution 3-D reconstructions in electron cryo-microscopy (cryo-EM). Current methods use
iterative fitting of focus-dependent simulated power spectra to the power spectra of experimental
images, with the fitting performed independently for different images. Here we have developed a
novel graph theory based method in which the rotational average focus and individual angular
sector focuses of all images are determined simultaneously in closed form using the least square
solution of overdetermined linear equations. The new method was shown to be fast, accurate, and
robust in tests with large datasets of experimental low dose cryo-EM images. Its integration with
three classic power spectra fitting methods also allows cross validation of the results by these
vastly different methods. The new integrated focus determination method will improve reliability
of automated focus determination for large-scale data processing that is increasingly common in
the cryo-EM field.
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Introduction

Due to inherently low contrast in electron cryo-microscopy (cryo-EM) images of biological
samples, it is common to increase contrast by imaging the samples with small under-focuses,
typically a fraction of a micrometer to a few micrometers (Saad et al., 2001). However, the
focus-dependent contrast transfer function (CTF) of the TEM instrument differentially
modulates the images at different spatial frequencies (Erikson and Klug, 1970; Thon, 1971).
It is essential to obtain accurate focus values of all images for subsequent correction of CTF
modulations to coherently merge multiple images and to obtain high-resolution 3-D
reconstructions.

Based on weak phase approximation (Erikson and Klug, 1970; Thon, 1971), image
formation in a TEM instrument can be modeled in Fourier space as shown in equation 1;
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Fi($)=F,($)Ctf (5, H+N(5) (1)

in which Srepresents the spatial frequency, £; (3) represents the Fourier transform of the
image, F; (3) represents the structural factor of the sample, Ctf (3, ) represents the
instrument contrast transfer function which is dependent of the focus (), and M)
represents the noise. Based on this image formation model, the corresponding power
spectrum is:

LCH=L,C3)CHf (S, H+N*(E) @

in which s represents the spatial frequency, /; (3) represents the power spectra of the image,
/5 (3) represents the structural factor of the sample.

Due to uncertainties in setting focuses or even with intentionally varying focuses, the exact
focus values of the micrographs must be determined computationally after imaging. Current
methods determine the focus value by iterative fitting of the simulated power spectra to the
power spectra of experimental images by varying focus values to optimize the matching of
the simulated and experimental power spectra (Equation 2). The fitting can be interactively
performed using graphical user interface, for example, the EMAN ctfit program (Ludtke et
al., 1999), or automated fitting methods (Huang et al., 2003; Mallick et al., 2005; Mindell
and Grigorieff, 2003; Sander et al., 2003; Sorzano et al., 2007; Velazquez-Muriel et al.,
2003; Yang et al., 2009). As can be seen in equation 2, the modulation of a micrograph
depends only on its own CTF and in principal the focus values of different micrographs can
be independently determined. Current fitting methods employ this independence to fit the
focus value of different micrographs separately.

In recent years, graph theory has been increasingly used to represent data and relationships
within the data as networks. Valuable information can be extracted from the data networks,
for example, atomic coordinates from NMR measurements (Huang et al., 2006), protein
functions from protein-protein interaction networks (Koyutirk et al., 2011), and accurate
Web search results from Google PageRank link analysis (Brin and Page, 1998). Here we
have developed a novel focus determination method (s27ocus) by employing the radial scales
of oscillations in power spectra of micrographs (i.e. Thon rings) at different focuses and the
simple relationships between the scales and focuses. This new method determines the focus
values of all micrographs simultaneously in closed-form by solving overdetermined linear
equations constructed from the scale relationship graph. It is drastically different from all
current methods that treat each micrograph and its focus as a separate optimization (i.e.
search) problem.

Relationship between focus and scale of Thon rings in power spectra

The detailed Ctf (s, #) function based on weak phase approximation (Erikson and Klug,
1970; Thon, 1971) is shown in equation 3 and 4:

CTF(s)= ( \/I—stiny(s)+Qcosy(s))

. ®
=sin(y(s)+¢o)

1., CA
7(S):27T(%S2+TS4) (@)
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in which Qrepresents the amplitude contrast (Q < 1), ¢p represents the phase term
corresponding to amplitude contrast, A represents the electron wavelength, Csrepresents the
spherical aberration coefficient of objective lens. It is obvious that the CTF function is a sine
function that oscillates with its period determined by focus, spherical aberration, and
wavelength (Jiang and Chiu, 2001). Since it is a sine function of & and %, the oscillation
becomes more frequent at larger s (i.e. at high resolutions). At sufficiently high resolution,
the oscillation can be so frequent that a small change of focus can dramatically shift of the
position of the CTF function. As a result, the oscillations are complicated position-
dependent functions of the focus values. Current fitting methods aim to match power spectra
computed using equations 2—4 to power spectra of experimental images by iteratively
searching focus values.

By replacing s with s = % in equation 4, we can transform the formula to

, A, CA
y(s)=27r(f7s+ 1 sz) (5)

in which the sine function includes both s” and s'2 terms. Since the srange we are interested
is small (0 < s< 0.25 for 4 Angstrom resolution target) for CTF fitting, the s"2 term can be
effectively ignored as higher order perturbations. The CTF function can thus be simplified
as

Y(s)=nfls (6

in which CTF function becomes simply a sine wave of s” with its oscillation frequency
linearly proportional to focus values. We will call this transformed power spectra s power
spectra while the regular power spectra s? power spectra. Two images with different focuses
will have their sZ power spectra as sine waves of different frequency (i.e. Thon rings of
different spacing). One sine wave can be scaled along the sZaxis to match another sine
wave. The relative scale between the s2 power spectra of two images is simply the ratio of
their focus values:

si=filfi @)

in which f;and #;represents the focus value of image 7and jrespectively, and s; jrepresents
the amount of scaling to match s power spectra of image /to that of image /.

Computation of s2 power spectra

The 52 power spectra are computed through the following steps. The standard 2-D s power
spectra of the micrograph are first computed using the same approach as in existing CTF
fitting methods by incoherently averaging the power spectra of individual particles in a
micrograph (Supplementary Fig. 1a and 2a) (Saad et al., 2001; Yang et al., 2009). Since the
power spectra include contributions not only from CTF but also from sample structural
factors and background noises (equation 2), values in power spectra usually span large
ranges with low-resolution values orders larger than high-resolution values (Supplementary
Fig. 2a). To minimize the overall slope from low to high resolutions and to make the CTF
oscillations more dominant, several filtering steps were applied. The 2-D s’ power spectra
are first log transformed by replacing the amplitudes (/) with their log function (In/)
(Supplementary Fig. 1b and 2b). The log-transformed s power spectra are then high pass
filtered (Gaussian filter with sigma set to 1/10 of Nyquist frequency) (Supplementary Fig. 1c
and 2c). The resulted s power spectra are now essentially free of overall slope. The sZ
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power spectra are then further filtered using a Gaussian low pass filter (sigma set to 2/5 of
Nyquist frequency) to remove some noises (Supplementary Fig. 1d and 2d). The Thon ring
oscillation amplitudes gradually decrease toward high-resolution regions due to instrument
damping envelope functions. To concentrate on the resolution regions with oscillations, the
filtered s power spectra are then truncated at user specified resolution (6 A in Fig. 1a, 2a,
Supplementary Fig. 1e and 2e). Finally the truncated s? power spectra are transformed by
rescaling nonlinearly along the radial direction so that the radius is proportional to sZ instead
of sto obtain the sZ power spectra (Fig. 1b and Supplementary Fig. 1f). The nonlinear
rescaling effectively compresses small radii regions to make the Thon rings oscillate more
frequently but dilates larger radii regions to make the Thon rings oscillate less frequently.
This nonlinear rescaling results in uniform oscillation rate for Thon rings from small to large
radii in the s° power spectra. The entire 2-D s2 power spectra are then rotationally averaged
to obtain 1-D sZ power spectra (Fig. 1b and Supplementary Fig. 2f). When astigmatism is
considered, the 2-D 52 power spectra (Fig. 6b) can be divided into multiple angular sectors
and then a 1-D s power spectra can be obtained for each of the sectors by limiting the
rotational averaging within each sector (Fig. 6c).

Relative scale determination

The relative scales of the 1-D sZ power spectra of micrographs at different focuses are then
determined by a simple search for the best scaling factor to bring the 1-D s power spectra of
one image to match that of another image. As can be seen in Fig. 2b, the very low-resolution
region of the sZ power spectra is still dominated by the sample structural factors. In general
these regions (for example, Fourier origin to 30 A or equivalently 0 to 0.0011 A=2) are
excluded in the calculation of matching scores (negative normalized correlation
coefficients). The scale-score plots for several micrograph pairs (Supplementary Fig. 3)
show that correct relative scales can be determined from their 1-D sZ power spectra. From
these plots it is evident that matching of the oscillations dominates the matching scores
despite the influences of residual structural factors and envelope functions that do not follow
the linear relationship between focus and oscillation frequency.

Graph representation of image relationships

If we represent each 1-D s power spectrum as a node and the relative scale of the s° power
spectra as the edge between the corresponding nodes, a graph describing the relative scale of
&2 power spectra of different micrographs can be constructed. Note that we use “image” and
“micrograph” in this work interchangeably. One can link all pair of nodes to construct a
complete graph or just link a subset of the nodes for a partially connected graph. Care must
be taken to avoid isolated nodes by connecting a node to at least another node and to make
sure that every node can directly or indirectly reach every other node. For NV images, there

N(N-1)
will be V/nodes and M(M < ———) edges in the graph.

Determination of focuses as a linear least square problem

From the above graph representation, we can derive a closed-form solution to
simultaneously determine the focus values of all images. To rearrange and expand equation
7 to include the focus values of all images, we can obtain

n—1

D fi=0fo+0fi+ - tsjifit - =1fit - 40f,1=0 @)

i=0
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for each edge in the graph. Stacking the corresponding equations of all edges in the graph,
we will obtain M equations relating the focus values of all images (Equation 9).

sijo -1 0 00 0 0
52,0 0 -1 0 0 0 0

: : N 0 0
Sist0 0O 0 0 0 0o -1

-1 50,1 0 0 0 0 0

0 s -100 0o 0 o 0

) i ) fi 0
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. . . . . . . fn—l 0
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0 -1 0 o o0 --- 0 S1.n—-1
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This set of equations corresponds exactly to a standard linear system Ax = b with xas the
focus values, 5= 0, and A as the matrix of relative scales of the s power spectra. The
solution to this type of linear system is known as the least square solution if there are more
equations than the unknowns. In our case, we will easily satisfy this requirement by
connecting a node to more than one node for a graph of /= 3 nodes. We will call this new
focus determination method s2focus method.

Bootstrap the least square solution

However, the solution for equation 9 is all zero since this is the trivial solution when 6= 0.
In fact, equation 9 has infinite number of solutions because any solution multiplied by a
constant (including 0) is also a solution. An additional constraint or equation is needed to
break the constant factor degeneracy and to allow unique solutions at the correct absolute
scale (i.e. the actual focus values).

If the focus value of an image is known, it can be used to bootstrap the solution into correct
scale and to break the above constant factor degeneracy problem. The known focus value f;
can be added to equation 9 as an additional row in the following form:

n—1

Zaiﬁ=0f0+0f1+~~+1f,~+---+0f;l_1=fi (10)

i=0

Though an arbitrary number of such equations can be added, one additional equation is
sufficient. Now the composite of equations 9 and 10 is a truly overdetermined linear
equation system with a unique solution. It can be solved by either the regular least square
method or by the total least square method. While the regular least square solution considers
errors only in observations (i.e. &in Ax= b), the total least square solution considers errors
in both sampling positions and observations (i.e. Aand bin Ax= b) (Wikipedia, 2012).
Since our A matrix consists of the relative scales of s° power spectra and can potentially
have some errors, the total least square method should, in theory, provide a more robust
solution. Our experimental results confirm this and thus we have chosen to use total least
square solution in this work. We used the svdmethod in the scijpy software (Jones et al.,
2012) to solve the total least square problem (Wikipedia, 2012). To make the method even
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more robust against outliers in the data, we further extended the solution to iterative
weighted total least square solution by dampening the weights of rows with large errors.

There are several ways to provide the required bootstrap. First, one can simply pre-
determine the focus value of one image using any existing method. Second, one can fit a
sinewave to the sZ power spectra and determine its focus (Supplementary Fig. 4). In both
cases, the known focus value can be used as shown in equation 10. However, any error for
this focus value will be carried over as multiplicative errors to all other focus values. Third,
one can first set the least square solution to an arbitrary scale (for example, mean focus —
1) as shown in equation 11:

n—1

Zaiﬁ=1f0+1f1+ st 1 i+ fimi=n (1)

i=0

The solved focus values can then be adjusted by setting their mean value to match the mean
focus value of another set of focus values independently determined using the traditional
power spectra fitting method, for example, our earlier method (Yang et al., 2009). All three
approaches were implemented. We prefer the last approach as the two sets of focus values
determined independently by these drastically different approaches can also serve as cross
validation for improved reliability of the solutions (see Results section, Fig. 7,
Supplementary Figs. 5 and 6).

Determination of Astigmatism

The $? focus method can be easily extended to determine the focus values at different
directions of an image and thus the astigmatisms of images. In addition to the rotational
average sZ power spectra, we can also compute the sZ power spectra of angular sectors and
use them to construct a graph including both the rotational average and angular sectors. The
whole graph can then be used to solve the least square solution of focus values for the
angular sectors and the rotational averages of all images simultaneously. The angular
distribution of focus values is then used to describe the image astigmatism using a cosine
function of azimuthal angles (Huang et al., 2003; Yang et al., 2009).

Focus determination by direct s2 power spectra fitting

As discussed in earlier sections, the Thon ring oscillation rate in a sZ power spectrum is
proportional to the focus value (Equation 6). This simple relationship between focus and
Thon ring oscillation rate can be employed to determine the focus value by fitting sine
waves of different oscillation frequencies to the sZ power spectrum. A simple 1-D search of
focus values will identify the focus value that gives rise to a best matching s/ne wave
(Supplementary Fig. 4). We will call this direct sZ power spectra fitting method s%psfit
method. To contrast with this new sZpsfit method, we will refer to our earlier automated s?
power spectra fitting method (Yang et al., 2009) as s?psfit method in this publication.

Implementation

We have integrated the new s?focus method, the new s2psfit method, and our earlier sZpsfit
method into a single python program (#itctf2.py) for easy usage and for cross-validating the
fitting results of all three methods. This program is parallelized using the multiprocessing
module to use all CPU cores to speed up computation. EMAN?2 library (Tang et al., 2007)
was used for image 10, and to compute and transform the power spectra. To facilitate the
testing of CTFFIND3 method (Mindell and Grigorieff, 2003), we also implemented a
python script ctffind.py to run the ctffind3.exe binary in parallel for large number of
micrographs and to format the fitting results for more convenient comparison with the
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results of s2focus, s2psfit and s'psfit methods. The fitctf2.py program examines the focus
values by these three (or four if CTFFINDS3 results are also included) methods and alerts the
user with the list of micrographs with large inconsistencies (for example, > 0.1 m) in order
of decreasing level of inconsistency. Though currently tested only on Linux systems, both
Python scripts should work on all platforms that the dependent software (python, EMAN?2
and CTFFIND3) are available. Both python scripts, together with test data and usage
examples, will be freely downloadable via our web site (http://jiang.bio.purdue.edu).

Test datasets

Results

Three experimental datasets were used to test the performance of our new s°focus method
and for the cross-validation of results from the s? focus method and our earlier s'psfit
method, our new sZpsfit method, and the CTFFIND3 method. The bacteriophage T7 virion
dataset (360 micrographs) and MLDII capsid dataset (644 micrographs) were acquired using
a FEI Titan Krios cryo-TEM (300kV, FEG gun) sampled at 1.1 A/pixel. The Sindbis virus
dataset (141 micrographs) was acquired using a Philips CM200 cryo-TEM (200kV, FEG
gun) sampled at 1.62 A/pixel. The focus values of all these micrographs were originally
determined by sZpsfit method and subsequently verified using the EMAN ctfit graphic
program (Ludtke et al., 1999). These verified focus values were used as ground truth in
performance tests for the $2 focus, s°psfitand CTFFIND3 methods.

Generation of s2 power spectra

Figure 1 compares 2-D s2 power spectra (Fig. 1b) with 2-D regular s? power spectra (Fig.
1a). Since the power spectra includes the sample structural factor of which the magnitude
can be several orders different from low to high resolution (i.e. center to edge)
(Supplementary Figs. 1a and 2a), it is important to minimize such difference. Here we
performed log-transform of the original power spectra as in our earlier fitting method (Yang
et al., 2009) (Supplementary Figs. 1b and 2b). The remaining intensity gradient can be
further removed by high pass filter (Supplementary Figs. 1c and 2c). By now the remaining
intensity variations in the transformed power spectra were dominated by the CTF
oscillations as seen in Fig. 1a and Supplementary Figs. 1c and 2c). After further denoising
by low pass filter (Supplementary Figs. 1d and 2d) and truncation to exclude noises at outer
radii (Supplementary Figs. 1e and 2e), a final step of s — & transform produced sZ power
spectra in which the oscillations have apparently uniform periods from center to edge (2-D)
(Fig. 1b and Supplementary Fig. 1f) or from left to right (1-D) (Fig. 2b and Supplementary
Fig. 2f) instead of increasingly frequent oscillations in regular power spectra (Fig. 1a, Fig.
2a, Supplementary Figs. 1le and 2e).

To illustrate the linear relationship between the focus and the oscillation frequency in s%
power spectra, the 1-D sZ power spectra of four cryo-EM images of varying focuses are
shown in Figure 2b. It is clear that oscillations indeed become more frequent as focus
increases. The oscillation frequency doubles as focus doubles. Since the oscillation
frequency is inverse to the oscillation period, the equivalent interpretation of Figure 2b is
that the oscillation period doubles if the focus is halved. The 1-D s2 power spectra of larger
focus will need to be scaled up along the s%-axis (i.e. stretched) to match that of smaller
focuses. Correct scaling factors can be determined by 1-D search as shown in
Supplementary Fig. 3. These data confirmed the theoretical prediction of the relationship
between s power spectra and focus that serves as the basis of the s? focus method.
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Performance tests

We first tested the $2 focus method on datasets consisting of different numbers of images.
Theoretically, the s? focus method requires A= 3 as there must be at least as many edges as
the number of nodes in the graph to provide a sufficient number of equations (i.e. number of
edges) for the unknowns (i.e. number of nodes). From the full bacteriophage T7 MLDII
capsid test dataset, we randomly selected different numbers of images (N=3 to 100),
constructed a complete graph (i.e. the relative scale of sZ power spectra of all pair of images
were identified), and solved the focus values. From the results (Figure 3), we can see that the
method work reliably across all dataset sizes when /= 3 with the mean “errors” from the
reference values clustered in the range of 0.01 to 0.02 wm. The performance becomes more
stable with a larger number of images. These results suggest that the s? focus method works
well for both small and large datasets.

We then tested the $2 focus method with different levels of connectivity on the graph. Using
the 100 image dataset, we gradually reduced the number of edges in the graph until there
was only one edge for each node. Both random selection of the edges and patterned
selection of the edges were tested. In the patterned selection, each node (i.e. image) was only
connected to its neighbors in the node list that were in turn arranged according to the order
being imaged. From the test results (Figure 4), we determine that the $? focus method works
reliably across a wide range of connectivity levels (from complete graph to 2-connected
graphs) and only fails when there is only one edge for each node. The failure with the one-
edge graph is expected since there is no longer the sufficient number of edges for any node
to reach any other node (i.e. image) on the graph. Both random selection of edges and
selection of neighbor edges give similar levels of performance.

The above tests have shown that the s? focus method works reliably with experimental data.
Since correct solution of focus values relies on correctly identified relative scale values in

S focus method, these results reaffirm that the relative scales of the sZ power spectra can be
reliably determined as shown in Supplementary Fig. 3. To further test the robustness of
s?focus method against errors in the relative scales, we intentionally added synthetic errors
to the identified relative scales between s2 power spectra of images at different focuses.
Random scale errors in Gaussian distributions of zero mean and different sigma values were
added. The results shown in Figure 5 indicate that the s focus method can determine
accurate focus values despite the increased level of errors in the relative scale values. Using
0.06 wm as the cutoff (i.e. about one particle diameter), the 2 focus method can tolerate
additional 12% errors in the scale values.

Determination of astigmatism

While high-resolution cryo-EM imaging requires careful instrument alignment that in
general can reduce astigmatism to minimal levels, astigmatic images are occasionally found
in production datasets. Here we tested the s? focus method on astigmatic images. As seen
from the elliptic Thon rings in regular s power spectrum (Fig. 6a) and the corresponding s°
power spectrum (Fig. 6b), this image has significant astigmatism. The Thon rings in s%
power spectra appear to be significantly more elliptic. The oscillations in the 1-D s power
spectra along different directions are offset from each other (Fig. 6¢). By using these 1-D s°
power spectra of different angular directions together with the rotational average 1-D s°
power spectra, $ focus can simultaneously determine direction-specific focus values
together with average focus values in a single least square linear solution. The angular
distribution of focus values (Fig. 6d) clearly follows a sinusoidal pattern with a period of
180 degrees, characteristic of 2-fold astigmatism for TEM. By fitting the angular
distribution of these focus values to a cosine function (Yang et al., 2009), the direction of
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smallest focus was determined at 155 degrees, consistent with the most elongated Thon ring
direction in Fig. 6a and 6b.

Cross validation with large experimental datasets

From the above performance tests, we found that the $? focus method works reliably even
with limited number of edges per node in the graph. This allows the method to scale to large
number of images as it reduces the computational complexity of the method from O(A#) for
complete graph to sparsely connected graph with O(aN) in which Nis the number of images
and ais a small constant factor (a << NV). We thus tested the s2 focus method with two full
experimental datasets with 141 and 644 micrographs respectively. In these tests, we only
connected every node to other 10 randomly selected nodes. As can be seen in the results
(Figure 7), the determined focus values for both datasets are very consistent with the
reference focus values based on graphically verified results of our earlier sZpsfit method
(Yang et al., 2009). The average difference is at about 0.02 wm, which is significantly
smaller than the diameter (~0.06 um) of both virus particles. Since several near atomic
resolution (3—4 A) 3-D reconstructions have been reported for viruses of comparable or
larger sizes without correction of focus variations within the same virus particle (Grigorieff
and Harrison, 2011; Jiang et al., 2008; Zhang et al., 2010), we assume that such small fitting
errors as shown in our tests are insignificant.

As these two focus determination methods are drastically different, consistent results serve
as excellent cross validation for both methods when the ground truth is unknown. In the test
results with the Sindbis dataset, we also found an outlier with largest focus value difference
between these two methods (2.87 wm by $2 focusvs. 2.7 um by slpsfip (Fig 7a).
Subsequent examination using a graphic program (EMAN ctfi}) verified that 2.87 pm by the
new $2 focus method is more accurate. It is worth pointing out that the inaccurate 2.7 pm
reference focus value by s?psfit method should have already been corrected by the graphic
verification step prior to this test as it is part of our standard procedure in image processing.
The failure to detect and correct such inaccuracy reflects the occasional omissions
associated with repetitive human user operations when processing large data.

We further tested the performance of two additional fitting methods, the new s2psfit method
developed in this work and the CTFFIND3 method (Mindell and Grigorieff, 2003), on these
two datasets (Supplementary Figs. 5 and 6). We found that both s?psfitand CTFFIND3
could determine correct focus values for majority of the images while only failed for small
number of images for both datasets. The failure rates for the Sindbis dataset are modestly
low (~2%) for both methods. However, the failure rate for CTFFIND3 on the larger T7
MLDII capsid dataset is significantly higher (~11%), a failure rate larger than the reported
5% maximal rate (Mindell and Grigorieff, 2003). In contrast, other than small (<0.1j.m)
differences, s°focus method did not fail for these two test datasets. Patterns can be
recognized in the failures by both s2psfitand CTFFIND3. Further investigations will be
needed to understand the source(s) of these failure patterns. However, a more interesting
observation for these failures is that the failures by different methods occurred for different
subset of the datasets. The uncorrelated failures are consistent with the fact that these
methods are based on different principals and their errors should be susceptible to different
factors. In our integrated method we take advantage of the uncorrelated failures to examine
the consistency of the focus values determined by these different methods and alert the users
with the list of micrographs with inconsistent results.

Discussion

We have developed a novel focus determination method $2 focus for cryo-EM images using
graph theory and total least square solution of linear systems. It can determine both the
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average focus and the anisotropic focus distribution of astigmatic images. Systematic tests
have found that this method works accurately and robustly with datasets of a variety of
sizes. Its good performance with sparsely connected graphs allows it to scale to large
experimental datasets. It takes only seconds to a few minutes on a desktop computer to
complete the two large experimental datasets with hundreds of micrographs (Supplementary
Table I).

This s focus method is the first method that employs the relationships among different
images to simultaneously determine the focuses of all images. In contrast, current methods
work on individual images and the fitting process is independent for different images. In the
& focus approach, determination of astigmatism and average focus values are also unified in
a single least square solution that are solved simultaneously. This is in stark contrast to
existing methods in which the focus values of angular sectors are determined separately
from the rotational average focus (Huang et al., 2003; Yang et al., 2009) or the Thon rings
are explicitly located using image feature detection methods to approximate the ellipticity
and then astigmatism (Mallick et al., 2005). It is thus appropriate to classify our new $2
focus method as the only global method while current methods are all local methods. In
addition, the new $? focus method is a closed-form method that utilizes the robust total least
square solution of overdetermined linear systems. In contrast, all existing methods formulate
focus determination as an iterative non-linear search/optimization problem.

During TEM instrument alignment, an essential task is to minimize objective lens
astigmatism by visually monitoring the apparent ellipticity of Thon rings of image power
spectra. It is thus beneficial to enhance ellipticity of the Thon rings to help further reduce the
residual astigmatism. As shown in Figure 6, Thon rings of astigmatic images are apparently
more elliptic in 5% power spectra (Fig. 6b) than in regular s power spectra (Fig. 6a). This
observation suggests that sZ power spectra can be potentially used to facilitate visual
detection and further minimization of residual astigmatism during instrument alignment and
to improve cryo-EM image quality.

It is worth pointing out that mean focus and astigmatism of the entire micrograph are only
an approximation to the true focus and astigmatism for particles scattered across the
micrograph. The intentional tilt of the specimen to alleviate preferred particle orientation
(Frank and Radermacher, 1992) or the local tilt due to cryo-crinking of the sample grid
(Booy and Pawley, 1993) will result in planar distribution of the focus values. The
positioning of particles at different Z-heights in the embedding vitreous ice will result in
more randomly varying focuses. The systematic variations of focuses caused by tilt can be
determined using local fitting with optional planar constraints (Mindell and Grigorieff,
2003; van Heel et al., 2000). Though not currently implemented, it will be straightforward to
extend the s?focus method to also deal with the tilt by dividing the entire micrograph into
multiple blocks and treating each block as a different micrograph. In our practical image
processing strategy, we instead choose to include further focus refinement in the iterative
image alignment and 3-D reconstruction process (Chen et al., 2011). Such focus refinement
requires pre-determined orientation and center parameters as prior conditions but it can use
both the amplitude and phase information to achieve higher accuracy and higher resolution
3-D reconstruction (Chen et al., 2011). In contrast, all Thon-ring based focus determination
methods only use amplitude information although no pre-determined particle orientation and
center parameters are needed.

Though our earlier iterative fitting method sZpsfitis a high quality method as shown in
(YYang et al., 2009) and in the tests of this work, we still always use a graphic program
(EMAN ctfid to interactively verify the fitting results of all images. This is due to the lack
of a reliable indicator for the correctness of the determined focuses and the lack of reliable
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self-detection of rare failures as shown in Figure 7a. Tests with two additional fitting
methods, our new s2psfit method and the CTFFIND3 method, found that both methods also
fail with small number of micrographs (Supplementary Figs. 5 and 6). It is probably
unrealistic to reach 100% accuracy and reliability for any single method. In this work, we
have found that the rare inaccuracies and failures in the determined focus values can be
conveniently detected by comparing the results of different methods. A very valuable
advantage arisen from this work is that we now have multiple methods (s?focus, s2psfit,
slpsfit. and optionally CTFFIND3) integrated in a single program for reliable automated
focus determination of experimental images. Since these methods are based on drastically
different principals, the occasional failures by each of the methods are uncorrelated. The
consistency or discrepancy of the results of these methods can thus provide rigorous cross-
validation for the results of individual methods. In our opinion, availability of cross-
validation method is essential for quality assurance of all tasks (Henderson et al., 2012;
Read et al., 2011) though it is often missing in many systems including cryo-EM 3-D
reconstructions (Henderson et al., 2012). Here we demonstrated a reliable cross validation
method for focus determination, an essential early step in high-resolution cryo-EM image
processing and 3-D reconstruction. Coupled with its scalability to a large number of images,
the focus determination method with reliable internal cross-validations developed in this
work will allow more robust automated image processing of increasingly more common
large datasets for high-resolution 3-D reconstructions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of 2-D regular st power spectra and $ power spectra
A. regular st power spectra of a micrograph of bacteriophage T7 MLDII with 93 particles
and at 1.06 wm under-focus; B. sZ power spectra generated from A. Both power spectra were

truncated to 6 A resolution at the edges.
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A. rotational average of s? power spectra shown in Figure 1A; B. 1-D sZ power spectra of
resolution.

Figure 2. Comparison of 1-D regular st power spectra and $ power spectra
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Figure 3. Performance with varying number of images

The focus values fitted using our earlier power spectra fitting sZpsfit method (Yang et al.,
2009) and then graphically verified were used as references to compute the “errors” of the
focus values determined using the new 2 focus method. In these tests, complete graphs were
constructed for the least square solutions. The plot shows the average of five runs with the
varying number of images randomly selected from a 100-image dataset.
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Both randomly connected edges and edges between neighboring nodes were tested. The
same 100 images used in Figure 3 were used in these tests.
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Figure 3 and 4 and 10 edges for each node were used in these tests. The plot shows the

Random synthetic errors were added to the determined scales. The same 100 images for
average of five runs.

Figure5. Performance with increased “errors’ in therelative scale values
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Figure 6. Determination of astigmatism

A and B, regular s power spectrum (A) and sZ power spectrum (B) of an astigmatic image
of bacterial phage T7 virion with 58 particles and at 1.42 wm under-focus; C. 1-D sZ power
spectra of 4 out of 16 angular sectors; D. Plot of focus values for the angular sectors
determined by 2 focus method.
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Figure 7. Cross validations of s? focus and our earlier power spectrafitting slpsfit method

A. 141 image dataset of Sindbis virus. The red arrow points to the image with largest focus
value difference between these two methods; B. 644 image dataset of bacterial phage T7
MLDII capsid. The axes ranges in both A and B were limited to focus on the focus range of
most images. Full range plots were shown in Supplementary Figs. 5a and 6a respectively.
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