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A miRNA-regulatory network explains how
dysregulated miRNAs perturb oncogenic
processes across diverse cancers
Christopher L. Plaisier,1 Min Pan,1 and Nitin S. Baliga1,2

1Institute for Systems Biology, Seattle, Washington 98109-5234, USA

Genes regulated by the same miRNA can be discovered by virtue of their coexpression at the transcriptional level and the
presence of a conserved miRNA-binding site in their 39 UTRs. Using this principle we have integrated the three best
performing and complementary algorithms into a framework for inference of regulation by miRNAs (FIRM) from sets of
coexpressed genes. We demonstrate the utility of FIRM by inferring a cancer–miRNA regulatory network through the
analysis of 2240 gene coexpression signatures from 46 cancers. By analyzing this network for functional enrichment of
known hallmarks of cancer we have discovered a subset of 13 miRNAs that regulate oncogenic processes across diverse
cancers. We have performed experiments to test predictions from this miRNA-regulatory network to demonstrate that
miRNAs of the miR-29 family (miR-29a, miR-29b, and miR-29c) regulate specific genes associated with tissue invasion and
metastasis in lung adenocarcinoma. Further, we highlight the specificity of using FIRM inferences to identify miRNA-
regulated genes by experimentally validating that miR-767-5p, which partially shares the miR-29 seed sequence, regulates
only a subset of miR-29 targets. By providing mechanistic linkage between miRNA dysregulation in cancer, their binding
sites in the 39UTRs of specific sets of coexpressed genes, and their associations with known hallmarks of cancer, FIRM, and
the inferred cancer miRNA-regulatory network will serve as a powerful public resource for discovery of potential cancer
biomarkers.

[Supplemental material is available for this article.]

MicroRNAs (miRNAs) mediate degradation (Baek et al. 2008) or

translational repression (Selbach et al. 2008) of gene transcripts

associated with an array of biological processes including many

of the hallmarks of cancer (Hanahan and Weinberg 2000, 2011;

Dalmay and Edwards 2006; Ruan et al. 2009). Not surprisingly,

dysregulated miRNAs can be readily detected in tumor biopsies

(Jiang et al. 2009) and are known to be diagnostic and prognostic

indicators (Zen and Zhang 2012). In some cases miRNAs have also

been shown to be potential therapeutic targets (Garofalo and Croce

2011; Nana-Sinkam and Croce 2011). Conservative estimates sug-

gest that each human miRNA regulates several hundred transcripts

(Baek et al. 2008; Selbach et al. 2008), and thus miRNA-mediated

regulation results in statistically significant gene coexpression sig-

natures that are readily discovered through transcriptome profiling

(Lim et al. 2005; Wang and Wang 2006; Weber et al. 2006; Brueckner

et al. 2007; Chang et al. 2007; Grimson et al. 2007; He et al. 2007;

Johnson et al. 2007; Karginov et al. 2007; Linsley et al. 2007; Frankel

et al. 2008; Georges et al. 2008; Hendrickson et al. 2008; Ozen et al.

2008; Sengupta et al. 2008; Ceppi et al. 2009; Fasanaro et al. 2009;

Tan et al. 2009; Tsai et al. 2009; Valastyan et al. 2009; Malzkorn et al.

2010; Wang et al. 2010). Together these studies motivated us to

build a generalized framework for the inference of miRNA regula-

tory networks for genes discovered to be coexpressed through

analysis of genome-wide transcriptome profiles.

There are two commonly used strategies to identify the

miRNA regulator(s) responsible for the observed coexpression of

a set of genes: (1) Enrichment of predicted 39 UTR binding sites for

a known miRNA (Kertesz et al. 2007; Betel et al. 2008, 2010;

Friedman et al. 2009); or (2) de novo identification of a 39 UTR

motif that is complementary to a seed sequence of a miRNA in

miRBase (Linhart et al. 2008; Fan et al. 2009; Goodarzi et al. 2009;

Kozomara and Griffiths-Jones 2011). Algorithms utilizing the first

strategy incorporate some combination of seed complementarity,

cross-species conservation, and thermodynamic properties of the

binding site. These algorithms include PITA (Kertesz et al. 2007),

TargetScan (Friedman et al. 2009), and both miRanda (Betel et al.

2008) and miRSVR (Betel et al. 2010) from microRNA.org. While

the combined modeling of two or more miRNA-binding properties

within these algorithms boosts signal (Supplemental Table 1), the

multiple hypotheses testing required to identify bona fide miRNA-

binding sites unfortunately also simultaneously leads to high false-

negative rates (;32%–52%) (Sethupathy et al. 2006). Therefore,

inference of a comprehensive miRNA regulatory network would

require the integration of best-performing algorithms from this

class with algorithms that utilize the second strategy. We have re-

cently developed a novel algorithm miRvestigator to accurately

associate 39 UTR motifs to complementary miRNA seed sequences

(Plaisier et al. 2011). However, for this algorithm to be effective it

has to be coupled to a second algorithm Weeder (Pavesi et al. 2006)

that can accurately detect de novo cis-regulatory motifs that are

conserved within the 39 UTRs of the coexpressed genes (Linhart et al.

2008; Fan et al. 2009). miRvestigator converts relative conservation

of nucleotides at each position of a cis-regulatory motif discovered

by Weeder into a profile hidden Markov model (HMM). Using this

HMM, the Viterbi algorithm, and a background distribution of all

possible k-mer sequences (6-, 7-, or 8-mer), miRvestigator accurately

identifies the most likely miRNA that binds the conserved 39 UTR

element to mediate the observed coregulation (Plaisier et al. 2011).
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Here, we report the construction of a generalized framework

for the inference of regulation by miRNAs (FIRM). First, we have

compiled a compendium of transcriptome profiles from studies

that had interrogated differential expression of genes in response

to targeted perturbation of specific miRNAs (Lim et al. 2005;

Weber et al. 2006; Brueckner et al. 2007; Chang et al. 2007;

Grimson et al. 2007; He et al. 2007; Johnson et al. 2007; Karginov

et al. 2007; Linsley et al. 2007; Frankel et al. 2008; Georges et al.

2008; Hendrickson et al. 2008; Ozen et al. 2008; Sengupta et al.

2008; Ceppi et al. 2009; Fasanaro et al. 2009; Tan et al. 2009; Tsai

et al. 2009; Valastyan et al. 2009; Malzkorn et al. 2010; Wang et al.

2010). Second, using this compendium of miRNA-perturbed tran-

scriptomes we demonstrate that functional miRNA-binding sites

(8 bp of complementarity) preferentially reside in the 39 UTRs.

Further, we demonstrate that using preferential 39 UTR localization

as a heuristic significantly increases sensitivity and specificity of

miRNA-binding site discovery by Weeder-miRvestigator. Third,

using the compendium of miRNA-perturbed transcriptomes we

have identified and integrated the best performing algorithms into

a generalized framework for inference of miRNA regulatory net-

works. Finally, we demonstrate the utility of this framework by

applying it to a set of 2240 coexpression signatures from 46 dif-

ferent cancers. The original study was able to associate only four

signatures to putative regulation by a known miRNA (Goodarzi

et al. 2009). In contrast, using the integrated framework we were

able to explain 1324 signatures as potential outcomes of regulation

by specific miRNAs in miRBase. By applying functional enrich-

ment and semantic similarity we have identified within this ex-

pansive network specific miRNAs associated with hallmarks of

cancer. Further, filtering gene coexpression signatures for specific

hallmarks of cancer such as ‘‘tissue invasion and metastasis’’ gen-

erated a metastatic cancer–miRNA regulatory network of 33

miRNAs. Importantly, this revealed that a relatively small subset of

miRNAs regulate multiple oncogenic processes across different

cancers. Through in-depth analyses of data from prior studies as

well as new data from targeted miRNA-perturbation experiments,

we have experimentally validated the role of miR-29 family mem-

bers in lung adenocarcinoma and discovered gene targets for regu-

lation by the relatively unknown miR-767-5p. These analyses and

validations demonstrate how the cancer–miRNA regulatory net-

work can be used to accelerate discovery of miRNA-based biomarkers

and potentially therapeutics.

Results

Inferring miRNA mediated regulation through analysis
of coexpressed genes

The inference of a miRNA regulatory network can be accomplished

in two ways. The first approach requires prior knowledge of genome-

wide binding site locations for known miRNAs (Sethupathy et al.

2006). There are many algorithms that utilize this target enrich-

ment strategy for inference of miRNA regulatory networks (Grimson

et al. 2007; Linhart et al. 2008; Betel et al. 2010). The second ap-

proach performs the de novo discovery of conserved putative

miRNA-binding sites within the 39 UTRs of coexpressed genes.

Weeder is one such algorithm that accurately discovers conserved

cis-regulatory elements in 39 UTRs (Linhart et al. 2008; Fan et al.

2009). The information of conserved cis-regulatory sequences can

then be utilized for pattern matching to seed sequences of known

miRNAs in miRBase. We had previously reported a web framework

using the miRvestigator algorithm for performing such pattern

matching (Plaisier et al. 2011). Here, we present results on the

performance of Weeder and miRvestigator applied to simulated

data sets. We then utilize a compendium of experimentally gen-

erated data from targeted miRNA perturbation studies to demon-

strate that restricting Weeder’s search space to 39 UTR’s sequences

increases the sensitivity and specificity of Weeder–miRvestigator.

Finally, we use the compendium to compare the performance of

algorithms for the inference of miRNA regulation and combine the

optimal methods into an integrated framework.

Weeder–miRvestigator

We constructed a framework for accurate inference of miRNA-

mediated regulation using as input just the 39 UTR sequences of

coexpressed genes by coupling Weeder de novo motif detection

and miRvestigator for subsequent association to known miRNA

seeds (Fig. 1). We tested the sensitivity and specificity of miRvestigator

independent of Weeder using synthetic 39 UTR motifs. Starting

with the seed sequence of miR-1 we computationally generated

a set of synthetic motifs with increasing entropy. Using these syn-

thetic motifs we computed the receiver operating characteristic

(ROC) area under the curve (AUC) across a range of motif entropies.

The ROC AUC is a standard approach to evaluate the sensitivity

and specificity of classification or feature selection by an algo-

rithm. This statistical analysis demonstrated that the miRvestigator

scoring function (complementarity P-value metric) outperforms

regular expression in both sensitivity and specificity for higher en-

tropies (Fig. 2A; Supplemental Methods). Using the same approach

we tested the performance of the integrated Weeder–miRvestigator

framework in recovering the miR-1 seed sequence from a set of

synthetic sequences into which it was inserted at a known fre-

quency (0%–100%). The results showed that by integrating the two

algorithms we can sensitively and specifically recover the com-

plementary miRNA seed (ROC AUC ;0.9) even when it is present

in just 40% of the query sequences (Fig. 2B). We conclude from

these experiments that the integrated Weeder–miRvestigator ap-

proach is a sensitive and specific method for inference of miRNA-

mediated regulation from 39 UTRs of coregulated genes.

Restricting searches to 39 UTR increases sensitivity
and specificity of the Weeder–miRvestigator

MiRNA target prediction algorithms (including PITA, TargetScan,

miRANDA, and miRSVR) improved their performance by restrict-

ing searches to the 39 UTRs of transcripts where it has been dem-

onstrated statistically that functional miRNA-binding sites are

preferentially located (Grimson et al. 2007). To determine the

validity of this heuristic we investigated the distribution of func-

tional miRNA-binding sites within coregulated transcripts by ap-

plying Weeder–miRvestigator to full transcript sequences (59 UTR,

coding sequence [CDS], and 39 UTR). First, we compiled a com-

pendium of miRNA target gene sets from 50 transcriptomes that

were generated by perturbing specific miRNAs (22 independent

studies, 41 unique mIRNAs; Supplemental Table 2). The analysis

was then restricted to target gene sets in the compendium where

Weeder–miRvestigator was able to identify the corresponding per-

turbed miRNA (27 of 50 sets). The 39 UTRs were significantly

enriched for miRNA-binding sites with 8 bp complementarity to

the miRNA seed sequence (P-value = 3.2 3 10�5, Fig. 2C,D). Re-

markably, none of the other transcript regions showed significant

enrichment of miRNA-binding sites (P-value > 1.5 3 10�4, P-value

corrected for 27 miRNAs 3 3 transcript regions 3 4 instance
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complementarities to the miRNA seed [All, 8, 7, and 6 bp com-

plementarities]). This unbiased analysis has independently con-

firmed the observation of Grimson et al. (2007) that functional

miRNA-binding sites preferentially reside in the 39 UTRs. Next, we

compared the sensitivity and specificity of searching full tran-

scripts versus restricting the search space to the 39 UTRs by com-

puting ROC curves for Weeder–miRvestigator. Restricting the

search space to 39 UTRs (ROC AUC = 0.96) significantly increased

the sensitivity and specificity of miRNA-binding site discovery by

Weeder (P-value = 1.8 3 10�2) relative to corresponding searches

on full-transcript sequences (ROC AUC = 0.80). Therefore, all

subsequent miRNA-binding site searches with Weeder were re-

stricted to the 39 UTR of putatively coregulated gene sets.

Selecting optimal methods to infer a comprehensive miRNA
regulatory network

While multiple hypotheses testing correction procedures can re-

duce the number of false positives (incorrectly inferred regulatory

interactions), it also results in a higher false-negative rate (i.e.,

missing regulatory interactions). Therefore, we hypothesized that

integrating results from multiple inference methods would con-

struct a more comprehensive cancer–miRNA regulatory network,

as each method identifies a different subset of the miRNA regula-

tory network. To assess this, we first identified the best-performing

network inference methods by computing a ROC curve from the

predictions of applying each method to the compendium of ex-

perimentally determined miRNA target gene sets. In addition to

Weeder–miRvestigator, we tested four additional algorithms that

infer miRNA regulation through enrichment of predicted binding

sites in 39 UTRs of coexpressed genes: PITA, TargetScan, miRanda,

and miRSVR. This comparative analysis demonstrated that Weeder–

miRvestigator, PITA, and TargetScan are the best-performing algo-

rithms for inference of miRNA-mediated regulation (Fig. 3A) (ROC

AUC 6 95% confidence interval: 0.96 6 0.03, 0.94 6 0.04, and

0.90 6 0.05, respectively; Supplemental Table 3). Using cancer as

an example, we explain in subsequent sections how the integra-

tion of these three best-performing algorithms provides a general-

izable framework for inference of regulation by miRNAs (FIRM)

to infer comprehensive miRNA regulatory networks for complex

diseases.

Constructing a cancer–miRNA regulatory network using FIRM

A previous study published by Goodarzi et al. (2009) analyzed

transcriptome profiles from 46 different cancers and identified

2240 cancer-subtype characteristic coexpression signatures. Inter-

estingly, the investigators were able to associate only four of these

signatures to regulation by a specific miRNA in miRBase. We ana-

lyzed these coexpression signatures using FIRM with the intent of

Figure 1. Overview of Weeder–miRvestigator tandem that we developed to identify miRNAs driving coexpression of transcripts. Quantitative assays of
the transcriptome are used to identify gene-coexpression signatures comprised of genes with significantly similar gene-expression profiles. The 39 UTR
sequences for the coexpressed genes are then extracted from the genome and used as input into the Weeder algorithm. The Weeder algorithm searches
the 39 UTR sequences for an overrepresented motif, which is turned into a miRvestigator hidden Markov model (HMM). All of the miRNA seed sequences
from the miRNA repository miRBase are compared with the HMM model of the overrepresented sequence motif using the Viterbi algorithm. The miRNA
seed sequence with the most significant complementarity P-value is the most likely miRNA driving the coexpression signature and a hypothesis that can be
tested experimentally.
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constructing a comprehensive cancer–miRNA regulatory network.

Weeder–miRvestigator, PITA, and TargetScan predicted miRNA

regulators for 119, 662, and 1029 coexpression signatures, re-

spectively (Weeder–miRvestigator criteria: perfect 7-mer or 8-mer

match, FDR # 0.05, Supplemental Table 4; PITA and TargetScan

criteria: FDR # 0.001 and enrichment $ 10%, Supplemental Tables

5, 6, respectively). There was significant overlap in pairwise com-

parisons of predictions for the same cancer (Weeder–miRvestigator

vs. PITA: 0.045, Weeder–miRvestigator vs. TargetScan: 0.019, and

PITA vs. TargetScan: 7.4 3 10�22) (Fig. 3B). While this significant

overlap demonstrates concordance across the methods, a large

fraction of the inferred miRNA regulation was unique to each

method. This is not surprising given the high false-negative rates of

these methods and the different principles they use for identifying

miRNA-mediated regulation. In other words, predictions made by

the three algorithms are mostly complementary. Combining re-

sults from all three methods in FIRM resulted in the construction

of a comprehensive miRNA regulatory network that links 1324

coexpression signatures to post-transcriptional regulation medi-

ated by 608 miRNAs (Supplemental Table 7). Within this network,

443 coexpression signatures were associ-

ated to miRNAs by more than one algo-

rithm. Twenty coexpression signatures

were independently associated to the

same miRNA by two different algorithms

(Supplemental Table 7). Interestingly, the

only prediction that was consistent across

all algorithms was that the miR-29 family

regulates genes whose coexpression is

observed in lung adenocarcinoma. In the

following sections we investigate which

miRNAs regulate oncogenic processes and

the degree to which this network recapit-

ulates known dysregulation of miRNAs

in miR2Disease.

The cancer–miRNA network
recapitulates miR2Disease
and discovers miRNAs
that are causal in cancers

We investigated whether the cancer-

miRNA regulatory network was able

to recapitulate miRNAs that are both

dysregulated in tumors and causally

linked to specific oncogenic processes.

We performed this analysis by comparing

the cancer–miRNA network to entries in

miR2Disease, a manually curated data-

base of miRNAs that are dysregulated

and causally associated with 163 human

diseases including the 46 cancers in our

study. Remarkably, there was significant

enrichment of known dysregulated

miRNAs in the cancer–miRNA network.

Altogether, 191 putative miRNA regula-

tors in our inferred network were pre-

viously shown to be dysregulated in

patient tumors of the same cancer type

(P-value = 2.1 3 10�91; Supplemental

Table 7). Importantly, there were signifi-

cant overlaps with predictions by each of

the three algorithms (Weeder–miRvestigator P-value = 0.029, PITA

P-value = 7.4 3 10�23, and TargetScan P-value = 1.1 3 10�32). This

result further demonstrates the value of combining the three al-

gorithms in FIRM to infer a more comprehensive miRNA regula-

tory network.

Using miR2Disease, we further investigated whether the

dysregulated miRNAs predicted by FIRM were also known to

causally influence cancer phenotypes. It was striking that over a

third of the putative miRNA regulators that were dysregulated were

also known to causally affect cancer phenotypes (66 miRNAs,

P-value = 1.4 3 10�34; Supplemental Table 7). Among these, three

of the most highly connected miRNAs (miR-29b, miR-200b, and

miR-296-5p) were dysregulated in at least eight cancers and causal

in at least four cancers. These results demonstrate that the network

inferred by FIRM had captured disease-relevant miRNA regulation

of cancer. It also suggests that the network contains novel testable

hypotheses regarding the role of miRNAs in the regulation of

cancer beyond what is documented in miR2Disease. A key next

step is the prioritization of these novel testable hypotheses by in-

tegrating orthogonal information.

Figure 2. The sensitivity and specificity of the miRvestigator algorithm and framework is estimated
using simulated data sets. (A) The ROC AUC was computed by simulating miR-1 motifs across a range of
motif entropies. Shown are the ROC AUC for the consensus matched to 8-bp miRNA seed sequences
from miRBase using regular expression and the miRvestigator HMM-derived scoring metrics Viterbi
P-value. (B) We then tested the sensitivity and specificity of coupling de novo motif detection algorithm
Weeder to the miRvestigator (Fig. 1) by applying them to 30 simulated sequences with varying levels of
inserted miR-1 seed sequence (0%–100%). (C ) Histogram of Weeder-identified miRNA-binding sites for
whole transcripts where transcripts are centered on the stop codon (0 bp). Instances of miRNA-binding
sites were either stratified based upon their complementarity to the motif identified by Weeder (8, 7, or
6 bp) or the combination of all complementarities. As described by the gene structure below the his-
togram upstream of the stop codon are the 59 UTR and coding regulatory regions, and downstream is
the 39 UTR. In the gene structure below the histogram, the coding sequence is a wider gray box, the start
codon is a green arrow, and the stop codon is a red stop sign. (D) Significance of the enrichment of
miRNA-binding sites per 1 Kbp was computed as a meta statistic and is shown for each gene region and
each stratified site complementarity.

Cancer-miRNA regulatory network
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Identifying miRNAs regulating the hallmarks of cancer

Associating a miRNA to a coexpression signature in patient tumors

does not by itself implicate it in the regulation of key oncogenic

processes. However, the network enables the discovery of cancer-

relevant miRNAs through analysis of target genes for functional

enrichment of one or more hallmarks of cancer (Hanahan and

Weinberg 2000, 2011): (1) ‘‘self sufficiency in growth signals,’’

(2) ‘‘insensitivity to antigrowth signals,’’ (3) ‘‘evading apoptosis,’’

(4) ‘‘limitless replicative potential,’’ (5) ‘‘sustained angiogenesis,’’

(6) ‘‘tissue invasion and metastasis,’’ (7) ‘‘genome instability and

mutation,’’ (8) ‘‘tumor promoting inflammation,’’ (9) ‘‘reprogram-

ming energy metabolism,’’ and (10) ‘‘evading immune detection.’’

We analyzed genes within each of the coexpression signatures for

hallmarks of cancer through their associations to specific Gene

Ontology (GO) biological process terms.

In total, 627 of the 2240 coexpression signatures were sig-

nificantly enriched for GO terms (FDR # 0.05) and 314 were as-

sociated with a putative miRNA in the regulatory network (Sup-

plemental Table 8). To further filter this set and discover specific

coexpression signatures associated with oncogenesis, we manually

curated the lowest level GO terms for each of the 10 hallmarks of

cancer (Supplemental Table 9), e.g., the hallmark of cancer ‘‘Evading

Apoptosis’’ is associated with the GO term ‘‘Positive Regulation of

Anti-Apoptosis.’’ Based on semantic similarity between GO terms

we then associated 158 of the 314 putatively miRNA regulated

coexpression signatures to one or more hallmarks of cancer (Jiang-

Conrath Semantic Similarity Score $ 0.8, permuted P-value # 5.1 3

10�4; Supplemental Table 8).

Metastatic potential is one of the defining features of malig-

nant tumors making putative miRNA-regulators of ‘‘tissue invasion

and metastasis’’ excellent biomarker candidates. As an initial filter

we selected 85 of the 158 ‘‘hallmarks of cancer’’-associated coex-

pression signatures that had significant overlap (P-value # 0.05)

between GO-annotated and putatively miRNA-regulated genes.

Next, we extracted from these 85 coexpression signatures a sub-

network of 33 miRNAs and their predicted regulatory influences

on 47 coexpression signatures associated

with ‘‘tissue invasion and metastasis’’—i.e.,

the metastatic cancer miRNA-regulatory

network (Fig. 4A; Supplemental Table 10).

Notably, at least three miRNAs, miR-29a/

b/c, miR-199a/b-3p, and miR-222, are

known to be differentially expressed in

the cancer type predicted by this sub-

network. While some of these prior studies

had independently revealed phenotypic

consequences of perturbing the miR-29

family on tumor invasiveness, FIRM pro-

poses a mechanistic explanation by pre-

dicting that these miRNAs directly regulate

specific genes involved in ‘‘tissue in-

vasion and metastasis.’’ We have per-

formed detailed experimental validations

demonstrating the regulation of metastasis-

associated genes by the miR-29 miRNAs,

and results of these experiments are pre-

sented in a later section.

A relatively small subset of miRNAs
regulate oncogenic processes
in diverse cancers

Regulation of the same oncogenic process by the same miRNA

across different cancers reinforces the likelihood that the inferred

miRNA regulation is real. In the cancer–miRNA regulatory network

the number of coexpression signatures regulated by a miRNA

follows a power-law distribution (g = 2.1 6 0.0; goodness of fit

P-value < 1.0 3 10�4) with each miRNA predicted to regulate, on

average, 3.3 6 3.3 coexpression signatures (Barabasi and Albert

1999). This suggests that some miRNAs regulate common biolog-

ical processes across multiple cancers. Therefore, we filtered the

cancer–miRNA regulatory network for miRNAs predicted to regu-

late genes within two or more coexpression signatures enriched for

the same GO term(s). This analysis recovered 24 miRNAs that were

predicted to combinatorially regulate 74 nonredundant coexpres-

sion signatures. Again, using semantic similarity to the hallmarks

of cancer we discovered a subnetwork of 38 coexpression signa-

tures from 30 cancer types that are regulated by 13 highly con-

nected miRNAs (miR-29a/b/c, miR-130a, miR-296-5p, miR-338-5p,

miR-369-5p, miR-656, miR-760, miR-767-5p, miR-890, miR-939,

miR-1275, miR-1276, and miR-1291)—i.e., a cross-cancer–miRNA

regulatory network (Fig. 4B; Supplemental Table 11). Each of the 13

miRNAs putatively regulates the same oncogenic processes across

two or more cancers (Fig. 4B). We have already discussed the role of

the miR-29 family in regulation of ‘‘tissue invasion and metasta-

sis.’’ Further, reversing down-regulation of miR-130a in metastatic

prostate cancer cell lines has been previously demonstrated to in-

crease apoptosis (Boll et al. 2012). This independently validates the

cancer–miRNA regulatory network predicted effect of miR-130a on

‘‘evading apoptosis.’’ Finally, the predicted role of miR-296-5p in

‘‘activating invasion and metastasis’’ has also been validated by an

independent study that discovered down-regulation of this miRNA

in metastases relative to primary tumors (Vaira et al. 2012). Nota-

bly, five of the 13 miRNAs (hsa-miR-29a/b/c, miR-296-5p, miR-

760, miR-767-5p, and miR-1276) were inferred for coexpression

signatures where a significant fraction of genes are direct miRNA

targets and have GO annotated functions in oncogenic processes

(Fig. 4A). It is noteworthy that such filtering is too stringent and

Figure 3. (A) Determining the optimal method(s) (most sensitive and specific) to infer miRNA-mediated
regulation from coexpressed genes. The methods tested were (1) Weeder coupled to miRvestigator
(Weeder–miRvestigator) (black line), (2) enrichment of PITA-predicted miRNA target genes (blue line),
(3) enrichment of TargetScan-predicted target genes (green line), (4) enrichment of miRSVR-predicted
target genes (orange line), and (5) enrichment of miRanda-predicted target genes (red line). (B) Overlap
of coexpression signatures between putative miRNA regulators predicted by the three methods (Weeder–
miRvestigator, PITA, and TargetScan) in FIRM. Pairwise overlap of coexpression signatures between
methods is statistically significant (Weeder–miRvestigator vs. PITA: 0.045; Weeder–miRvestigator vs.
TargetScan: 0.019; PITA vs. TargetScan: 7.4 3 10�22). All three methods identified miR-29a/b/c as the
regulator for the lung adenocarcinoma coexpression signature AD Lung Beer 31.
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would have excluded known cancer-related miRNAs such as miR-

130a. Therefore, the integration of coexpression, shared miRNA-

binding sites, and GO annotations, together overcome the in-

completeness and uncertainties across all of these orthogonal data

sets to discover novel biologically meaningful regulation by miRNAs.

Thus, we predict that all of the 13 miRNAs are excellent candidates

for follow-up studies to assess their use as general-purpose cancer

biomarkers.

Extracellular matrix genes coregulated by the miR-29 family
in lung adenocarcinoma

In both the metastatic and cross-cancer–miRNA regulatory net-

work, the miR-29 family (miR-29a, miR-29b, and miR-29c) was

predicted to be responsible for eight coexpression signatures, five

of which were associated with four hallmarks of cancer, viz. ‘‘tissue

invasion and metastasis,’’ ‘‘sustained angiogenesis,’’ ‘‘insensitivity

to antigrowth signals,’’ and ‘‘self sufficiency in growth signals’’

(Fig. 4A,B). Two of these coexpression signatures were from lung

adenocarcinoma patient tumors, ‘‘AD Lung Beer 31’’ and ‘‘AD Lung

Bhattacharjee 59’’ (Bhattacharjee et al. 2001; Beer et al. 2002). The

miR-29 family was associated with the coexpression signature from

‘‘AD Lung Beer 31’’ by all three inference methods; on the other

hand, only PITA picked miR-29 as the putative regulator responsible

for the coexpression signature from ‘‘AD Lung Bhattacharjee 59.’’

Two independent studies demonstrated that overexpression

of miR-29a reduces the invasiveness of lung carcinoma cell lines

(Muniyappa et al. 2009), and knock-down of miR-29b increases

invasiveness (Rothschild et al. 2012), serving as independent val-

idation of the network-predicted role of the miR-29 family as reg-

ulators of ‘‘activating invasion and metastasis’’ in lung cancer. The

direction of this association is concordant with a different set

of studies which independently discovered that miR-29 family

members were down-regulated in lung adenocarcinomas relative

Figure 4. Metastatic and cross-cancer–miRNA regulatory networks. Hierarchy of filters applied to the cancer–miRNA regulatory network to produce
both the metastatic and cross-cancer miRNA-regulatory networks is depicted above the networks, and a legend for the networks can be found in the top
right corner. Nodes are cancers (purple octagons), coexpression signatures (orange circles), inferred miRNAs (red diamonds), or hallmarks of cancer (green
parallelogram). Orange edges describe the cancer where a coexpression signature was observed, blue edges link a putative miRNA regulator to a coex-
pression signature (putative miRNA regulation from cancer miRNA regulatory network), and red edges link putative miRNAs to the hallmarks of cancer
based upon functional enrichment of the coexpression signatures they regulate (GO term semantic similarity). (Thicker dashed edges) Experimental
validation for the inferred relationship. (A) Metastatic cancer–miRNA regulatory network was filtered for the sake of space to show only cancers with at least
one predicted regulatory interaction that has been validated. (B) The cross-cancer–miRNA regulatory network was generated by identifying miRNAs with
more than one coexpression signature that are functionally enriched for the same GO terms, and that are sufficiently similar to GO terms characterizing the
hallmarks of cancer.

Cancer-miRNA regulatory network

Genome Research 2307
www.genome.org



to normal lung (Yanaihara et al. 2006; Landi et al. 2010). Taken

together these orthogonal sets of results strongly suggest that

down-regulation of the miR-29 family increases tumor invasive-

ness, thereby decreasing patient survival (Rothschild et al. 2012).

A major strength of the cancer–miRNA regulatory network

is that it identifies specific genes that are directly regulated by a

specific miRNA. For instance, the miR-29 family is implicated in

modulating metastatic potential of patient tumors because it is

predicted to directly regulate 79 and 64 genes in two coexpression

signatures—‘‘AD Lung Beer 31’’ and ‘‘AD Lung Bhatacharjee 59.’’

Notably, the two coexpression signatures have a significant over-

lap of 32 genes (P-value = 2.1 3 10�46). We assessed whether these

genes were indeed targets for regulation by the miR-29 family by

investigating whether they were differentially regulated when en-

dogenous miRNAs of the miR29 family were knocked-down in a fetal

lung fibroblast cell line (Cushing et al. 2011). Sixteen genes from ‘‘AD

Lung Beer 31’’ and nine genes from ‘‘AD Lung Bhattacharjee 59’’

were up-regulated in response to knock-down of the three miR-29

family members (P-values = 6.1 3 10�14 and 1.5 3 10�8, respec-

tively). Altogether, 17 genes from both coexpression signatures

were up-regulated in the Cushing et al. (2011) study (Table 1), and

notably all of these genes contain one or more miR-29 family

binding sites in their 39 UTRs (Table 1).

Differential regulation of the 17 genes in the Cushing et al.

(2011) study does not demonstrate direct regulation by miR29

family miRNAs through physical interaction with predicted binding

sites within 39 UTRs of these genes. However, it is possible to

demonstrate direct miRNA regulation by fusing the 39 UTR of

each putative target gene to a luciferase reporter, selectively de-

leting specific binding sites and performing luciferase assays in cell

lines that are cotransfected with the wild-type or mutated reporter–

fusion construct and the synthetic miRNA mimic (at different

concentrations) (Lal et al. 2011). We selected a total of eight genes

(COL3A1, COL4A1, COL4A2, FBN1, MMP2, PDGFRB, SERPINH1,

and SPARC—see Table 1) to investigate using the aforementioned

luciferase assay whether they were direct targets for regulation by

miR29 family miRNAs (miR-29a, miR-29b, and miR-29c). These

genes were selected because they were predicted by the FIRM

methods to (1) be in coexpression signatures regulated by the

miR-29 family, (2) contain miR-29 family binding sites, (3) have

functional association to ‘‘tissue invasion and metastasis’’ (e.g.,

collagens, metallo-proteases, etc.), and (4) be up-regulated by

miR-29 family knock-down in lung fibroblasts in the Cushing

et al. (2011) study.

First, we used qRT–PCR to demonstrate that the miR-29a

mimic significantly down-regulates transcript levels of luciferase

when it is fused to 39 UTRs of either COL3A1 or SPARC (COL3A1

P-value = 3.2 3 10�2, fold-change: �3.9; SPARC P-value = 4.2 3

10�2, fold-change: �1.7). This validates our central thesis that

perturbing a miRNA results in observable changes in transcript

levels of the predicted target transcripts with corresponding miRNA-

binding sites in the 39 UTR. We then assayed the effects of all three

miR-29 mimics (miR-29a, miR-29b, and miR-29c) on normalized

luciferase activity relative to a control (i.e., no miRNA mimic). Sig-

nificant reduction in normalized luciferase expression (P-value <

0.05) was observed for seven of the eight genes tested (Table 2),

and there was no consequence when luciferase was fused to the

negative control 39 UTR from HIST1H2AC (miR-29a: P-value =

0.99, fold-change = 1.2). Deletion of all of the putative miR-29

binding sites from the 39 UTRs of MMP2 and SPARC abolished

down-regulation of luciferase activity by the miR-29 family mimics,

conclusively demonstrating that miR-29 directly regulates abun-

dance of predicted target transcripts via binding to the predicted

39 UTR sites (MMP2-deletion: one site deleted, fold-change = 1.1,

P-value = 8.6 3 10�1; SPARC-deletion: two sites deleted, fold-

change = 1.4, P-value = 1.0) (Fig. 5A). Finally, titration of the miR-

29a mimic demonstrated that it down-regulates COL3A1 and

SPARC in a dose-dependent manner (Fig. 5B).

miR-767-5p regulates a collagen-specific subset of miR-29
target genes

Analysis of predicted regulation by miR-29 demonstrates that the

cancer–miRNA regulatory network makes accurate predictions

that can be validated experimentally through a combination of

miRNA perturbation and targeted mutagenesis of specific binding

sites in the 39 UTRs. We conducted further experimental analysis

of predicted regulation by miR-767-5p to assess the specificity of

using FIRM inferences to identify genes

regulated by a miRNA. We selected miR-

767-5p because this miRNA partially

shares the miR-29 seed sequence. Specif-

ically, both the metastatic and cross-

cancer–miRNA regulatory networks con-

tain the PITA predictions that miR-767-5p

regulates genes associated with four

hallmarks of cancer (‘‘insensitivity to

antigrowth signals,’’ ‘‘self sufficiency in

growth signals,’’ ‘‘sustained angiogene-

sis,’’ and ‘‘tissue invasion and metastasis’’)

from four coexpression signatures (AD

Ovarian Welsh 20, HSCC Head-Neck

Chung 1, and SQ Bhattacharjee 18 and 44)

across three cancer types (Bhattacharjee

et al. 2001; Welsh et al. 2001; Chung et al.

2004).

Unlike the miR-29 family, miR-767-

5p has not been previously associated

with any oncogenic processes. Therefore,

we first evaluated whether there is any

evidence for expression of miR-767-5p in

Table 1. Genes validated to be regulated by the miR-29 family

Gene
symbols

Entrez
gene

ID
AD Lung
Beer 31

AD Lung
Bhattacharjee 59

miR-29 family target sites

Weeder–miRvestigator PITA TargetScan

COL1A1 1277 Yes a/b/c a/b/c a
COL1A2 1278 Yes a/b/c a
COL3A1 1281 Yes Yes a/b/c a/b/c b
COL4A1 1282 Yes Yes a/b/c a/b/c b
COL4A2 1284 Yes a/b/c a/b/c a
COL5A1 1289 Yes a/b/c a/b/c a
COL5A2 1290 Yes Yes a/b/c a/b/c a
COL15A1 1306 Yes Yes a/b/c a/b/c b
FBN1 2200 Yes Yes a/b/c a/b/c a
FSTL1 11167 Yes a/b/c a
LOXL2 4017 Yes a/b/c a
MMP2 4313 Yes a/b/c a/b/c a
PDGFRB 5159 Yes Yes a/b/c a/b/c a
PPIC 5480 Yes a/b/c b
SERPINH1 871 Yes Yes a/b/c b
SPARC 6678 Yes Yes a/b/c a
TRIB2 28951 Yes a/b/c a/b/c a

(a) miR-29a; (b) miR-29b; (c) miR-29c.
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head and neck, lung, or ovarian cancers to support the prediction

by the cancer–miRNA regulatory network. A scan of miRNA-seq

data from The Cancer Genome Atlas (TCGA) shows that miR-

767-5p is indeed expressed in lung squamous cell carcinoma,

head and neck squamous cell carcinoma, and ovarian serous

cystadenocarcinoma (data not shown). Additionally, the MirZ

miRNA expression atlas identifies miR-767-5p expression in

astrocytoma, osteosarcoma, and teratocarcinoma cell lines

(Hausser et al. 2009). Future studies with the completed TCGA

data will be able to determine whether miR-767-5p is differen-

tially expressed between tumor and normal and whether miR-

767-5p is predictive of patient survival. Based on this evidence

we proceeded to test the effect of perturbing miR-767-5p on tran-

script abundance of the PITA-predicted targets. Overexpression

of miR-767-5p using a miRNA mimic led to significant reduction

(P-value # 0.05) in the normalized luciferase activity for three of the

four predicted miRNA target genes (COL3A1, COL5A2, COL10A1,

and LOX) (Table 2).

In addition to validating a novel oncogenesis-associated

miRNA, the aforementioned rationale for selecting miR-767-5p

was that it also shares 6 bp of similarity to the 8-bp seed region of

the miR-29 family, leading to a significant overlap between their

predicted target genes (65% for PITA and 35% for TargetScan). This

may explain why miR-767-5p and the miR-29 family are both

predicted regulators of the HSCC Head-Neck Chung 1 coexpres-

sion signature. However, the two seed sequences have little simi-

larity in the 39 region (Supplemental Fig. 1). The partial overlap in

the miRNA seeds and their predicted targets provide an opportu-

nity to test the specificity of using FIRM inferences to identify

genes regulated by a miRNA. First, we tested all 11 39 UTR luciferase

fusions by overexpressing miR-29a, miR-29b, and miR-29c and

miR-767-5p. Of the 22 regulatory interactions tested (Table 2) we

observed only one false positive (miR-767-5p did not affect LOX

transcript levels) and two false negatives (the cancer–miRNA net-

work did not predict the experimentally observed regulation of

COL4A2 by miR-767-5p, and regulation of COL10A1 by the miR-29

Table 2. Genes validated to be regulated by the miR-29 family and miR-767-5p

Gene

miR-29a miR-29b miR-29c miR-767-5p

Fold-change P-value Fold-change P-value Fold-change P-value Fold-change P-value

COL3A1 �4.2 3.1 3 10�5 �3.7 1.5 3 10�3 �3.8 1.4 3 10�4 �1.7 7.1 3 10�4

COL4A1 �3.0 2.2 3 10�3 �3.1 3.1 3 10�4 �1.6 5.3 3 10�3 �1.6 1.5 3 10�2

COL4A2 �2.3 2.1 3 10�4 �1.8 7.1 3 10�3 �2.5 5.4 3 10�3 �1.3 4.2 3 10�2

COL5A2 �2.1 2.8 3 10�3 �1.8 7.2 3 10�3 �1.9 4.1 3 10�3 �1.3 2.8 3 10�2

COL10A1 �2.1 9.9 3 10�5 �1.8 4.7x 10�4 �2.0 3.2 3 10�4 �1.6 2.2 3 10�3

SPARC �2.8 4.3 3 10�5 �3.5 1.1 3 10�3 �3.2 6.2 3 10�4 1.1 9.0 3 10�1

FBN1 �2.5 1.2 3 10�3 �3.9 7.2 3 10�3 �2.3 1.6 3 10�2 1.1 3.8 3 10�1

SERPINH1 �2.0 3.8 3 10�3 �2.5 1.8 3 10�3 �1.6 6.1 3 10�4 1.1 4.5 3 10�1

LOX �1.4 2.1 3 10�3 �1.5 2.3 3 10�2 �1.4 2.0 3 10�2 1.0 2.3 3 10�1

MMP2 �1.2 4.8 3 10�2 �1.4 1.5 3 10�2 �1.4 5.3 3 10�2 1.5 1.0
PDGFRB �1.2 6.2 3 10�2 �1.1 8.5 3 10�2 �1.1 6.7 3 10�1 1.2 8.8 3 10�1

Shaded region indicates the only genes regulated by both the miR-29 family and miR-767-5p; all five are collagens.

Figure 5. Luciferase reporter assay validation of miRNA-binding site predictions from FIRM. (A) Deletion of miR-29-binding sites ablates response to
miR-29a mimic. The wild-type 39 UTRs are MMP2 and SPARC. The miR-29-binding sites that deleted 39 UTRs are MMP2 D and SPARC D. The deletions have
a slight increase in normalized luminescence over their corresponding vector control, which is similar to what is observed for the negative control,
HIST1H2AC, which does not have a miR-29-binding site. (B) Dose response curves for COL3A1 and SPARC titrating the amounts of miR-29a mimic (50 nM,
5 nM, 500 pM, 50 pM, and 5 pM).
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family). Thus, the false discovery rate was 7.1%—a significant

improvement over previously published estimates (Sethupathy

et al. 2006). Consistent with the cancer–miRNA network pre-

dictions, of the 11 genes that were tested only the five collagens

were significantly regulated (P-value # 0.05) by both miR-767-5p

and the miR-29 family. Despite sharing 6 bp of similarity in the

seed sequence, miR-767-5p had no effect on transcript abundance

of the other six bona fide miR-29 family targets to underscore the

specificity of the cancer–miRNA regulatory network predictions

filtered through FIRM.

Discussion
As genome-wide analyses for discovery of molecular signatures of

complex disease becomes routine, it is imperative that these data

are integrated into predictive and actionable models that drive

targeted hypothesis-driven discovery of diagnostics, prognostics,

and, ultimately, therapeutics. The systems integration of disparate

kinds of information boosts signal to noise, enabling the discovery

of biologically meaningful patterns as we have demonstrated here

through inference of a cancer–miRNA regulatory network. The

success of the FIRM approach depended not only on integration of

three best-performing algorithms that use complementary strate-

gies for inference of miRNA regulatory networks, but also on the

integration of disparate data types such as gene coexpression and

distributions of both known and de novo-discovered miRNA-

binding sites (Fig. 6). This is a remarkable achievement given that

the information for miRNA binding and regulation exists in a

contiguous stretch of merely 6–8 nucleotides located within the

expansive 39 UTRs of >20,000 genes in a genome of 6 billion base

pairs.

Further, we have also demonstrated that by incorporating the

mechanistic basis of miRNA regulation, i.e., binding to comple-

mentary sequences in the 39 UTRs of coexpressed genes, the net-

work can be more easily assayed with targeted experimental and

functional evaluation. In doing so we were able to demonstrate

that the cancer–miRNA regulatory network had captured a signif-

icant proportion of known miRNA dysregulation and their causal

influence on cancer phenotypes. In fact, the network also made

specific experimentally testable novel predictions regarding the

role of 158 miRNAs in mediating coexpression of genes associated

with oncogenic processes. Among these were 33 miRNAs that were

predicted to regulate metastatic processes, including a core set of

13 miRNAs that were predicted to regulate the same set of onco-

genic processes across different cancer types. Our focused inves-

tigation of the role of miR-29 family in promoting metastasis in

lung adenocarcinoma demonstrates how these network predic-

tions could drive discovery of new biology.

As a generalizable framework for inferring miRNA-mediated

regulation, FIRM will also benefit from simultaneous measurement

of changes in miRNA and mRNA levels in patient tumors. How-

ever, negative correlation with gene-expression changes alone

Figure 6. Summary of FIRM predictions for the miR-29a/b/c and miR-767-5p cancer–miRNA regulatory subnetwork. This subnetwork is included in
both the metastatic- and cross-cancer–miRNA regulatory networks. The network is laid out hierarchically with (from the top down) cancers, miRNAs,
coexpression signatures, genes that were experimentally validated through luciferase assays, significantly enriched GO biological process terms for the
coexpression signature, and finally the GO terms associated with hallmarks of cancers. (Left) The FIRM integration strategy that is a flow of information
through this hierarchy, where the red arrows indicate a FIRM prediction. The meanings of the FIRM predictions are described on the right side, where
inference of a miRNA regulating a cancer coexpression signature predicts that the miRNA is dysregulated in that cancer. This same inference predicts
that the miRNA regulates the genes in the signature, which can be tested experimentally. Functional enrichment of GO term annotations among the
coregulated genes predicts the effect of regulating this set of genes, and association of the enriched GO terms with hallmarks of cancer predicts the
oncogenic processes that might be affected.

Plaisier et al.

2310 Genome Research
www.genome.org



does not accurately identify bona fide targets for the miRNA (Liu

et al. 2007; Ritchie et al. 2009; Wang et al. 2009). Thus, clustering

of the gene expression data and subsequent analysis with FIRM will

be necessary for the inference of accurate miRNA regulatory net-

works. Correlation with the putative miRNA regulators could be

used post hoc as a secondary screen to filter the predicted list of

targets and prioritize miRNAs for further experimental validation.

We have demonstrated the power of this approach by performing

targeted experiments to test predictions from the cancer–miRNA

regulatory network. These experiments have discovered novel reg-

ulation of specific oncogenesis-associated genes by miRNAs that

are shared across different cancer types. Importantly, in addition to

providing mechanistic linkages between a known tumor-suppressor

miRNA (miR-29) and regulation of specific genes with metastatic

potential, we have also discovered a novel oncogenesis-associated

miRNA (miR-767-5p). The choice of miRNAs for validating net-

work predictions has also helped to highlight the sensitivity and

specificity of FIRM performance. As such, we have not only dem-

onstrated the extraordinary value of the cancer–miRNA network

in cancer research; but also the power of FIRM to construct from

easily generated gene-expression data similar miRNA regulatory

networks for any disease.

Our plan for the future is to integrate inference of miRNA

regulation into the clustering procedure. This will act as a con-

straint for accurate discovery of genes coregulated by the same

miRNA. The cMonkey biclustering algorithm already incorporates

de novo discovery of transcription-factor binding sites within gene

promoters to limit the space of gene–gene associations to accu-

rately discover sets of genes that are regulated by the same tran-

scription factor (Reiss et al. 2006). The incorporation of constraints

based on mechanisms of miRNA regulation will greatly improve

the ability of cMonkey to model eukaryotic transcriptional regu-

latory networks. We predict that the ability of cMonkey to discover

conditional coregulation of genes will increase the sensitivity of

FIRM and also provide the context (disease type, stage of pro-

gression, etc.) for regulatory influence of a miRNA. This infor-

mation will be invaluable for performing experimental tests of

predictions of miRNA regulation in the right context.

Methods

De novo identification of 39 UTR motifs
Sequences and RefSeq gene definition files were downloaded from
the UCSC Genome Browser FTP site (ftp://hgdownload.cse.ucsc.
edu/goldenPath/currentGenomes/Homo_sapiens). Details can be
found in the Supplemental Methods. The Weeder de novo motif
detection algoirthm (Pavesi et al. 2006) was then used to identify
over-represented miRNA-binding sites in the 39 UTR of putatively
miRNA coregulated genes (Linhart et al. 2008; Fan et al. 2009).

miRvestigator identification of complementary miRNA
for the 39 UTR motif

MiRvestigator employs a hidden Markov model (HMM) to align
and compute a probability describing the complementarity of
a specific miRNA seed to a 39 UTR motif (Plaisier et al. 2011). The
miRvestigator HMM is described in detail in the Supplemental
Methods. The 39 UTR motif is first converted to a miRvestigator
HMM and the Viterbi algorithm is used to provide a complemen-
tarity P-value by comparing the HMM to all potential seed sequences
from miRBase. There are different models for the base-pairing of
miRNA seeds to the complementary protein-coding transcript

binding sites as described in Figure 1 (Brennecke et al. 2005; Bartel
2009). The significance of the complementarity for a given miRNA
is then calculated by exhaustively computing the complete dis-
tribution of complementarity probabilities for all potential miRNA
k-mer seed sequences (where k = 6, 7, or 8 bp). The miRNA(s) with
the smallest complementarity P-value are considered the most
likely to regulate the set of transcripts from which the 39 UTR motif
was derived.

Simulating synthetic motifs and 39 UTRs sequences

Motifs were simulated based upon the reverse complement of the
8-bp seed sequence 59-UGGAAUGU-39 for miR-1 (MIMAT0000416).
The miRNA seed signal determined the percent that the seed
nucleotide was given in each column of the PSSM and the
remaining signal was distributed randomly to the other three
nucleotides. We simulated motifs with different entropies by
adding between 10% and 75% noise at a 5% interval to each
seed nucleotide position. A seed nucleotide signal of 25% is the
random case, as one of the other three nucleotides is likely to
have a higher frequency than the seed nucleotide. Thirty se-
quences were simulated by randomly sampling 8-mers from the
distribution of 8-mers in 39 UTRs and inserting an instance of the
reverse complement of the miR-1 seed sequence at varying pro-
portions (0%–100%). The receiver operating characteristic (ROC)
area under the curve (AUC) was calculated using the ROCR package
(Sing et al. 2005).

Assessing bias in the distribution of miRNA-binding sites

Instances of Weeder motif binding sites from either full transcripts
(59 UTR, coding sequence [CDS], 39 UTR) or just 39 UTRs of genes
matching to the perturbed miRNA were identified for the com-
pendium of experimentally determined miRNA target gene sets.
Significance for the normalized counts per 1 Kbp was calculated for
the distribution of matches in each gene region and for each ex-
perimentally determined miRNA target gene set by comparison
with 1,000,000 randomly sampled gene sets of the same size. A
combined P-value was computed by using Stouffer’s Z-score
method. The ROCR package was again used to compute ROC
curves and ROC AUCs for each method. The pROC package was
used to calculate the 95% confidence interval and pairwise
P-values to determine if there is a significant difference between
the ROC curves of the methods (Robin et al. 2011).

Identifying enriched predicted miRNA-binding sites

The PITA, TargetScan, miRanda, and miRSVR miRNA target gene-
prediction databases were downloaded from their respective web-
sites. The significance for enrichment of genes with a predicted
miRNA-binding site was calculated using the hypergeometric
P-value for each miRNA. The miRNA(s) with the smallest hyper-
geometric P-value are considered the most likely to regulate the
signature. Multiple hypothesis testing correction was applied
using the Benjamin-Hochberg approach for controlling the false
discovery rate (FDR) equal to or less than 0.001 (FDR # 0.001) and
requiring at least 10% of the genes to be targeted by the specific
miRNA.

Selecting optimal methods to infer the miRNA regulatory
network

Each inference method was applied to the compendium of 50
miRNA target gene sets (Supplemental Table 2). The ROCR and
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pROC packages in R were used to compute ROC curves, ROC AUC,
and P-values between ROC curves.

miR2Disease overlap

First, we created a mapping between the 46 cancer subtypes and
the disease classifications in the manually curated miR2Disease
database. Instances were then identified where an inferred miRNA
regulator was previously observed to be dysregulated or causal in
the same cancer type. Significance of the enrichment of overlap
between miR2Disease and the cancer–-miRNA regulatory network
was calculated using a hypergeometric P-value in R.

Functional enrichment and semantic similarity to hallmarks
of cancer

Enrichment of GO biological process terms in each cancer coex-
pression signature were assessed using the topGO package in R
(Alexa et al. 2006) by computing a hypergeometric P-value with
the Benjamini-Hochberg correction (FDR # 0.05). All GO terms
passing the significance threshold for a coexpression signature
were included in downstream analyses. Semantic similarity be-
tween a significantly enriched GO term and each hallmark of
cancer was assessed by using the Jiang and Conrath similarity
measure as implemented in the R package GOSim (Fröhlich et al.
2007). For each coexpression signature the similarity scores be-
tween its enriched GO terms and the GO terms for each hallmark
of cancer was computed, and the maximum for each hallmark was
returned. Similarity scores greater than or equal to 0.8 were con-
sidered sufficient for inferring a link between the enriched GO
terms for a coexpression signature and a hallmark of cancer. Ran-
dom sampling of 1000 GO terms and computing the Jiang and
Conrath scores demonstrated that a similarity score $0.8 resulted
in a permuted P-value #5.1 3 10�4.

miR-29 family coexpression signature overlaps

A hypergeometric P-value was used to test for significant overlap
between the lung adenocarcinoma signature genes and the genes
up-regulated by in vitro due to knock-down of miR-29 family
miRNAs.

Luciferase reporter assay

The 39 UTRs for genes of interest were amplified from cDNA
(primers in Supplemental Table 12) and cloned into the pmirGLO
Dual-Luciferase miRNA target expression vector behind firefly lu-
ciferase. The sequence and orientation for all 39 UTRs inserted into
pmirGLO were verified by sequencing. HEK293 cells were plated at
a density of 100,000 cells per well and cotransfected in 96-well
plates 24 h after plating. Cells were transfected using DharmaFect
DUO (Dharmacon) with 75 ng of the 39 UTR fused reporter vector
and either 50 nM of miR-29a, miR-29b, miR-29c, miR-767-5p,
or cel-miR-67 (negative control) miRNA mimic (Dharmacon).
Twenty-four hours after transfection, firefly and renilla luciferase
activities were measured using the Dual-Glo assay (Promega) on
a Synergy H4 hybrid multimode microplate reader (BioTek) per
manufacturer recommendations. Experiments were conducted
in biological triplicates. Luminescence measurements were first
background subtracted using a vehicle-only control, and then
firefly luminescence was normalized to renilla luminescence.
Experimental comparisons are made to vector only controls.
Student’s t-test and fold-changes were calculated using standard
methods. MiRNA binding sites for MMP2 and SPARC were deleted

using recombinant PCR (primers in Supplemental Table 12).
Dose response curves for COL3A1 and SPARC were conducted
using 50 nM, 5 nM, 500 pM, 50 pM, and 5 pM miRNA mimic
concentrations.

Availability of miRvestigator, FIRM, and the cancer–miRNA
regulatory network

MiRvestigator was developed as an open source project using the
Python programming language and is available both as a web
service (http://mirvestigator.systemsbiology.net) and as source code
(http://github.com/cplaisier/miRvestigator) (Plaisier et al. 2011).
The FIRM and cancer–miRNA regulatory network are freely avail-
able at http://cmrn.systemsbiology.net.

Data access
To facilitate reader access and usability we have developed and
hosted a freely available website (http://cmrn.systemsbiology.net)
containing (1) all data contained within the cancer–miRNA regu-
latory network, (2) including the compendium of 50 experimen-
tally defined miRNA target gene sets, and (3) the FIRM framework
to infer miRNA regulatory networks from gene coexpression in-
formation. Our hope is that this will provide cancer researchers
with a usable interface to explore the cancer–miRNA regulatory
network, computational biologists with a valuable resource to
compare methods of inferring miRNA-mediated regulation, and
researchers with the tools to infer miRNA-regulatory networks for
their disease of interest. No public database submissions were rel-
evant, and all algorithms and results reported in this manuscript
are available at http://cmrn.systemsbiology.net.
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Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N.
2008. Widespread changes in protein synthesis induced by microRNAs.
Nature 455: 58–63.

Sengupta S, den Boon JA, Chen I-H, Newton MA, Stanhope SA, Cheng Y-J,
Chen C-J, Hildesheim A, Sugden B, Ahlquist P. 2008. MicroRNA 29c is
down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs
encoding extracellular matrix proteins. Proc Natl Acad Sci 105: 5874–
5878.

Sethupathy P, Megraw M, Hatzigeorgiou AG. 2006. A guide through present
computational approaches for the identification of mammalian
microRNA targets. Nat Methods 3: 881–886.

Sing T, Sander O, Beerenwinkel N, Lengauer T. 2005. ROCR: Visualizing
classifier performance in R. Bioinformatics 21: 3940–3941.

Tan LP, Seinen E, Duns G, de Jong D, Sibon OCM, Poppema S, Kroesen B-J,
Kok K, van den Berg A. 2009. A high throughput experimental approach

Cancer-miRNA regulatory network

Genome Research 2313
www.genome.org



to identify miRNA targets in human cells. Nucleic Acids Res 37: e137. doi:
10.1093/nar/gkp715.

Tsai W-C, Hsu PW-C, Lai T-C, Chau G-Y, Lin C-W, Chen C-M, Lin C-D, Liao
Y-L, Wang J-L, Chau Y-P, et al. 2009. MicroRNA-122, a tumor suppressor
microRNA that regulates intrahepatic metastasis of hepatocellular
carcinoma. Hepatology 49: 1571–1582.

Vaira V, Faversani A, Dohi T, Montorsi M, Augello C, Gatti S, Coggi G, Altieri
DC, Bosari S. 2012. miR-296 regulation of a cell polarity-cell plasticity
module controls tumor progression. Oncogene 31: 27–38.

Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock
JE, Richardson AL, Weinberg Robert A. 2009. A pleiotropically acting
microRNA, miR-31, inhibits breast cancer metastasis. Cell 137: 1032–
1046.

Wang X, Wang X 2006. Systematic identification of microRNA functions by
combining target prediction and expression profiling. Nucleic Acids Res
34: 1646–1652.

Wang L, Oberg AL, Asmann YW, Sicotte H, McDonnell SK, Riska SM, Liu W,
Steer CJ, Subramanian S, Cunningham JM, et al. 2009. Genome-wide
transcriptional profiling reveals microRNA-correlated genes and
biological processes in human lymphoblastoid cell lines. PLoS ONE 4:
e5878. doi: 10.1371/journal.pone.0005878.

Wang W-X, Wilfred BR, Hu Y, Stromberg AJ, Nelson PT. 2010. Anti-
argonaute RIP-Chip shows that miRNA transfections alter global
patterns of mRNA recruitment to microribonucleoprotein complexes.
RNA 16: 394–404.

Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. 2006. A limited set of
human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin
Endocrinol Metab 91: 3584–3591.

Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ,
Lockhart DJ, Burger RA, Hampton GM. 2001. Analysis of gene
expression profiles in normal and neoplastic ovarian tissue samples
identifies candidate molecular markers of epithelial ovarian cancer. Proc
Natl Acad Sci 98: 1176–1181.

Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens
RM, Okamoto A, Yokota J, Tanaka T, et al. 2006. Unique microRNA
molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:
189–198.

Zen K, Zhang C-Y. 2012. Circulating MicroRNAs: A novel class of biomarkers
to diagnose and monitor human cancers. Med Res Rev 32: 326–348.

Received October 26, 2011; accepted in revised form June 18, 2012.

Plaisier et al.

2314 Genome Research
www.genome.org


