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Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians with a reported incidence of 1 in every 3200 live
births. Most strikingly, CF is associated with early mortality. Host in flammatory responses result in airway mucus plugging, airway
wall edema, and eventual destruction of airway wall support structure. Despite aggressive treatment, the median age of survival is
approximately 38 years. This work is the first attempt to parameterize the distributions of mucus in a CF lung as a function of time.
By default, the model makes arbitrary choices at each stage of the construction process, whereby the simplest choice is made. The
model is sophisticated enough to fit the average CF patients’ spirometric data over time and to identify several interesting para-
meters: probability of colonization, mucus volume growth rate, and scarring rate. Extensions of the model appropriate for describ-
ing the dynamics of single patient MRI data are also discussed.

1. Introduction

Cystic fibrosis is caused by mutations in the cystic fibrosis
transmembrane regulator (CFTR) ion channel gene. The
defective gene results in abnormally thick, sticky mucus that
affects the lungs, the digestive system, and the circulatory sys-
tem. CF patients eventually face severe breathing problems,
inadequate digestion, and malabsorption of nutrients. They
experience intermittent pulmonary exacerbations character-
ized by dyspnea, cough, sputum production, and sinusitis as
a result of a buildup of mucus plugs and microbial biofilms
[1]. Over time, these airway infections will cause airway scar-
ring, remodeling, and ultimately respiratory failure.

Our hypothesis is that this scarring, and ultimate remod-
eling, is primarily due to the contact between the lung
lining and the mucus which contains inflammatory cytokines
known to induce scars in lung tissue cultures. While the
presence of virulent microbes in this mucus is also sure to
play a role, such role is again mediated by contact between
mucous biofilm and lung tissue. Many of the choices

(assumptions) in the model below are predicated on the
hypothesis that the distribution of mucus is the key obser-
vational variable for a mathematical description of the state
of a CF patient.

Mathematical modeling has proved to be useful in the
study of chronic diseases such as hepatitis B, lupus, kidney
nephritis, mitral regurgitation, and cancer. There, have
been quantitative simulations of these diseases based on
experimentally validated mathematical models. These mod-
els provide an opportunity for the researcher, and eventually
the clinician, to address data and information in the context
of well-formulated questions and what-if scenarios [2–5].

There are several recently developed tools for observing
the dynamic distribution and composition of mucus in a CF
lung. Predominant among these tools is the ability to image
this mucus using MRI rather than the heretofore available
computed tomography (CT) scans. The use of the MRI tech-
nique makes frequent monitoring of the mucus distribution
possible and calls for a theoretical framework with which
to make sense of the dynamics of the mucus distribution.
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Figure 1: Image data (a, c) and corresponding lung density maps (b, d) for a healthy male (41 yo, FEV1[pred] = 106% (a, b)) and a CF male
with severe disease (42 yo, FEV1[pred] = 37% (c, d)) using an MRI methodology as described in a study conducted by Theilmann et al. [6].
The artifact in the chest wall in (d) is due to a metal ring in an installed port-a-cath. The hyperintense regions in the lung density map of
the CF subject (d) indicate lung regions full of mucus and regions showing an absence of water are associated with tissue scarring. Neither
observation is seen in the healthy subject.

Shown in Figure 1 are representative MRI images (a, c) and
corresponding lung water density maps (b, d) in the right
lung for a healthy age-matched volunteer (a, b), and a CF
subject with severe disease (c, d) [6].

The figure shows that mucus is not uniformly distributed
in a CF lung. A model predicting the location and growth of
infection pockets would be a useful clinical tool.

The model presented below was constructed toward this
purpose. The simplest version of the model, described in
Section 2, was tested on the average data of an afflicted
population. This was achieved by fitting the average course
of the disease with constant values of mucus volume growth
and scarring rate. The average course of the disease was
represented for this work by the mean FVC (FVC, forced vital
capacity, is a spirometric test that measures volume of air that
can forcibly be blown out after full inspiration maneuver.)

values as a function of age for patients in the University of
California San Diego Adult Cystic Fibrosis Center (UCSD-
ACFC). CF is a chronic disease and FVC is the standard end
point for clinical trials. We were able to accurately match our
model to the observed data and extract mean parameters of
interest: probability of colonization, mucus volume growth
rate, scarring rate, and threshold for the progression of the
disease.

Our preliminary model is based on the symmetric binary
tree structure of an adult lung [7] and assumes constant
values for the rates of mucus accretion and scarring in an
infected bronchiole. The model is highly modular following
the description of our results of the UCSD-ACFC example
by describing an implementation for individual patients. The
various submodels required here will soon be informed by
data characterizing the microbial communities present. Such



Computational and Mathematical Methods in Medicine 3

data comes from metagenomic analyses of sputum samples
and gas chromatography/mass spectrometry (gc/ms) analy-
ses of exhaled air. We leave modeling the dynamics of the
communities for a different effort and here content ourselves
with discussing the net effect on the submodels presented
here.

2. Model Assumptions

Our model follows the physiological state of the lung
throughout a CF patient’s life. The model is modular
and consists of submodels individually implemented in the
simplest possible way.

The model assumes the lung airways to be binary branch-
ing trees [7–10] extending over 23 generations from the
bronchus down to the alveoli using Weibel’s measurements
of a typical adult lung. To describe the distribution of mucus
in the airways requires the submodels shown in Figure 2 and
discussed in the following subsections.

2.1. Onset of Infection. The onset of infection depends
on many factors including season and patient immune
state. For the median response in this simplest model,
the onset of infection in an airway is assumed to occur
with a uniform probability density (Pc) per unit area (Ai)
per unit time over all bronchiole surfaces (Figure 2(a)).
Cross-infection is neglected, that is, higher probability of
a second infection forming once one has taken root is not
considered except for scarred airways which are assumed to
be reinfected instantaneously. In addition, overflow from a
nearby bronchiole also creates an infected bronchiole with
certainty.

2.2. Growth of Mucus/Biofilm. This submodel contains the
central parameter of the model: the growth rate of mucus
volume, vc, velocity of a colony growth per unit time
(Figure 2(b)). In reality, vc surely depends on many factors
such as bacterial community composition and strength of
immune response. In this simplest model, we have taken
this growth rate to be constant, resulting in linear growth.
There are certainly other possibilities for simple models,
for example, exponential. In fact, linear growth in each
bronchiole gives an approximately exponential effect since
this growth is proportional to the number of infected
bronchioles.

Each infected bronchiole experiences a constant increase
in its mucus volume until it becomes full. Once full, the
bronchiole infects its mother and daughter bronchioles and
all airways distal to the filled bronchiole are assumed to be
reversibly nonfunctional.

2.3. Scarring. Our scarring submodel is predicated on the
assumption that the dominant source of damage to the
lung tissue occurs from prolonged contact with mucus filled
with highly inflammatory mediators. Thus, our submodel
assumes scarring begins in any airway which has had mucus
continuously present for more than a certain threshold
time. Scarring will accumulate with a constant rate of

Onset of 
infection Growth Scarring Treatment Remodeling

(α) (S∗)(Pc) (vc) (vs)

(a) (b) (c) (d) (e)

Figure 2: Submodels for the growth and distribution of mucus in
a CF lung. Current model is dealing with five aspects of the growth
pattern and distribution.

vs (Figure 2(c)). Once scarring begins, infection is never
completely removed.

2.4. Treatment. Treatment is initiated when the patient
comes to the clinic in response to an exacerbation
(Figure 2(d)). While general agreement as to what constitutes
an exacerbation is lacking in this model, we assume that
an exacerbation means a certain fraction of operational
airway volume is lost due to mucus buildup, given the last
previously achieved maximum. Treatment resets all mucus
volume to zero. Damaged airways remain infected, while
undamaged airways do not. For simplicity, we assume that
treatment is triggered when VL � αV∗

L , where VL equals
current functional airway volume, V∗

L equals functional
airway volume after last treatment, and α equals threshold
fraction of operational airways volume.

2.5. Remodeling. When damage (scarring) in a bronchiole

reaches a certain threshold value (S∗ def= 1), tissue remodeling
is initiated making the bronchiole and all airways distal to
it irreversibly nonfunctional (Figure 2(e)). This threshold
value is taken equal to 1, thereby establishing a unit for
scarring.

2.6. Community Dynamics, FVC Approximation. The bacte-
rial composition of infected pockets is likely to have a major
effect on the course of the disease in an individual, but for the
average response simulated here, we take the composition to
be fixed and unknown (new methods such as metagenomics
and gas chromatography/mass spectrometry can reveal much
about the community types and corresponding disease states
of individual patients, see Section 6).

The easiest and most frequent measurements appraising
the state of a CF patient are his FVC and FEV1 values
(FEV1: forced expiratory volume in one second). Predicting
FEV1 values from the distribution of mucus is a difficult
fluid mechanics problem requiring the consideration of
mixed laminar and turbulent flows. For the present model,
we assumed that the percent of functional airway volume
represents the percent of normal FVC. When a bronchiole
gets completely filled with mucus, air cannot reach the
corresponding alveolus (air sac) at the end of that subtree.
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This results in FVC reduction. In our simulation, we track
completely plugged bronchioles and find the total number of
inaccessible alveoli. To a good approximation, FVC is just the
total volume of the accessible alveoli. In the rest of this paper
we will use the number of accessible alveoli as a proxy for
FVC.

3. The Simulation

In this model, we simulate the creation, growth, propagation
and clearing of mucus in lung airways. The reaction of each
individual bronchiole to the colonization in a CF lung, as
well as the effect of this colonization on other bronchioles
positioned nearby it, has been simulated in this model. The
time step was taken as one month and the simulation was run
for 600 steps corresponding to 50 years. The simulation code
was developed in Matlab. Each bronchiole has a probability
Pc per unit time of becoming colonized with a sufficiently
large volume of mucus that normal airway function cannot
clear. Once colonized, the mucus volume in a bronchiole
grows at a constant rate (vc). If the volume of purulence in
a bronchiole reaches the volume of a bronchiole, the bron-
chiole is deemed nonfunctional. Another parameter in the
model is scarring which represents a second constant whose
value is again dependent on the microbial community. If
mucus remains in an airway for a period of time Ts, the
airway starts scarring at a constant rate (vs). Once scarring
inside a airway reaches a threshold (S∗), the airway is con-
sidered dead and beyond recovery. Therefore, we have two
processes that are taking place in each bronchiole: mucus
accretion and scarring. Unlike the mucus buildup which
responds positively to treatment, scarring does not respond
to any kind of treatment. Progression of the disease is
displayed as a flowchart in Figure 3, showing the names and
meanings of the model parameters.

Due to the binary tree structure of lung airways, each
bronchiole has two structural roles. It is the parent airway of
its descendant airways and it is a child of its ancestor airways.
Once a parent airway becomes nonfunctional, air cannot
pass through it. Therefore, its descendant airways are not
available for gas exchange. Our simulation follows the
behavior of each individual airway during propagation of the
infection.

4. The Equations

The following equations describe the mathematical model
used in our simulation. Formally the equations are time-
delay differential equations with switching at certain values
of key variables such as mucus volume and scarring.

Each infected site i is mapped to a location in the lung
and has an associated volume Vi of the airway and a start of
infection time ti. For infected site i, there are two dynamic
parameters: Mi: mucus volume and Si: extent of scarring.
These in turn determine the values of three logical variables:

Fi: filled or not filled. Fi = 1, means that airway (i)
became reversibly nonfunctional due to the mucus volume

Parent tube 
is filled

Treatment

Treatment

Treatment

Notreatment

Mi = Vt (i)

Mi = Vt(i)

Pc · Ai · Δt

vc : mucus growth rate

vs: scarring growth rate

vc : mucus growth rate

S∗: scarring threshold

Ts: time threshold for
scarring

Normal tube

Nonfunctional
tube

Nonfunctional
tube with scar

Dead tube

Colonized tube

Tube with scar

Figure 3: Flowchart of the progression of the disease simulation.

reaching the volume of airway. It can be functional again after
treatment.

Oi: shut or open. Oi = 1 means airway (i) became
reversibly nonfunctional due to parent airways being plug-
ged. It can be functional again after treatment.

Ri: remodeled or not remodeled. Ri = 1 means airway (i)
became irreversibly nonfunctional by reaching the scarring
threshold. No treatment can help an airway at this stage. For
site index i = 1 to n, we have

Fi = H(Mi −Vi),

Oi = H

⎛
⎝

n∑

j=1

Fancestor (i) − 1

⎞
⎠,

Ri = H(Si − S∗),

dMi

dt
= (1− Fi) ·H(t − ti) · vc,

dSi
dt

= (1− Ri) ·H(t − (ti + Ts)) · vs,

(1)

where vc and vs represent the mucus and scarring growth
rate, respectively. In the above equations, H represents the
Heaviside step function whose value is zero for negative argu-
ments and one for positive arguments. Figures 4 and 5 show
the mucus volume and amount of scarring in a single airway
over time. In addition, the number of infected sites (n) at
time (t + Δt) is the sum of the infected sites at time (t) plus
the sites that became infected at time (t + Δt), that follow a
Poisson probability distribution, and the sum of all infected
neighbors in the event that the mucus volume reaches the
volume of the airway:

n(t + Δt) = n(t) +
∑

uninfected
airway i

Pois(λi)

+
n∑

j=1

(
Fj(t + Δt)− Fj(t)

)
· neighbors

(
j
)
,

(2)

where λi = Pc · Ai · Δt, Ai = bronchiole (i) surface area.
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Figure 4: Mucus volume in the 10th generation as a function of
time measured from an arbitrary time t = 0. For the airway shown,
the time of infection is ti = 10 months when mucus volume starts
increasing at rate vc up to the point where the airway becomes
completely filled with biofilm.
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Figure 5: Amount of scarring in the ith airway as a function of time
measured from an arbitrary time t = 0. For the airway shown, the
time of infection is ti = 10 months and scarring begins Ts = 5
months after the infection time. Therefore, after t = 15 months
airway (i) starts getting scars. Scarring grows at rate of vs until
airway (i) becomes irreversibly nonfunctional. The y-axis shows the
extent of scarring (arbitrary units).

5. Results

Patient data (n = 200) was obtained from the UCSD adult
CF clinic database: gender, height, age, and FVC. Using Han-
kinson’s spirometric reference equations [11], we calculated
the corresponding normal lung volume of each CF patient
according to their gender, age, and height. We then nor-
malized each individual FVC value by converting the value
to a percent of their corresponding normal lung FVC and
calculated the average FVC at each age from 18 to 50. We
assume that this number equals the average percent of fun-
ctional airway volume.

We used the Nelder-Mead optimization method [12] to
find the model parameters which fit the average FVC of the
CF patient data from the patient registry. It took 24 itera-
tions of the Nelder-Mead algorithm to converge. The conver-
gence determined unique values of the leading digits for all
the parameters. At each iteration, the simulation was run 100
times and the average functional airway volume (3) was col-
lected from age 18 to 50. The total runtime was about eight
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Figure 6: Predictions from the physiological model (lines) versus
the CF patient data (circles) from the University of California San
Diego Adult Cystic Fibrosis Center. The normalization is based on
FVC as a percent of FVC for a healthy lung.

hours using Dulcinea CPU clusters from Computational Sci-
ence Research Center (CSRC) at San Diego State University.
It contains 12 workstations of Dual-Quad Xeon (R) CPUs
which give a total of 96 computational nodes in parallel [13]

FVC(t) = 1
100

100∑

i=1

FVCi(t), (3)

SEFVC(t) =

√√√√√ 1
100

100∑

i=1

(
FVCi(t)− FVC(t)

)2
, (4)

where t is age in years from 18 to 50, FVC(t) = Forced vital
capacity at age (t), and SEFVC(t) is standard estimate of error
at age (t).

The resulting fit including error bars (4) can be viewed in
Figure 6. We found the optimized value of our parameters
in a way that our model closely resembles the mean and
the standard deviation of real data. Figure 6 shows the
predictions of the physiological model versus what is observ-
ed on average in the CF patient FVC data. As depicted in
Figure 6 based on registry data, on average CF patients start
with almost 95 percent of a healthy lung at the age of 18. This
value drops down to almost 65 percent by the age of 50.

The corresponding mean squared percent error (MSPE)
is 0.95 which indicates the extent to which our model
matches the average FVC data from the patient registry

PE(t) = FVC(t)− FVC∗(t)
FVC∗(t)

· 100, (5)

where PE is percent error and FVC∗(t) is average FVC at each
age from the registry data

MSPE =
(∑t=50

t=18 PE(t)2
)

n
, where n = 33. (6)

The optimized parameter values are shown in Table 1. In
addition, we conducted a sensitivity analysis by varying



6 Computational and Mathematical Methods in Medicine

Table 1: Nelder-Mead result and sensitivity analysis.

Parameter Value Unit MSPE variation

Pc 6.0× 10−6 ± 0.5× 10−6 mm−2/month 8%

vc 11.0± 0.5 mm3/month 280%

Ts 7.0± 0.5 Month 15%

vs 0.0230± 0.0005 Scars/month 28%

one parameter at a time and calculating the corresponding
amount of change in total MSPE (6). Each parameter was
changed by 1% from its optimized value, while the rest of the
parameters were held constant at their optimized value.

Table 1 also shows the variation in total mean square
error as the result of 1% change in each parameter. We
found that mucus growth rate (vc) is the most sensitive
parameter in our model to an extent that 1% variation in its
value can almost triple the total mean percent squared error.
Subsequently, due to the high sensitivity of the goodness of
fit to changes in the mucus growth rate, the optimized value
for this parameter converged much faster compared to the
rest of the parameters in our model.

The table displays the optimized parameter values and
their corresponding sensitivity. The sensitivity was computed
by changing the parameter value by 1% and observing the
resulting change in MSPE.

The optimized value can be interpreted as follows. Based
on the Pc value we obtained, there are almost 70 newly
colonized sites every month in a CF lung. Number of newly
colonized sites per month = Pc× total surface area of the
airways.

According to Figure 7, for the vc parameter that we fitted,
generations 17 and higher would become completely blocked
with mucus in less than five hours. Furthermore, the vs
parameter in our model suggests that it will take 7 months
to initiate the scarring once a bronchiole has been colonized.
Finally, based on the scarring growth rate, it will take almost
3.5 years for a bronchiole that has been colonized to become
irreversibly restructured (S∗/vs ≈ 43.5 months ≈ 3.5 years).
According to this result, it is important for CF patients to
be regularly checked by their physicians in order to prevent
initiation of scarring.

6. The Next Step

The current model is preliminary in several respects. In
particular, it assumes only one type of microbial community,
a single probability of infection onset independent of
proximity to other pockets of infection present in the lungs,
no healing, and so forth. For future models, we will include
submodels for community dynamics, immune response, and
therapy implemented. Additionally, we will fit the models to
individual patient data.

The submodels will benefit from the present model with
the use of good starting parameter values. It is reasonable to
expect that elaborating this model toward realism would still
leave the parameters identifiable, especially when FVC, FEV1,
and treatment data are supplemented with information
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Figure 7: To help with the interpretation of vc, this figure displays
the total elapsed time for one infected bronchiole to become
completely filled with mucus at each generation.

gleaned from metagenomics and MRI. From our current
understanding of CF, we believe that grouping the microbial
communities into two types, Attack and Climax, can give a
good representation of the dynamics of mucus distribution
in a CF lung (Figure 8). In CF, the mucosal surface is not
cleared and is colonized by opportunistic pathogens. Phage
diversity increases because the phage prey on these microbes
and more eukaryotic (e.g., human) viruses appear to get
“stuck” in the mucus. Over the course of a patient’s life, a
P. aeruginosa community becomes entrenched and includes
strict anaerobes [14]. We are calling this the Climax com-
munity. In contrast, the Attack community changes often
and may include Streptococcus spp., Staphylococcus spp., and
eukaryotic viruses (e.g., influenza). In our model, the Attack
community creates scarred areas that can be colonized by
the Climax community. Treatments may eradicate the Attack
communities, but it is unlikely that the Climax communities
are ever completely eradicated.

The growth rate for Climax communities is very small
whereas for Attack communities it is large. Depending on
the values set for these parameters, the two-community
type model can display a wealth of behavior that covers the
spectrum of observations. Fitting parameters to individual
patient records can provide a tool for the clinician to deter-
mine the optimal treatment for each individual patient.

Once we collect information about the two types of
communities, we can recalculate the equations for each com-
munity separately and individualize the parameter values
such as growth rates of mucus and scarring. The number of
infected sites at time t follows a recurrence relation for each
site-type e ∈ {attack, climax} as follows:

ne(t+ Δt)= ne(t) +
∑

uninfected
airway i

Poise(λi)

+
∑

infected sitese

(
Fj,e(t+ Δt)− Fj,e(t)

)
· neighbors (i),

(7)
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Figure 8: Attack and Climax communities for cystic fibrosis.
The Attack communities consist of pathogens like Streptococcus
spp., Staphylococcus spp., and eukaryotic viruses. The Attack
communities elicit strong immune responses and scarring. The scar
tissue is colonized by the Climax community, which consists of
the facultative anaerobe P. aeruginosa at the periphery and strict
anaerobes in the center. The figure depicts a cross-section through
a clogged airway.

where λi = (Pc · Ai · Δt). In addition, for 1 ≤ i ≤ ne

dMi

dt
= (1− Fi,e

) ·H(t − ti) · vc,e,

dSi
dt

= (1− Ri,e
) ·H(t − (ti + Ts)) · vs,e.

(8)

The physiological portion of the next chapter of the
modeling effort will work to identify the above model (two
sets of parameter values, one for each type of communities)
from FVC and FEV1 data supplemented with metagenomic,
MRI, and treatment information. It is expected that various
alternative forms of the infection/reinfection probabilities
will have to be explored.

7. Conclusions

In conclusion, our model has been used to adjust the
probability of onset of infection at a site (per unit area),
rate of mucus buildup, scarring rate, and scarring threshold
to mimic the UCSD-ACFC data. The parameters revealed
clinically useful information such as the time required
for bronchioles at different generations to become either
reversibly or irreversibly nonfunctional. Furthermore, based
on the value of Pc, we now have an estimate of the total
number of newly colonized sites per month in a CF lung.
According to our results, on average generations 15 to 23 can
become completely saturated with mucus in less than a day.
In addition, it takes almost 3 years for a colonized bronchiole

to get remodeled. Therefore, treating CF patients with a spe-
cific inhaler that can target these smaller airways may reduce
the number of irreversibly restructured bronchioles in their
lungs. Using an individual patient’s FVC history, our model
can estimate mucus growth rate, scarring rate, and threshold
value specifically for that patient. This can be used as a
reference tool to estimate different treatments’ efficacy.

A full model capable of adjusting the parameters accord-
ing to the microbial community in the lungs and the treat-
ment administered (e.g., timing of antibiotic administration,
types of antibiotics, and steroids) would be clinically useful.
The present paper should be taken as a proof-of-concept step
toward that goal. This will provide an opportunity for the
researcher, and eventually the clinician, to access a frame-
work for quantitative predictions.

For the next step, we can use MRI data to improve
the model by spatially tracking the presence, growth, and
clearing of infections. Once the parameters of the model have
been identified, simulations of different treatment scenarios
and hypothesized effects can be run and compared to
the database, allowing several iterations of the (model/
predict/adjust) cycle [15] fitted to individual patient data.
Finally, one can imagine many interesting and useful GUI
programming implementations of the model that will enable
medical doctors to interact with the simulation and tailor
their treatment based on contrasts between predicted and
observed scenarios. This will provide feedback to improve
the model even further.
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