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Abstract

The purpose of these studies was to identify HLA-A2+ immunogenic peptides derived from XBP1 

antigens to induce a multiple myeloma (MM)-specific immune response. Six native peptides from 

non-spliced XBP1 antigen and three native peptides from spliced XBP1 antigen were selected and 

evaluated for their HLA-A2 specificity. Among them, XBP1184–192, XBP1 SP196–204 and XBP1 

SP367–375 peptides showed the highest level of binding affinity, but not stability to HLA-A2 

molecules. Novel heteroclitic XBP1 peptides, YISPWILAV or YLFPQLISV, demonstrated a 

significant improvement in HLA-A2 stability from their native XBP1184–192 or XBP1 SP367–375 

peptide, respectively. Cytotoxic T lymphocytes generated by repeated stimulation of CD3+ T cells 

with each HLA-A2-specific heteroclitic peptide showed an increased percentage of CD8+ 

(cytotoxic) and CD69+/CD45RO+ (activated memory) T cells and a lower percentage of CD4+ 

(helper) and CD45RA+/CCR7+ (naïve) T cells, which were distinct from the control T cells. 

Functionally, the CTLs demonstrated MM-specific and HLA-A2-restricted proliferation, IFN-γ 

secretion and cytotoxic acivity in response to MM cell lines and importantly, cytotoxicty against 

primary MM cells. These data demonstrate the distinct immunogenic characteristics of unique 

heteroclitic XBP1 peptides which induce MM-specific CTLs and highlights their potential 

application for immunotherapy to treat the patients with MM or its pre-malignant condition.

INTRODUCTION

Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation 

of clonogenic mature plasma cells in the bone marrow. Despite recent advances in treatment 

using new drugs developed in the past several years, the disease still remains incurable, thus 
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novel therapeutic approaches are required to improve outcome.1–3 Based on the success of 

allogeneic transplantation as well as graft-versus-myeloma responses following donor 

lymphocyte infusion, other immunotherapeutic approaches are being evaluated to treat the 

disease. The focus has been on augmenting and directing autologous anti-MM immune 

responses as allogeneic immune manipulations put patients at risk of developing graft-

versus-host-disease with associated significant morbidity and mortality.4,5 A number of 

targets have been investigated including use of patient-specific idiotype protein, MM cell 

lysates or MM cell-dendritic cell fusions.6–8 However, these methods require generation of a 

patient-specific vaccine making its general applicability more difficult. Developing a 

peptide-based immunotherapy against specific MM-associated antigens would offer an 

attractive approach for a safe and effective immunotherapy. We report here on the 

identification and characterization of HLA-A2+ peptides that elicit specific CTLs targeting 

XBP1 as the MM-specific antigen.

XBP1 is a transcription factor required for the terminal differentiation of B lymphocytes to 

plasma cells and is essential for immunoglobulin secretion.9, 10 This antigen is a basic 

leucine zipper-containing transcription factor originally identified as a protein binding to the 

cis-acting X box region in the promoter of human MHC class II genes.11 XBP1 mRNA is 

processed by IRE1, an endoplasmic reticulum (ER) transmembrane protein that contains 

endoribonuclease and cytoplasmic protein kinase domains in response to ER stress.12–14 The 

mRNA spliced by IRE1 causes a reading frame shift which is translated into a spliced form 

of XBP1 protein that is an active transcription factor.15 To date, XBP1 is the only 

transcription factor found to be essential for plasma cell differentiation. XBP1 is uniformly 

expressed in all MM cells and cell lines and is selectively induced by exposure to IL-6 and 

has been implicated in the proliferation of malignant plasma cells.16–19 Microarray analyses 

have identified XBP1 as a differentially expressed gene between the plasma cells and 

monoclonal gammopathy of undetermined significance (MGUS) and MM cells.20 Gene 

expression profiling studies have also confirmed the specific expression of XBP1 in MM.21 

A recent study shows that a splice variant of XBP1 plays a crucial role in normal plasma cell 

differentiation.22 XBP1 splicing is recognized to occur in terminal B cell differentiation and 

correlates with plasma cell differentiation. In addition, there is evidence that spliced XBP1 

supports restoration of immunoglobulin production in XBP1−/− B cells and induces IL-6 

secretion in normal plasma cells development.23–25 It has also been shown that the relative 

mRNA expression levels of spliced XBP1 compared to XBP1 are differentially expressed in 

myeloma compared with normal plasma cells.20

In this study, we propose the XBP1 transcription factor as a unique therapeutic target 

antigen for development of a MM-specific immunotherapy. We designed and characterized 

two heteroclitic peptides, YISPWILAV and YLFPQLISV, with improved HLA-A2 binding 

and stability from their respective native peptides, XBP1184–192 (NISPWILAV) and XBP1 

SP367–375 (ELFPQLISV). These heteroclitic peptides were able to induce XBP1 antigen-

specific CTLs which specifically recognized, targeted, and lysed HLA-A2+ MM cell lines. 

These data provides evidence of the potential of HLA-A2+ XBP1 specific peptides for their 

clinical application as a peptide-based vaccine or in the production of XBP1-specific CTLs 
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ex vivo for adoptive transfer therapy in patients with MM or its related pre-malignant 

diseases.

MATERIALS AND METHODS

Cell lines

The multiple myeloma lines, McCAR, MM1S and U266 were obtained from ATCC 

(Manassas, VA). The acute myeloid leukemia (AML) cell line, ML-2, was kindly provided 

by Dr. Y. Matsuo, Fujisaki Cell Center, Okayama, Japan. The T2 cell line, a human B and T 

cell hybrid expressing HLA-A2 molecules26, was provided by Dr. J. Molldrem (University 

of Texas M. D. Anderson Cancer Center, Houston, TX) and was used as antigen presenting 

cells (APC). All cell lines were cultured in RPMI-1640 medium (Gibco-Life Technologies, 

Rockville, MD) supplemented with 10% fetal calf serum (FCS; BioWhittaker, Walkersville, 

MD), 100 IU/ml penicillin and 100 µg/ml streptomycin (Gibco-Life Technologies).

Reagents

Mouse anti-human CD3, CD4, CD8, CD14, CD40, CD45RA, CD45RO, CD69, CD86, 

CD107a, CCR7, HLA-A2 and HLA-DR monoclonal antibodies (mAbs) conjugated with 

FITC, PE, PerCP or APC were purchased from Becton Dickinson/Pharmingen (San Diego, 

CA). Mouse anti-human CD80 or CD83 mAbs conjugated with PE were purchased from 

Immunotech (Hialeigha, FL). Recombinant human IL-2, IL-4, IFN-α and TNF-α were 

purchased from R&D Systems (Minneapolis, MN), and recombinant human GM-CSF was 

obtained from Immunex (Seattle, WA).

Synthetic Peptides

Six native non-spliced XBP1 peptides including XBP1117–125 (LLREKTHGL), 

XBP1184–192 (NISPWILAV), XBP1189–197 (ILAVLTLQI), XBP1192–200 (VLTLQIQSL), 

XBP1110–118 (KLLLENQLL), XBP193–101 (RMSELEQQV), three native spliced XBP1 

peptides including XBP1 SP196–204 (GILDNLDPV), XBP1 SP193–201 (ILLGILDNL), XBP1 

SP367–375 (ELFPQLISV), and three heteroclitic peptides including XBP1184–192 

(YISPWILAV), XBP1 SP196–204 (YILDNLDPV) and XBP1 SP367–375 (YLFPQLISV) were 

examined as potential HLA-A2-specific peptides. Influenza virus matrix protein58–66 

(GILGFVFTL) was used as a control HLA-A2-specific peptide. All peptides were 

synthesized by standard fmoc (9-fluorenylmethyl-oxycarbonyl) chemistry, purified to >90% 

using reverse-phase chromatography and validated by mass-spectrometry for molecular 

weight (Biosynthesis, Lewisville, TX). Lyophilized peptides were dissolved in DMSO 

(Sigma, St. Louis, MO), diluted in AIM-V medium (Gibco-Life Technologies) and stored at 

−140°C.

Peptide Binding Assay

XBP1 peptides were evaluated for HLA-A2-specific binding with the T2 cell line. In the 

assay, T2 cells were washed, resuspended in serum-free AIM-V medium to a final 

concentration of 1×106 cells/ml and transferred into wells of a 24-well tissue culture plate. 

The cells were pulsed with 50 µg/ml of respective XBP1 peptide or 30 µg/ml of influenza 

virus matrix protein58–66 (GILGFVFTL) peptide plus 3 µg/ml human β2-microglobulin 
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(Sigma) and incubated at 37°C, 5% CO2 in humidified air. Following overnight incubation, 

the cells were washed, stained with mouse anti-human HLA-A2-FITC mAb for 15 minutes 

at 4°C, washed and analyzed using a FACSort™ flow cytometer with CellQuest™ v2.1 

software (Becton Dickinson, San Jose, CA). Peptide binding to HLA-A2 was determine by 

the up-regulation of HLA-A2 molecules on T2 cells caused by HLA-A2 specific peptide 

binding and demonstrated by measuring mean fluorescence intensity (MFI) by flow 

cytometric analyses.

Peptide Stability Assay

XBP1 peptides were examined for HLA-A2 binding stability using the T2 cell line. T2 cells 

were pulsed with the respective XBP1 peptide as described above. After overnight 

incubation, the cells were washed to remove unbound peptide and incubated with 10 µg/ml 

Brefeldin A (Sigma) at 37°C and 5% CO2 for 1 hour to block cell surface expression of 

newly synthesized HLA-A2 molecules. Peptide/HLA-A2 binding stability was evaluated at 

0, 2, 4, 6 and 18 hours post-Brefeldin A treatment. Following the incubation period, the cells 

were harvested, washed, stained with mouse anti-human HLA-A2-FITC mAb and analyzed 

by flow cytometry as described above.

Generation of Monocyte-derived Dendritic Cells

Peripheral blood mononuclear cells (PBMC) were isolated by standard density gradient 

centrifugation over Ficoll-PaqueTM Plus (Amersham Pharmacia Biotech AB, Uppsala 

Sweden) from leukopaks obtained from HLA-A2+ normal donors. Dendritic cells (DC) were 

generated from monocytes obtained as the adherent cell fraction. To generate DC, the 

monocytes were cultured for 7 days in the presence of 1,000 U/ml GM-CSF and 1,000 U/ml 

IL-4 in RPMI-1640 medium (Gibco-Life Technologies) supplemented with 10% FCS. Fresh 

media plus GM-CSF and IL-4 was added to the cultures every other day. Mature DC (mDC) 

were obtained by adding 1,000 U/ml IFN-α plus 10 ng/ml TNF-α along with fresh GM-CSF 

and IL-4 in 10% FCS-RPMI on day 7 and incubating additional three days. The mDC were 

harvested and used as antigen-presenting cells (APC) to generate XBP1 peptide specific-

CTLs.

Isolation of CD3+ T cells

CD3+ T cells were obtained from the non-adherent cell fraction (post-monocytes adherence) 

using the Pan T cell isolation kit from Miltenyi Biotec (Auburn, CA). In brief, T cell 

enrichment was accomplished by depletion of B cells, NK cells, early erythroid cells, 

platelets and basophils by labeling with a cocktail of hapten-conjugated CD11b, CD16, 

CD19, CD36 and CD56 antibodies and MACs microbeads coupled to an anti-hapten 

monoclonal antibody. The effluent (negative cell fraction) was collected from the column as 

enriched CD3+ T cells. The purity of the enriched CD3+ T cells was examined by flow 

cytometry and was found to be 94±2% (mean ± standard deviation).

Induction of Peptide-specific CTLs

Peptide-specific CTLs were generated ex vivo by repeated stimulation of CD3+ T 

lymphocytes obtained from HLA-A2+ normal donors with XBP1 peptide-pulsed APC, either 
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mDC or T2 cells. In brief, APC were washed and resuspended in serum-free medium AIM-

V medium and pulsed overnight at 37°C and 5% CO2 in humidified air with 50 µg/ml of the 

appropriate XBP1 peptide. Peptide-pulsed APC were washed, counted, irradiated at 10 Gy 

and used to prime CD3+ T cells at a 1:20 APC/peptide (stimulator)-to-CD3+ T cell 

(responder) ratio in AIM-V medium supplemented with 10% human AB serum 

(BioWhittaker). The T cell cultures were restimulated every seven days with irradiated APC/

peptide for a total of 4 cycles to generate XBP1 peptide-specific CTL (XBP1-CTL). IL-2 

(50 U/ml) was added to the cultures two days after the second stimulation. Control CD3+ T 

cell cultures (unstimulated) were maintained in AIM-V medium supplemented with 10% 

human AB serum containing 50 U/ml IL-2.

Phenotypic analysis of the XBP1-CTLs or target/stimulatory cell lines

XBP1-CTLs were stained with CD4-PE or CD8-FITC mAbs for their phenotype analyses. 

In addition, they were stained with CD69-FITC/CD45RO-PE or CD45RA-FITC/CCR7-PE 

mouse mAbs. Alternatively, the multiple myeloma cell lines (McCAR, U266 and MM1S) 

along with an acute myeloid leukemia cell line (ML-2) were stained with HLA-A2-FITC 

mAb prior to use as target or stimulatory cells. CTLs or cell lines were stained with the 

appropriate mAbs, washed and analyzed by flow cytometry.

IFN-γ ELISA

IFN-γ secretion by XBP1-CTLs was measured using a human IFN-γ ELISA kit (BD 

Biosciences, San Diego, CA). For the assay, XBP1-CTLs were incubated with the MM 

(McCAR, MM1S) or AML (ML-2) cell lines for 24 hours at 37°C, 5% CO2 in humidified 

air. The supernatants were harvested and stored at −20°C until analyzed by ELISA for IFN-γ 

release by the XBP1-CTLs in response to the MM or AML cell lines used as stimulator 

cells. Briefly, purified IFN-γ as standards or supernatants were transferred into wells of a 

96-well plate pre-coated with a monoclonal anti-human IFN-γ capture antibody and 

incubated for 2 hours at room temperature. After washing, the buffer containing detection 

antibody and avidin-horseradish peroxidase conjugate was added to each well and incubated 

for 1 hour at room temperature. The wells were washed and developed by incubation with 

TMB substrate solution for 30 minutes. Stop solution was added to each well and the 

absorbance was determined at 450 nm with a VICTOR2-1420 multilabel counter 

(PerkinElmer, Wellesley, MA). The amount of IFN-γ (pg/ml) present in the CTLs culture 

supernatant was calculated based on the standard curve

Cell proliferation by Carboxy Fluorescein Succinimidyl Ester (CFSE) tracking

XBP1-CTLs were harvested, washed twice in PBS (Gibco-Life Technologies) and 

resuspended at 1×106 cells/ml. CFSE (Molecular Probes, Eugene, OR), 5 mM stock solution 

in dimethyl sulfoxide, was added to the CTLs to give a final concentration of 5 µM and 

incubated for 10 minutes at 37°C, 5% CO2 protected from light. After incubation, 5 volumes 

of ice-cold PBS with 2% FCS (PBS-FCS) were added to the cells to quench the reaction. 

The cells were incubated for 5 minutes on ice, washed 3× with PBS-FCS and resuspended in 

fresh AIM-V media supplemented with 10% human AB serum. The CFSE labeled XBP1-

CTLs (2 × 106 cells/ml) were co-incubated with McCAR, MM1S or ML-2 cells (2 × 105 

cells/ml) or media alone at 37°C and 5% CO2 in humidified air. The CFSE-labeled CTLs 
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were harvested and examined on day 4 to determine their proliferation in response to the 

antigen present on the tumor cell lines. CTLs that proliferate in response to antigen show a 

reduction in CFSE fluorescence intensity, which was measured directly by flow cytometry.

Cytotoxicity Assay

The cytotoxic activity of the XBP1-CTLs was measured using a calcein-release assay as 

described elsewhere.27 Briefly, 3 × 105 target cells (McCAR, U266, MM1S, ML-2 or 

primary CD138+ cells from HLA-A2+ MM patients) were incubated with 10 mM calcein-

AM (Molecular Probes) for 30 minutes at 37°C, washed 3× and resuspended in PBS 

containing 5% FCS. The calcein-AM labeled target cells (5 × 103/well) were incubated with 

the XBP1-CTLs at various effector:target cell ratios in 96-well U-bottom microtiter plates 

(triplicate wells/sample). Plates were incubated for 4 hours at 37°C, 5% CO2. After 

incubation, the cells were pelleted by centrifugation at 1,000 rpm for 5 minutes and 100 µl 

of the supernatant were transferred from each well to 96-well flat-bottomed plates. The 

fluorescence of each supernatant was monitored at 490 nm excitation and 520 nm emission 

wavelength using a VICTOR2-1420 multilabel counter (Perkin-Elmer). Maximum release 

was obtained from detergent-released target cells and spontaneous release from target cells 

incubated in the absence of effector cells. The cytotoxicity of the XBP1-CTLs was 

calculated as follows: % Specific Lysis = [(experimental release − spontaneous release) ÷ 

maximum release − spontaneous release)].

CD107 assay

The CD107 assay was setup with minor modifications to evaluate the functional activity of 

the XBP1-CTLs.28 Primary CD138+ MM cells from bone marrow mononuclear cells were 

isolated from HLA-A2+ myeloma patients using RoboSep® CD138 positive 

immunomagnetic selection technology per manufacturer’s instructions (STEMCELL 

Technologies, Vancouver, BC, Canada). The XBP-1 CTLs were co-incubated with HLA-

A2+/CD138+ MM cells at a ratio of 1 CTL:5 CD138+ MM cells in a 96 well round bottom 

plate. At the same time, mouse anti-human CD107a-FITC mAb was added to each well. 

After 1 hour incubation, Brefeldin A (BD) and Monensin (BD) were added to the cells and 

cells were incubated for an additional 4 hours. Following incubation, the cells were 

harvested, washed, stained with mouse anti-human CD8-PE mAb for 30 minutes at 4°C, 

washed and analyzed by flow cytometry. The expression of CD107a by CD8+ T cells was 

determined as a measure of degranulation of XBP1-CTLs in response to primary HLA-A2+/

CD138+ MM cells.

Statistical Analysis

Results are presented as mean ± SE. Groups were compared using unpaired Student’s t-test. 

Differences were considered significant when p<0.05.
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RESULTS

Non-spliced and spliced XBP1 peptides display high level of binding and stability to HLA-
A2 molecules

The full length amino acid sequences from non-spliced and spliced XBP1 proteins were 

analyzed using the search software SYFPEITHI to predict HLA-A2-binding peptides, 

followed by the BIMAS and NetCTL programs to select peptides with extended half-time 

disassociation rates, proteasomal C terminal cleavage and TAP transport. A total of six 

native peptides from non-spliced XBP1 protein [XBP1117–125 (LLREKTHGL), 

XBP1184–192 (NISPWILAV), XBP1189–197 (ILAVLTLQI), XBP1192–200 (VLTLQIQSL), 

XBP1110–118 (KLLLENQLL), XBP193–101 (RMSELEQQV)] and three native peptides 

[XBP1 SP196–204 (GILDNLDPV), XBP1 SP193–201 (ILLGILDNL), XBP1 SP367–375 

(ELFPQLISV)] from spliced XBP1 protein were selected for evaluation of HLA-A2-

specific binding affinity (Table 1 and Table 2). The T2 peptide-binding assay was used to 

assess the HLA-A2 affinity of the XBP1 peptides.

Among the XBP1 peptides derived from non-spliced XBP1 protein, XBP1184–192 

(NISPWILAV) showed the highest HLA-A2 binding (MFI = 720 ± 140) which was greater 

than the influenza virus matrix protein58–66 peptide (GILGFVFTL) (MFI = 604 ± 10) used 

as a HLA-A2-specific positive control (Figure 1a). However, initial peptide stability studies 

revealed that the HLA-A2 binding of the native XBP1184–192 (NISPWILAV) peptide was 

unstable compared to influenza virus matrix protein58–66 peptide (GILGFVFTL) (data not 

shown). In order to improve the stability of the native XBP1184–192 (NISPWILAV) peptide 

binding to HLA-A2 molecules, we designed the heteroclitic peptide (YISPWILAV) by 

substitution of the tyrosine (Y) for asparagine (N) in position 1 from the native peptide. The 

HLA-A2 binding stability of the heteroclitic XBP1184–192 peptide was significantly 

improved (> 6 hours) compared to the native XBP1184–192 peptide (Figure 1b). In addition, 

the stability of the heteroclitic XBP1184–192 peptide to HLA-A2 molecule was greater than 

the control influenza virus matrix protein58–66 (GILGFVFTL), demonstrating that the 

peptide modification improved HLA-A2 stability for the heteroclitic XBP1184–192 peptide.

Among the peptides derived from spliced XBP1 protein, XBP1 SP196–204 (GILDNLDPV) 

and XBP1 SP367–375 (ELFPQLISV) showed the highest levels of HLA-A2 binding affinity 

(MFI = 762 ± 167, MFI = 785 ± 84, respectively) which were comparable to the control 

influenza virus matrix protein58–66 peptide (Figure 1c). The peptide sequences of XBP1 

SP196–204 and XBP1 SP367–375 were modified to enhance their binding stability to HLA-A2 

molecules. Improvement in HLA-A2 binding stability was observed with the heteroclitic 

peptide, YLFPQLISV, which was modified from the native XBP1 SP367–375 (ELFPQLISV) 

(Figure 1d). The HLA-A2 binding stability was not improved for the other heteroclitic 

peptide, YILDNLDPV, which was derived from the native XBP1 SP196–204 (GILDNLDPV) 

peptide (data not shown). Therefore, the heteroclitic XBP1184–192 (YISPWILAV) and 

heteroclitic XBP1 SP367–375 (YLFPQLISV) peptides were selected for further evaluation of 

their immunogenic potential to generate MM-specific CTLs.
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The XBP1-specific CTLs display a distinct phenotype from unstimulated T cells

Antigen-specific CTLs can be phenotypically identified as activated/memory T cells from 

naïve T cells by their expression of distinct cell surface antigens. We analyzed the 

percentage of activated/memory (CD69+/CD45RO+) and naïve (CD45RA+/CCR7+) T cells 

along with the T cell subsets (CD4+, CD8+) in the CD3+ T cell cultures stimulated with 

either heteroclitic XBP1184–192 (YISPWILAV) or heteroclitic XBP1 SP367–375 

(YLFPQLISV) peptide. The CD3+ T cells stimulated with respective heteroclitic XBP1 

peptide induced a significantly higher percentage of CD8+ T cells (heteroclitic XBP1184–192 

stimulated - 81%; heteroclitic XBP1 SP367–375 stimulated - 75%) compared to control T 

cells (no stimulation - 33%). We also observed a lower percentage of CD4+ T cells 

(heteroclitic XBP1184–192 stimulated - 14%; heteroclitic XBP1 SP367–375 stimulated - 18%) 

in the XBP1-CTL cultures as compared to the control CD3+ T cell cultures (no peptide 

stimulation = 64%) (Figure 2). The XBP1-CTLs or control T cells were further examined for 

naïve (CD45RA+/CCR7+) or activated memory (CD69+/CD45RO+) cell subtypes. The cell 

population expressing an activated memory (CD69+/CD45RO+)phenotype was significantly 

higher in the XBP1-CTLs (heteroclitic XBP1184–192 stimulated - 62%; heteroclitic XBP1 

SP367–375 stimulated - 64%) compared to control T cells (no stimulation – 4%) obtained 

from the same donor (Figure 2). In addition, the control T cell cultures showed 24% naïve 

(CD45RA+/CCR7+) cells, whereas only 2% of the XBP1-CTLs showed this subset (data not 

shown). Therefore, these results demonstrate that stimulation with heteroclitic XBP1 

peptides lead to an expansion of the CD8+ T cell subset with an activated/memory (CD69+/

CD45RO+) phenotype characteristic of effector cells.

XBP1-CTLs produce IFN-γ by stimulation with HLA-A2+ myeloma cells

To characterize the anti-tumor response, antigen-specificity and HLA-A2-restriction of the 

heteroclitic XBP1 peptide induced CTLs, we evaluated their ability to produce IFN-γ 

following stimulation with various tumor cell lines including McCAR (MM; HLA-A2+/

XBP1+), MM1S (MM; HLA-A2−/XBP1+) or ML-2 (AML; HLA-A2+/XBP1−). 

Supernatants collected after 24 hours incubation of XBP1-CTLs with the respective tumor 

cell line were evaluated for IFN-γ (pg/ml) by ELISA. We observed a dramatic increase in 

IFN-γ secretion by both heteroclitic XBP1-CTLs stimulated McCAR (HLA-A2+/XBP1+) 

myeloma cells compared to the CTLs alone without stimulation (Figure 3). Stimulation with 

the MHC mismatched MM1S (MM; HLA-A2−/XBP1+) or the antigen mismatched ML-2 

(AML; HLA-A2+/XBP1−) cell lines did not induce IFN-γ secretion by either of the 

heteroclitic XBP1-CTLs. These results offer evidence of an antigen-specific and HLA-A2-

restricted IFN-γ secretion by the CTLs generated with heteroclitic XBP1184–192 

(YISPWILAV) or heteroclitic XBP1 SP367–375 (YLFPQLISV) peptides.

XBP1-CTLs show specific cell proliferation in response to HLA-A2+ myeloma cells

A CFSE-based assay was used to analyze the proliferation of heteroclitic XBP1-CTLs upon 

stimulation with various irradiated tumor cell lines. Cell proliferation was analyzed by 

measuring the decrease in fluorescence of the CFSE-labeled CTLs by flow cytometry (M1-

gated cells). Antigen-specific and HLA-restricted cell proliferation was observed by the 

XBP1-CTLs in response to HLA-A2+/XBP1+ McCAR (heteroclitic XBP1184–192–CTLs: 
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55%, heteroclitic XBP1 SP367–375-CTLs: 42%) compared to the control CTLs without 

stimulation (heteroclitic XBP1184–192–CTLs: 5%, heteroclitic XBP1 SP367–375-CTLs: 2%) 

(Figure 4). However, the XBP-1 CTLs did not proliferate in response to the MHC 

mismatched MM1S (MM; HLA-A2-/XBP1+) or the antigen mismatched ML-2 (AML; 

HLA-A2+/XBP1−) cell lines. Taken together, our data demonstrated the specific cell 

proliferation of XBP1-CTLs in response to myeloma cells in antigen-specific and HLA-A2-

restricted manner.

XBP1-CTLs induce specific lysis of HLA-A2+/XBP1+ myeloma cell lines

Next, we demonstrate the ability of the heteroclitic XBP1184–192 or heteroclitic XBP1 

SP367–375 peptide-specific CTLs to specifically target and lyse MM cells using a calcein-

release cytotoxicity assay. Heteroclitic XBP1184–192-CTLs (Figure 5a) as well as heteroclitic 

XBP1 SP367–375-CTLs (Figure 5b) demonstrated effective lysis of the HLA-A2+/XBP1+ 

McCAR cells at various effector: target cell ratios (9–50% specific lysis by heteroclitic 

XBP1184–192–CTLs; 1 5-69% by heteroclitic XBP1 SP367–375-CTLs). In addition, an 

alternative HLA-A2+/XBP1+ myeloma cell line, U266, was effectively lysed by the 

heteroclitic XBP1184–192–CTLs (16–74% specific lysis) and heteroclitic XBP1 SP367–375-

CTLs (18–83% specific lysis). Interestingly, the cytotoxic activity against McCAR or U266 

myeloma cell lines was greater for the CTLs induced with the XBP1 SP367–375 peptide 

derived from spliced XBP1 protein as compared to those induced with the XBP1184–192 

peptide from non-spliced protein. The heteroclitic XBP1184–192-CTLs or heteroclitic XBP1 

SP367–375-CTLs did not lyse the antigen mismatched ML-2 (AML; HLA-A2+/XBP1−) or 

MHC mismatched MM1S (MM; HLA-A2-/XBP1+) cell lines, demonstrating that the 

cytotoxic activity of both XBP1-CTLs is antigen-specific and HLA-restricted. The XBP1-

CTLs did not lyse the NK-sensitive K562 cell line (data not shown), suggesting that the 

cytotoxicity of XBP1-CTLs was not due to an activated NK cell population.

XBP1-CTLs induce degranulation and cytotoxicity against primary HLA-A2+/CD138+ MM 
cells

To evaluate effectiveness of XBP1-CTLs against primary patient MM cells, we evaluated 

CTL degranulation in response to target cell recognition by measuring expression of 

CD107a, a surface antigen transiently present on the cell surface after release of cytotoxic 

granules. XBP1-CTLs incubated with primary HLA-A2+/CD138+ myeloma cells in the 

presence of CD107a-FITC mAb were stained with CD8-PE mAb and evaluated by flow 

cytometry. Both heteroclitic XBP1184–192–CTLs (Figure 6a) and heteroclitic XBP1 

SP367–375-CTLs (Figure 6b) displayed increased CD107a expression on CD8+ T cells in 

response to interaction with primary CD138+ MM cells isolated from three HLA-A2+ MM 

patients. CD107a expression on CD8+ T cells from heteroclitic XBP1184–192 CTLs ranged 

between 4 – 19% while heteroclitic XBP1 SP367–375 CTLs ranged between 7 – 16%. In 

contrast, unstimulated T cells from the same donor showed minimal expression of CD107a 

on CD8+ cells in response to stimulation with the primary HLA-A2+/CD138+ cells from 

MM patients (0 – 1%).

Importantly, XBP1-CTLs demonstrated direct cytotoxicity against primary CD138+ MM 

cells isolated from HLA-A2+ patients using a calcein-release cytoxicity assay. We evaluated 
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cytotoxicity of heteroclitic XBP1184–192–CTLs and heteroclitic XBP1 SP367–375-CTLs 

generated from two different donors against primary HLA-A2+/CD138+ MM cells from two 

patients (Figures 7a and 7b). XBP1-CTLs generated from both donors displayed the highest 

cytotoxic activity against HLA-A2+/CD138+ cells at an effector:target cell ratio of 60:1. The 

control unstimulated T cells did not lyse primary CD138+ MM cells from the HLA-A2+ 

MM patients. These data demonstrates the functional activity of the heteroclitic 

XBP1184–192 and XBP1 SP367–375-CTLs against the primary MM cells through 

degranulation and subsequent cytolytic activity.

DISCUSSION

XBP1 is a basic leucine zipper-containing transcription factor required for the terminal 

differentiation of B lymphocytes to plasma cells.9, 29–30 It has been suggested that the high 

amount of immunoglobulin molecules produced in the plasma cells evokes ER stress, which 

in turn activates IRE1-mediated XBP1 expression and subsequently mRNA splicing during 

the plasma cell differentiation.12, 15–17 The active XBP1 intracellular protein is thus highly 

expressed only in the plasma cells through both transcriptional and post-transcriptional 

mechanisms.14, 22, 31 Additionally, XBP1 expression is higher in MM, compared to 

MGUS.30, 32 This unique profile of XBP1 over-expression provides an opportunity to 

develop an antigen-specific immunotherapy for the patients with MM or the pre-malignant 

diseases such as MGUS and smoldering multiple myeloma.

Here, we report on the identification and characterization of novel heteroclitic HLA-A2-

specific XBP1 epitopes that induce specific anti-tumor CTLs that specifically target MM 

cells. The peptide identification was performed by screening the full-length sequences of 

non-spliced (260 amino acids) or spliced (375 amino acids) XBP1 protein to predict HLA-

A2-specific peptides. We further screened the HLA-A2 anchor residues of the predicted 

peptides to avoid the epitopes containing amino acid which causes negative effects on HLA-

A2 binding.33 Based on the examination of HLA-A2 anchor residues, optimal peptides were 

selected from spliced or non-spliced XBP1 protein and evaluated for their HLA-A2 affinity. 

Among them, non-spliced XBP1184–192 (NISPWILAV) and spliced XBP1367–375 

(ELFPQLISV) peptides demonstrated a high level of binding to HLA-A2 molecules.

Previously, investigators have shown that increased peptide stability to MHC molecules 

enhances its immunogenicity.34–38 In these studies, we identified heteroclitic XBP1-specific 

peptides (YISPWILAV, YLFPQLISV) by altering the primary anchor residue of the native 

non-spliced XBP1184–192 (NISPWILAV) and spliced XBP1367–375 (ELFPQLISV) peptides, 

respectively. These heteroclitic XBP1 peptides demonstrated improved HLA-A2 binding 

stability on antigen-presenting cells while maintaining their recognition by T-cell receptors 

and ability to activate the antigen-specific T cells. In addition, the sequence of the 

heteroclitic analogues were confirmed not to overlap with sequences of peptides derived 

from other normal proteins, so that the risk of targeting the normal proteins is avoided by the 

heteroclitic XBP1 peptide-specific CTLs.

The challenge in targeting XBP1 antigen is to break T-cell tolerance to this plasma cell-

specific antigen. Lotz et al.39 suggested that the HLA-A2-restricted XBP1-specific human T 
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cell repertoire is affected by partial self-tolerance. We examined whether the heteroclitic 

XBP1 peptides are able to break T-cell tolerance to this plasma cell-specific self-antigen. 

Our particular additional interest was the ability of the CTLs induced by heteroclitic XBP1 

peptide to recognize the native XBP1 peptide which potentially presented on MM cells. In 

order to address these issues, we generated CTLs specific to the respective heteroclitic 

XBP1 peptide and evaluated their immunogenicity against tumor cell lines. This was 

performed by repeated stimulation of HLA-A2+ normal CD3+ T lymphocytes with APC 

pulsed with either heteroclitic XBP1184–192 (YISPWILAV) or heteroclitic XBP1 SP367–375 

(YLFPQLISV) peptide. The resulting cell cultures displayed an altered T cell phenotype 

including an increased proportion of CD8+ and activated/memory (CD69+/CD45RO+) T 

cells and a decreased proportion of CD4+ and naïve (CD45RA+/CCR7+) T cells (Figure 2). 

These observations confirm results by other investigators that ex vivo generated tumor 

associated antigen-specific CTLs have distinct phenotypes of effector cells.7, 40–42 In 

functional analysis, we demonstrated antitumor responses of the XBP1-CTLs against 

myeloma cells in XBP1-specific and HLA-A2 restricted manner by their IFN-γ secretion 

(Figure 3), cell proliferation (Figure 4) and cytotoxicity (Figure 5). Importantly, we 

demonstrate the functional activity of heteroclitic XBP1184–192 and XBP1 SP367–375 CTLs 

to both degranulate and lyse primary CD138+ cells from HLA-A2+ MM patients (Figures 6 

and 7). Interestingly, the cytotoxic activity of the spliced heteroclitic SP367–375 peptide-

specific CTLs was higher than the non-spliced XBP1184–192 peptide-specific CTLs against 

both MM cell lines (Figure 5) as well as primary MM cells (Figure 7). These results may be 

explained by the crucial role of spliced variant of XBP1 in plasma cell differentiation and its 

over-expression in malignant myeloma cells.24, 25 Taken together, the altered T cell 

phenotype enriched for CD8+ and activated/memory T cell subtypes support the MM-

specific functional activities of the CTLs generated by the heteroclitic XBP1 peptides.

An immunotherapeutic approach using the immunogenic heteroclitic XBP1 peptides can be 

translated into several different clinical applications including peptide vaccinations or 

adoptive transfer of ex vivo generated peptide-specific CTLs.43–47 Infusion of peptide-

specific CTLs in MM patients could overcome the limitation of peptide-based vaccination 

which requires functional immune system in the patients. In considering peptide vaccination, 

peptide dosage, site of injection and the selection of a suitable adjuvant are all critical 

factors that need to be determined in clinical trials. Alternatively, utilization of peptide-

specific CTL clones could be utilized as a maintenance therapy post-autologous 

transplantation. A concern a self-antigen in the development of an XBP1 antigen-based 

immunotherapy is the potential for targeting normal plasma cells which express XBP1.30, 48 

However, the higher expression of XBP1 may make MM cells more specific target to the 

CTLs, but this issue should be closely monitored and investigated further in clinical trials.

In summary, we report here on heteroclitic XBP1184–192 (YISPWILAV) and XBP1 

SP367–375 (YLFPQLISV) peptides with immunotherapeutic potential to efficiently target 

and lyse MM cells. These data provides information for their clinical application as either a 

peptide-based vaccination or adoptive transfer of ex vivo generated XBP1-specific T cells in 

the patients with MM and the pre-malignant diseases.
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Figure 1. Identification of HLA-A2-specific XBP1 peptides and improvement of MHC binding 
stability by peptide modification
Figure 1a. HLA-A2 binding affinity of non-spliced XBP1 peptides.

T2 cells were pulsed overnight with respective XBP1 peptide (50 µg/ml) in serum-fee 

media. Influenza virus matrix protein58–66 was used as the positive control and T2 cell in 

media alone as baseline controls in these experiments. Following incubation, T2 cells were 

harvested, washed, and stained with HLA-A2-FITC mAb for flow cytometric analysis. 

HLA-A2 binding is shown as an increase in HLA-A2 mean fluorescence intensity (MFI). 

XBP1184–192 (NISPWILAV) showed the highest HLA-A2 binding affinity among the non-

spliced XBP1 peptides. The values represent the mean ± SE of three separate experiments.

Figure 1b. HLA-A2 binding stability of non-spliced XBP1 peptides.

Native or heteroclitic XBP1 peptide (50 µg/ml)-pulsed T2 cells were washed and incubated 

with Brefeldin A. At 0, 2, 4, 6, and 18 hours incubation, the cells were stained with HLA-

A2-FITC mAb for flow cytometric analysis. Heteroclitic XBP1184–192 (YISPWILAV) 

peptide showed increased HLA-A2 binding stability compared to the native XBP1184–192 

(NISPWILAV) peptide. Binding stability of the heteroclitic peptide was higher than 

influenza virus matrix protein58–66 (GILGFVFTL), which was used as the HLA-A2-specific 

positive control peptide. The values represent the mean ± SE of three separate experiments.
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Figure 1c. HLA-A2 binding affinity of spliced XBP1 peptides.

Spliced XBP1 peptides were evaluated for their HLA-A2 binding affinity as described in 

Figure 1a. XBP1 SP196–204 (GILDNLDPV) and XBP1 SP367–375 (ELFPQLISV) showed the 

highest HLA-A2 binding affinity among the spliced XBP1 peptides. The values represent 

the mean ± SE of three separate experiments.

Figure 1d. HLA-A2 binding stability of spliced XBP1 peptides.

Spliced XBP1 peptides were analyzed for their HLA-A2 binding stability as discussed in 

Figure 1b. Heteroclitic XBP1 SP367–375 (YLFPQLISV) peptide displayed increased HLA-

A2 binding stability compared to its native XBP1 SP367–375 (ELFPQLISV) or another native 

XBP1 SP196–204 (GILDNLDPV) peptide. The values represent the mean ± SE of three 

separate experiments.
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Figure 2. Distinct phenotype of CTLs stimulated with heteroclitic XBP1-specific peptides
Enriched CD3+ T cells obtained from a normal HLA-A2+ donor were stimulated weekly 

with irradiated antigen-presenting cells pulsed with respective heteroclitic XBP1 peptide. 

One week after the 4th cycle of peptide stimulation, the CD3+ T cells were analyzed for 

effector cells by flow cytometry. The percentage of CD4+ helper T cells was decreased in 

the T cells stimulated with either (b) heteroclitic XBP1184–192 YISPWILAV) peptide or (c) 

heteroclitic XBP1 SP367–375 (YLFPQLISV) peptide, compared to (a) no peptide. In contrast, 

the percentage of CD8+ CTLs and CD69+/CD45RO+ (activated memory) effector cells was 

increased in the CD3+ T cells stimulated with respective XBP1 peptide, compared to no 

peptide control. The results are representative of three independent experiments.
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Figure 3. HLA-A2 restricted and XBP1-specific IFN-γ secretion by XBP1-CTLs stimulated with 
heteroclitic peptides
CTLs generated by repeated stimulation (4×) with heteroclitic XBP1184–192 (YISPWILAV) 

or heteroclitic XBP1 SP367–375 (YLFPQLISV) peptide were incubated with McCAR (MM; 

HLA-A2+/XBP1+), ML-2 (AML; HLA-A2+/XBP1−) or MM1S (MM; HLA-A2−/XBP1+) 

tumor cell lines. After 24 hours of incubation, the supernates were collected and IFN-γ 

secretion was measured by ELISA. An increase in IFN-γ secretion was detected in both 

XBP1-CTLs cultures in response to McCAR (HLA-A2+/XBP1+), but not to ML-2 (HLA-

A2+/XBP1−) or MM1S (HLA-A2−/XBP1+) cells. XBP1-CTLs alone were used to examine 

the background IFN-γ release. The results are representative of three independent 

experiments.
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Figure 4. Induction of HLA-A2-restricted and XBP1-specific cell proliferation of XBP1-CTLs in 
response to multiple myeloma cells
Proliferation of CFSE-labeled XBP1-CTLs was measured in response to antigen stimulation 

by flow cytometry on day 4 of culture. The cell proliferation of heteroclitic XBP1184–192 

(YISPWILAV) and heteroclitic XBP1 SP367–375 (YLFPQLISV) CTLs were both XBP1 

antigen-specific and HLA-A2-restricted in response to the McCAR (HLA-A2+/XBP1+) 

myeloma cell line. The CTLs did not proliferate in response to either the XBP1 antigen or 

MHC mismatched cell lines ML-2 (HLA-A2+/XBP1−) or MM1S (HLA-A2−/XBP1+), 

respectively. Background proliferation was determined using CFSE labeled heteroclitic 

XBP1-CTLs cultured in media alone. The results are representative of three independent 

experiments.
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Figure 5. HLA-A2-restricted and antigen-specific cytotoxicity of the XBP1-CTLs
The specific cytotoxic activities of the heteroclitic XBP1-CTLs were analyzed one week 

after their 4th stimulation using the calcein cytotoxicity assay. A high level of cytotoxic 

activity against U266 (MM, HLA-A2+/XBP1+) (♦) and McCAR (MM, HLA-A2+/XBP1+) 

(■), but not against the ML-2 (AML, HLA-A2+/XBP1−) (▲) and MM1S (HLA-A2−/

XBP1+) (X) cell lines was demonstrated by both the (a) heteroclitic XBP1184–192 CTLs and 

(b) heteroclitic XBP1 SP367–375 -CTLs. The values represent the mean±SE of three separate 

experiments.
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Figure 6. XBP1-CTL degranulation in response to primary HLA-A2+/CD138+ patient MM cells
Degranulation of heteroclitic XBP1-CTLs was analyzed by flow cytometry one week after 

their 4th stimulation, using CD107a, a surface antigen transiently present on the cell surface 

after release of cytotoxic granules. CD107a expression on (a) heteroclitic XBP1184–192-

CTLs and (b) heteroclitic SP367–375–CTLs following stimulation with primary CD138+ MM 

cells from three HLA-A2+ patients. Control unstimulated T cells did not degranulate when 

exposed to the primary HLA-A2+/ CD138+ MM cells. The results are expressed as the 

percent CD107a of CD8+ T cells.
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Figure 7. Cytotoxicity of XBP1-CTLs against primary HLA-A2+/CD138+ patient MM cells
The specific cytotoxic activity of heteroclitic XBP1-CTLs were analyzed one week after 

their 4th stimulation using the calcein-release cytotoxicity assay. Heteroclitic XBP1184–192 

CTLs (■) and heteroclitic SP367–375–CTLs (▲) generated from T cells of (a) Donor 1 and 

(b) Donor 2 demonstrate a high level of cytotoxic activity against primary CD138+ MM 

cells from two HLA-A2+ MM patients. Control unstimulated T cells (●) did not lyse 

primary CD138+ MM cells from the HLA-A2+ MM patients.
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Table 1

Potential HLA-A2 Peptides Identified from Non-spliced XBP1 protein

PEPTIDES SEQUENCE SYFPEITHI BIMAS NetCTL

Non-spliced XBP1117–125 LLREKTHGL 29 11.316 0.9257

Non-spliced XBP1184–192 NISPWILAV 26 21.996 1.1996

Non-spliced XBP1189–197 ILAVLTLQI 26 17.736 1.0263

Non-spliced XBP1192–200 VLTLQIQSL 26 83.527 0.8323

Non-spliced XBP1110–118 KLLLENQLL 23 276.643 1.001

Non-spliced XBP193–101 RMSELEQQV 21 205 951 0.9445

Non-spliced XBP1200–208 LISCWAFWT 14 55.567 0.5846

Non-spliced XBP117–25 VLLLSGQPA 17 31.249 0.6260

Non-spliced XBP1124–132 GLVVENQEL 23 21.362 0.7905

Non-spliced XBP119–27 LISGQPASA 22 8.446 0.7587
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Table 2

Potential HLA-A2 Peptides Identified from Spliced XBP1 protein

PEPTIDES SEQUENCE SYFPEITHI BIMAS NetCTL

Spliced XBP1196–204 GILDNLDPV 26 163.502 1.2062

Spliced XBP1193–201 ILLGILDNL 30 151.434 1.1289

Spliced XBP1367–145 ELFPQLISV 26 44.392 1.0892

Spliced XBP1110–118 KLLLENQLL 23 276.643 1.001

Spliced XBP193–101 RMSELEQQV 21 205.951 0.9445

Spliced XBP1189–197 SESDILLGI 17 1.913 0.3759

Spliced XBP1238–246 SVGTSSAKL 20 1.869 0.4557

Spliced XBP1330–338 CLLDAYSDC 13 111.047 0.2422

Spliced XBP1263–271 LVLEIPSET 16 16.816 0.5069

Spliced XBP1215–223 ASLEELPEV 23 15.841 0.9009
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