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Abstract
This paper presents a novel fully automatic food intake detection methodology, an important step
toward objective monitoring of ingestive behavior. The aim of such monitoring is to improve our
understanding of eating behaviors associated with obesity and eating disorders. The proposed
methodology consists of two stages. First, acoustic detection of swallowing instances based on
mel-scale Fourier spectrum features and classification using support vector machines is
performed. Principal component analysis and a smoothing algorithm are used to improve
swallowing detection accuracy. Second, the frequency of swallowing is used as a predictor for
detection of food intake episodes. The proposed methodology was tested on data collected from 12
subjects with various degrees of adiposity. Average accuracies of >80% and >75% were obtained
for intra-subject and inter-subject models correspondingly with a temporal resolution of 30s.
Results obtained on 44.1 hours of data with a total of 7305 swallows show that detection
accuracies are comparable for obese and lean subjects. They also suggest feasibility of food intake
detection based on swallowing sounds and potential of the proposed methodology for automatic
monitoring of ingestive behavior. Based on a wearable non-invasive acoustic sensor the proposed
methodology may potentially be used in free-living conditions.
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1. Introduction
This paper presents a novel fully automatic food intake detection methodology based on a
wearable non-invasive swallowing sensor. Such methodology can be helpful in
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characterization of ingestive behaviors associated with a variety of eating disorders and for
development of clinical interventions. According to World Health Organization, 1.5 billion
adults, 20 and older, were overweight worldwide in 2008 [19]. Of these over 200 million
men and nearly 300 million women were obese and monitoring of ingestive behavior (MIB)
could potentially be used in active weight control programs providing the objective feedback
needed for diet management [2, 15]. The objectivity of MIB feedback is crucial as unhealthy
and extreme weight-control were shown to predict outcomes related to obesity and eating
disorders [10].

Most currently used self-reporting techniques demonstrate widespread underestimation of
food intake [7]. Because of bias and imprecision, self-reported food intake should be
interpreted with caution unless independent methods of assessing its validity are included in
the experimental design [17]. Replacing paper-based reports with manually operated
electronic devices to simplify tedious and error-prone logging did not improve the validity
of self-reporting [20]. A potential solution is to replace or augment manual self-reporting
with objective automatic sensor based monitoring where eating behavior is estimated
without the individual’s active participation. Such automatic sensor based monitoring has
the potential to improve reporting accuracy.

Characterization of food intake behavior includes: detection of periods of food intake,
differentiation of solid foods from liquids, recognition of food type, prediction of the mass
of ingested food and evaluation of caloric intake [15]. In this paper we concentrate on
detection of periods of food intake as the next fundamental step toward our long-term
objective of creating an automatic, non-invasive and wearable MIB device suitable for use
in free-living conditions [8, 9, 13–16]. Towards this objective we have already developed a
sensor system for non-invasive monitoring of chewing and swallowing, validated its
reliability based on manual scores [13, 14], established a methodology for automatic
detection of swallowing instances using acoustical signals [16], and developed
methodologies for detection and characterization of food intake [8, 15] as well as automatic
identification of the number of food items in a meal [9] based on manual scores of chewing
and swallowing. This paper now incorporates and expands our previous work concluding it
with a demonstration of integration and validation of a fully automatic food intake detection
methodology. The proposed methodology consists of two stages: first, acoustic detection of
swallowing instances based on mel-scale Fourier spectrum features, classification using
support vector machines, principal component analysis (PCA) and a smoothing algorithm.
Second, detection of periods of food intake based on frequency of swallowing. Scheme of
the proposed methodology is presented in Fig. 1. To the best of our knowledge this is the
first attempt of fully automatic detection of food intake based on swallowing data from
wearable non-invasive sensors. A review of previous attempts to detect food intake such as
intake gestures based approach proposed by Junker et al in [6] and chewing based approach
proposed by Nishimura and Kuroda in [11] is presented below. It is followed by a summary
of contributions of this paper showing how it builds up on and extends the finding of our
previous works integrating them into automatic food intake detection methodology. An
extensive review of existing methodologies for automatic detection of swallowing instances
and comparison of our methodology to related work in this area is out of scope of this paper
and can be found in our previous work [16].

2. Related work
Three categories of non-invasive wearable sensors have been proposed as basis for creation
of automatic food intake detection methodologies: intake gesture sensors [6], chewing sound
sensors [11] and swallowing sensors. Activities that correspond to these sensor categories
represent a temporal description of food consumption and thus can be used to identify
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periods of food intake. Intake gestures are intentional arms and trunk movements related to
food intake.

In general, the task of gesture detection is difficult because relevant gestures occur
sporadically in a continuous stream of data while often being embedded into other, partly
arbitrary movements that are difficult to model due to their complexity and unpredictability
[6]. An approach for intake gesture detection was proposed in [6] based on data from five
inertial sensors attached to wrists (2), upper arms (2) and upper torso. This two-stage
approach combines natural partitioning pre-selection with Hidden Markov Models
classification. This approach was tested on frequently used human feeding movements of
both arms and the trunk including: using fork and knife for intake of lasagna, using spoon
for intake of cereals or soup, drinking from a cup, and intake of bread or chocolate bar using
one hand only. The data was collected from four subjects; two sessions were performed for
each subject on different days. A total of 4.7 hours of data was collected with 34.7% of the
data containing intake gestures. Average recall of 0.78 and average precision of 0.77 were
obtained for subject-specific intra-subject prediction model. No results for non-personalized
inter-subject model were reported.

The task of food intake detection based on chewing is virtually identical to the task of
detection of chewing instances since the chewing sequence represents the solid food intake
cycle. The chewing sequence consists of cyclic openings and closings of the jaw and
arbitrary tongue movements. An approach for automatic detection of chewing instances was
proposed in [11]. A wireless in-ear microphone is used to capture sound emissions generated
by chewing and transmitted by bone conduction to the ear canal. A two-staged chewing
detection algorithm first detects chew-like signals by applying the number of zero-crossings
threshold to log energy regression coefficients. Then chewing sound verification is
performed based on similarity of signals detected at the first stage to the chewing sound
models derived from the training data. The authors report high average chewing detection
accuracy of 98.7% for five food categories including chips, salad, rice, wafers and banana.
However, limited details about the validation methods are provided including only the
average number of test chews (516) and the number of training chews (100) per food
category. It is not clear how many human subjects participated in the study, whether intra- or
inter-subject model results are reported, how the data was divided into training and
validation sets, what kind of validation technique was used, etc.

Detection of food intake based in swallowing differs from detection based on chewing since,
unlike chewing, swallowing occurs sporadically and unconsciously throughout the day.
Therefore, automatic detection of swallowing instances is only the first step towards food
intake detection. Detected swallows need to be further classified as either spontaneous or
food intake swallows. Our work on creation of automatic food intake detection based on
swallowing started with the development of a non-invasive multi-modal monitoring system
including a wearable acoustic swallowing sensor – a throat microphone located over the
laryngopharynx [13, 14]. This monitoring system comprised of hardware, software and a
protocol for manual scoring of the collected data was used in a human study measuring
chewing and swallowing in 21 subjects during food intake and resting periods. Next, in [15]
we developed and validated methods for detection and characterization of food intake based
on manual swallowing scores. In particular, we showed that the instantaneous swallowing
frequency could serve as a predictor for accurate detection of food intake with an average
accuracy of 87% for 30s time windows. We also developed and validated methods for
automatic detection of swallowing instances with acoustical sensors [16] yielding 84.7%
average detection accuracy of swallowing events for intra-visit individual model. These
results suggest the potential of using swallowing frequency for automatic detection of food
intake.
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However, two crucial issues remain unresolved. First, methodology of automatic swallowing
detection was previously validated on intra-visit individual model only, i.e. training and
validation of the algorithm were performed on different segments of the same recording
rather than on separate recordings from the same or different human subjects. Such intra-
visit model can not be implemented in a MIB device as constant real-time re-training is not
feasible in free-living conditions due to the absence of a gold standard manual score.
Therefore, further validation is needed for intra- and inter-subject models which could be
preprogrammed and implemented in such a device directly. Second, the food intake
detection methodology was previously validated on gold standard manual scores only.
Validation on automatically produced swallowing scores is needed to evaluate how sensitive
the food intake detection algorithm is to errors in swallowing detection. The first
contribution of this paper is that answers both of the aforementioned questions presenting a
first fully automatic food intake detection methodology based on an acoustic swallowing
sensor and validating it for intra- and inter-subject models on a database collected from 12
subjects during food intake and resting periods. The second contribution of this paper is
utilization of PCA and a smoothing algorithm to improve automatic swallowing detection
accuracy for intra- and inter-subject models.

3. Methods
3.1. Human study

The automatic food intake detection methodology used for this paper was validated on a
dataset that is a subset of the data collected during the human study reported in [13]. A short
summary of the aspects of the original dataset that are the most relevant to the current study
is presented below.

The original subject population included 21 generally healthy volunteers, 12 males and 9
females, with different degrees of adiposity. Thirty eight percent of human subjects had
body mass index (BMI) greater than 30 (obese). Institutional Review Board approval was
obtained for the study. Subjects read and signed the informed consent form. No subjects had
dental problems that would interfere with normal food intake. Each subject participated in
four separate visits scheduled for different days. Each visit consisted of three parts: (1) a 20-
minute resting period (10 min of silent inactivity and 10 min of talking where the subject
was asked to read aloud), (2) a meal period of unlimited time to eat the meal of a fixed size,
(3) a second 20-minute resting period (10 min of silent inactivity and 10 min of talking). The
following food items were included in the meal: a slice of cheese pizza, a can of 1% fat
yogurt, an apple, and a peanut butter sandwich. The foods were selected to represent
different physical properties of the food such as crispiness, softness/hardness and tackiness.
The variability in physical properties of food ensured that the proposed methodology was
tested on a sample that is representative of the variability in the properties of everyday food.
The provided drink was clear water. All food items were to be consumed unmixed and
completely. Water was consumed separately from food. Subjects ate in silence during half of
the meals and were involved in a dialogue during the other half to evaluate the impact of a
meal-time conversation on the accuracy of swallowing detection. Additionally, a mix of
background noise was used during half of the visits to simulate realistic environments where
people may be eating. Subjects were videotaped and monitored by a multi-modal sensor
system which included a miniature IASUS NT (IASUS Concepts Ltd) throat microphone
located over the laryngopharynx. The microphone provided a dynamic range of 46 ± 3 dB
with a frequency range of 20 Hz to 8000 Hz. Microphone signals were amplified by a
custom-built pre-amplifier with a variable gain in the range 20 dB to 60 dB. The gain of the
amplifier was set experimentally to reliably capture the subtle sounds of swallowing without
saturating the amplification circuits during normal speech and fixed for the whole data
collection process. Amplified signals were recorded through a line-in input of a standard
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sound card at a sampling rate of 44100 Hz. The recordings were manually scored to mark
the boundaries of food intake periods and each swallowing instance. The scoring software
was developed to allow assignment of corresponding labels using manual review and
playback of acquired video and sensor data. To evaluate the accuracy of manual swallowing
score a multi-rater reliability study was conducted with three raters data from five out of the
21 subjects [13]. Comparing manual scores from three raters the study showed high
reliability of the manual scores with average intra-class correlation (ICC) coefficient of 0.98
obtained for scores of swallowing instances. The range of the ICC is between 0 and 1 and
high value of ICC means that there is little variation between the scores given by different
raters. This indicates a high degree of agreement between raters suggesting that manual
scores are reliable for use as a gold standard in validation of automatic swallowing and food
intake detection algorithms on a large dataset. To the best of our knowledge the 65 hour
dataset with over 10K swallows used in [13] is the largest dataset collected to date in a study
of ingestive behavior monitoring based on data from wearable non-invasive sensors. It is
also the most complex dataset with inclusion of a variety of sound artifacts and background
noises of various origins, various foods and human subjects with different degrees of
adiposity to create experimental conditions resembling those of free-living food
consumption. Out of the 84 originally collected visits, 4 visits from one subject were used
for the initial calibration of the multi-modal monitoring system and therefore discarded from
further studies. Another 10 visits had partially incomplete data and were discarded from the
dataset. All the cases of incomplete data can be traced to a single reason of operator’s error
during the data collection. The detailed description of those errors can be found in [13].
From the remaining 70 complete visits only 12 out of 20 subjects had complete datasets for
all four visits. These 12 subjects comprise the dataset used to validate the methodology
proposed in this paper. This derived dataset is large (44.1 hours with a total of 7305
swallows) and as complex as the original dataset since it includes the same variety of data
for the population with similar average degree of adiposity. Namely, the average BMI for
the derived dataset is 29.2±6.9 compared to 29±6.4 of the original dataset. Average intra-
visit swallowing detection accuracy calculated for the derived dataset is 96.7% (per-epoch)
and 85.1% (per-swallow) compared to 96.8% and 84.7% respectively obtained for the
original dataset. This indicates that the derived dataset is a representative subset of the
original dataset.

3.2. Automatic detection of swallowing instances
The methodology for automatic detection of swallowing instances with acoustical sensors
for this paper is based on the methods proposed in [16] with two major improvements:
preprocessing of mel-scale Fourier spectrum (MSFS) features using principal component
analysis (PCA) and postprocessing of the automatically detected swallowing instances using
a smoothing algorithm. A summary of the original methodology and description of proposed
improvements are presented below.

The original methodology was based on MSFS for time-frequency representation and
support vector machines (SVM) for automatic detection of characteristic sounds of
swallowing. First, the sound stream was split into a series of overlapping epochs and mel-
scale Fourier transform was applied to each epoch. Second, the resultant epoch feature
vectors were merged for a number of adjacent epochs to produce time-lagged feature vectors
accounting for time-varying structure of a swallow. Assuming a feature vector fi was formed
for each epoch a time-lagged feature vector fi′ was produced by merging feature vectors of
the 2*K+1 adjacent epochs: fi′ = {fi−K, …, fi, …, fi+K}. These time-lagged vectors were
used as inputs for training and validation of the SVM classifier using the Gaussian radial
basis kernel function. Near-optimal values for the following parameters: epoch duration of
1.5s, epoch step size of 0.2s, eighth MSFS decomposition level, number of lags K equal to
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1, SVM misclassification penalty parameter equal to 10 and Gaussian kernel width
parameter equal to 0.05 were determined using a grid search procedure in our previous work
and used in the current study [16].

Binary class labels assigned to each 1.5s epoch for training and prediction of automatic
score by SVM were produced in the following way: if any part of the epoch was scored
manually as belonging to the swallow class then the epoch label was set to ‘1’ (swallow
epoch), otherwise it was set to ‘−1’ (non-swallow epoch). These labels represent accuracy of
the classifier on epoch level and do not correspond well to the accuracy of detection of
swallowing events. To evaluate the classifier swallowing detection accuracy gold standard
manual and automatically produced epoch scores were used to identify the swallowing
instances consisting of multiple epochs. Then the numbers of true positive (T+), false
positive (F+), false negative (F−), and true negative (T−) detections were calculated. A
swallow detection was considered a true positive if both manual and automatic scores
contained continuous sequences of swallow epochs intersecting at one or more epochs or on

the sequence boundary. These detections were later used to calculate sensitivity ( ),

specificity ( ), and prevalence ( ) to further calculate the overall

accuracy ( ) of swallow detection as the weighted average of sensitivity and
specificity, where sensitivity is weighted by prevalence and specificity is weighted by the
complement of prevalence [1].

The methodology was tested on the original dataset containing 70 visits from 20 subjects.
Each visit was divided into 55 equal segments with an average duration of 1 minute. Three-
fold cross-validation was performed with two folds (two of every three consecutive
segments) used for training and one fold used for validation at each step. An average
detection accuracy of 96.8% for epochs and 84.7% for swallowing instances was obtained
for such intra-visit model [16]. Analysis of obtained results also revealed that detection
accuracy seemed not to be dependent on subject’s BMI and had substantial tolerance to
sound artifacts resulting from food intake, intrinsic speech and background noise. Complete
details on the methodology including justification of selection of feature extraction and
classification mechanisms and assessment of near-optimal parameters can be found in [16].

As a first proposed improvement to the swallowing detection methodology PCA was used
for preprocessing of MSFS features. The combination of two machine learning algorithms:
supervised SVM and unsupervised PCA is widely used in biomedical engineering [4, 12].
PCA is a multivariate non-parametric statistical technique that when applied to a number of
possibly correlated variables reveals the internal structure of the data in a way that best
explains its variance and to transform the data into a new set of orthogonal variables called
principal components which are linear combinations of the original variables. The first
principal component accounts for as much of the variance in the original data as possible,
and each succeeding component accounts for as much of the remaining variance as possible.
A detailed description of the PCA theory is out of the scope of this paper and can be found
in [5]. Measuring variance along each principal component provides information on the
relative importance of each component. Therefore, PCA is often used for dimensionality
reduction of feature vectors with a smaller number of principal components being used
compared to the original feature vector dimension. Since kernel methods like SVM are
tolerant to high dimensionality of features we used PCA with the maximal number of
principal components not losing any data from the original dataset.
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As the second proposed improvement, a postprocessing smoothing algorithm was used to
refine the automatic score produced by the SVM. Refinement of the automatic epoch score
by a smoothing algorithm was performed in two steps. Two predefined thresholds whose
optimal values were obtained using grid search were used. First, labels for short segments,
of up to a first threshold, of a predefined number of epochs in duration that were
automatically marked as ‘−1’ (non-swallow epochs) but were surrounded by epochs marked
as ‘1’ (swallow epochs) on both sides were reset to ‘1’. This postprocessing step was needed
to correct the situations in which a single swallow of more than two epochs may be split into
several parts by a misclassified epoch. Second, labels for short segments, of up to a second
threshold, of a predefined number of epochs in duration that were automatically marked as
‘1’ but were surrounded by epochs marked as ‘−1’ on both sides were reset to ‘−1’. This
step eliminated the cases where accidental epochs were incorrectly classified as swallows.
An illustration of the automatic score refinement with the smoothing algorithm is presented
in Fig. 2.

The results of testing of both the original and improved swallowing detection techniques as
a part of a food intake detection methodology in intra- and inter-subject models are
presented below.

3.3. Automatic detection of food intake
Our food intake prediction approach assigns binary labels ‘intake’ or ‘no intake’ to
predefined length time windows based on the average instantaneous swallowing frequency
(ISF) calculated for the current window. The ISF is the inverse of the time between each two
consecutive swallows and is expressed in swallows per minute: ISFi

j = 60/(ti − ti−1) (sw/
min), where ti is the temporal location of the swallow occurrence in seconds for swallow i =
2,…, Nj and Nj is the total number of swallows of the current window j. A higher ISF
indicates shorter time between two consecutive swallows.

Selection of the intake detection window size defines the temporal resolution. As higher
frequencies of swallowing indicate the presence of food ingestion the window should be
long enough to reliably detect an increase in the number of swallows associated with food
consumption compared to spontaneous swallowing, i.e. the smallest window size is limited
by the minimal detectable change in swallowing frequency. At the same time the window
should be short enough to detect such short food consumption events as snacking. In [15] we
estimated the optimal trade-off between detection accuracy and temporal resolution to be a
time window length of 30s. The same window length was used for the current study.

Detection of food intake using swallowing frequency as a predictor was performed using a
floating average prediction model in the following way: first, a decision threshold

 is calculated as a product of the average ISF of the training set
multiplied by a scaling factor α where M is the number of time windows in the training set
and j = 1,…,M. In this way a decision threshold is a function of the average ISF. Food intake
labels are determined for each time window in the training set: if the average ISF for the
current window is greater than or equal to the decision threshold then the current window is
labeled ‘intake’:
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Training is repeated for a range of scaling factors α and the optimal scaling factor is selected
based on the highest prediction accuracy achieved for the training set and further used for
intake detection on the validation set. Food intake label determination for the validation set
is determined similarly as on the training set using the optimal scaling factor to obtain the
decision threshold T. Complete details on this approach can be found in [15] where a similar
model was proposed and validated with an average accuracy of 87% obtained on the manual
scores from the dataset described in [13].

3.4. Detection models
The validation of the proposed automatic food intake detection methodology based on
swallowing sounds was performed for intra- and inter-subject models (as opposed to intra-
visit swallowing detection model previously used in [16]). Descriptions of both models are
presented below.

Individual (subject-specific) intra-subject food intake detection model was built separately
for each subject so models for different subjects were independent from each other. Only
data from the individual subject was included in each intra-subject model. Four-fold cross-
validation was used with each of the four visits per subject used as a fold. At each cross-
validation step both swallowing detection and food intake detection were performed with
three visits of a subject used for training and the remaining one used for validation. Namely,
each cross-validation step consisted of:

• Swallowing detection stage: acoustical sensor data and manual swallowing scores
for three training visits were used to produce the automatic swallowing score for
the validation visit.

• Food-intake detection stage: manual swallowing and food intake scores for three
training visits were used to obtain an optimal scaling factor that was used for intake
detection on the validation visit using the automatic swallowing score from the
previous stage.

• Accuracy assessment: manual food intake score for the validation visit was used as
the gold standard to calculate the accuracy of food intake detection.

Group (non-personalized) inter-subject food intake detection model was built for the entire
population. Twelve-fold cross-validation was used with each fold representing all four visits
of a certain subject. At each cross-validation step all the data from eleven subjects was used
for training and all the data from the remaining one subject was used for validation. Namely,
each cross-validation step consisted of:

• Swallowing detection stage: acoustical sensor data and manual swallowing scores
for data from eleven subjects were used to produce the automatic swallowing
scores for data from the remaining subject.

• Food-intake detection stage: manual swallowing and food intake scores for data
from eleven subjects were used to obtain an optimal scaling factor that was further
used for intake detection on the data from the remaining subject using the
automatic swallowing scores produced at the previous stage.

• Accuracy assessment: manual food intake scores for data from the validation
subject were used as the gold standard to calculate the accuracy of food intake
detection for all of the subject’s four visits.
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4. Results
4.1. Intra-subject food intake detection model

The results of automatic detection of swallowing and food intake for intra-subject model
with and without preprocessing with PCA and postprocessing with the smoothing algorithm
are presented in Table 1. Distributions of per-subject swallowing and food intake detection
accuracies versus the subject’s BMI and corresponding linear fits of the data are presented in
Fig. 3 for the case of the highest average food intake detection accuracy obtained for the
intra-subject model highlighted with bold in Table 1. In Table 1 per-epoch and per-swallow
swallowing detections correspond to classifier detection accuracies on epoch and
swallowing instance levels respectively.

4.2. Inter-subject food intake detection model
The results of automatic detection of swallowing and food intake for inter-subject model
with and without preprocessing with PCA and postprocessing with the smoothing algorithm
are presented in Table 2. Distributions of per-subject swallowing and food intake detection
accuracies versus the subject’s BMI and corresponding linear fits of the data are presented in
Fig. 4 for the case of the highest average food intake detection accuracy obtained for the
inter-subject model highlighted with bold in Table 2.

5. Discussion
As can be seen from Tables 1 and 2 the highest average food intake detection accuracies of
80.3% and 75.2% were obtained for intra- and inter-subject models respectively. Linear fits
for distributions of per-subject food intake detection accuracy versus subject’s BMI are
presented in Fig. 3 and Fig. 4. While the linear fit for intra-subject model has a negative
slope of less than 0.01 the one for inter-subject model has a negative slope of 0.62 with
accuracy decreasing with an increase of BMI. Still, even for the volunteer with the highest
BMI in this study (BMI of 42.1, severe obesity) the inter-subject food intake detection
accuracy was 70.6% suggesting that the proposed food intake detection approach is suitable
for monitoring of obese individuals even though more data is needed for conclusive proof.

It can be seen from Tables 1 and 2 that the effect of feature preprocessing using PCA was
different for intra- and inter-subject models. For intra-subject model there was an
improvement in the detection accuracy while for inter-subject model there was none. We
believe that this difference may be attributed to the difference in PCA application for the
two models. This difference stems from computational burden of the covariance matrix
calculation needed to compute the principal components. Dimensionality of the covariance
matrix is equal to the squared number of observations or, in our case, epochs in the dataset.
The covariance matrix is calculated for the training set and is used to calculate the matrix of
eigenvalues which is further used to project the validation data onto the new orthogonal
basis. For the intra-subject model the training set is limited to the three visits from a
particular subject and the associate covariance matrix can be calculated directly. For inter-
subject model the training set includes a total of 44 visits from eleven subjects. With over
fourteen times the calculations a complete covariance matrix is infeasible. Therefore, to
apply a similar methodology in both cases, subsets are selected randomly from the training
set and PCA training is performed on these subsets only. The largest feasible number of
visits to use as a subset (three) was determined empirically. Representativeness of such a
small subset is very limited. Allowing a better representation of the training set data in
covariance matrix for inter-subject model could potentially result in increased food intake
detection accuracy.
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It can also be seen from Tables 1 and 2 that while in the case of intra-subject model
application of PCA increased both sensitivity and specificity at the stage of swallowing
detection, in the case of inter-subject model sensitivity decreased and specificity increased.
The latter increased the existing imbalance between sensitivity and specificity for inter-
subject model along with an underlying imbalance between false negative and false positive
swallowing detections. Even though food intake detection may offer some tolerance to
errors in automatic swallowing detection due to food intake detection being based on time
intervals containing multiple swallows such tolerance depends on the balance between false
negative and false positive swallowing detections partially cancelling each other. Therefore,
even though the highest overall swallowing detection accuracy for inter-visit model was
achieved with application of the PCA the highest overall food intake detection accuracy was
obtained for the case of the best balance between sensitivity and specificity of swallowing
detection. Further investigation is needed for more precise evaluation of the effect of
automatic swallowing detection errors on accuracy of food intake detection.

The postprocessing smoothing algorithm improved the detection accuracy for both models
as can be seen in Tables 1 and 2. The optimal thresholds of number of epochs for swallow
and non-swallow gaps were equal to 5 and 0 respectively. The optimal thresholds were
determined with grid search and suggest that situations where not all epochs belonging to a
single swallow were classified correctly created additional false positive swallow detection
errors.

Finally, from Tables 1 and 2 and section 3.1 we can see that even with the proposed
improvements the highest per-epoch and per-swallow swallowing detection accuracies for
intra-and inter-subject models are lower than the ones obtained with training and validation
performed on each visit separately as in [16]. Several factors could be contributing to
satisfactory generalization capability of swallowing detection including intra- and inter-
subject variability of swallowing sounds. Further investigation is needed to determine the
sources.

While the swallowing based automatic food intake detection approach proposed in this
paper can not be directly compared with the intake gesture and chewing based approaches
proposed in [6] and [11] respectively, we can compare the validation procedure to the one
used in [6]. In [6] results comparable to the ones obtained in our study are reported for
subject-specific intra-subject model validated on a dataset with a total of 784 intake gestures
compared to a total of 7305 swallows in our study. No results for non-personalized inter-
subject model were reported in [6] like our report. In [11] very limited detail is provided on
the validation procedure limiting the interpretation of the reported high average detection
accuracy. Furthermore, the proposed swallowing based approach may be less prone to some
of the limitations inherent in intake gesture and chewing based approaches. Namely,
limitations of intake gesture approach include: first, not all food items require intake
gestures, e.g. a high-caloric milkshake can be consumed using a straw. Second, arm
movements to the head that are not related to food intake, e.g. brushing teeth, smoking, etc,
may result in misclassifications. Third, high intra-subject variability of intake gestures is
reported in [6] caused by differences in size and consistency of food pieces and temporal
aspects such as changes in food temperature and natural satiety subjects were developing
during the intake sessions. Finally, even though inter-subject variability of intake gestures
has not been evaluated there may be significant differences due to differences in human
eating behaviors, e.g. eating with chopsticks versus cutlery. Chewing and swallowing seem
to be less related to personal eating behaviors and, therefore, may offer smaller intra- and
inter-subject variability for automatic detection of food intake. However, the usability of
food intake detection based on chewing sensors is limited to solid foods since there is little
to no chewing present during consumption of liquid and certain semisolid (yogurt, pudding,
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etc) food items. This limitation makes chewing sensors more feasible for sensor fusion
rather than for an independent food intake detection sensor. Furthermore, the absence of
spontaneous chewing throughout the day as compared to, for example, swallowing gives no
indication whether the MIB device based on the chewing sensor is being worn or not making
the device vulnerable to intentional misreport of food intake. Based on these actual and
potential limitations of intake gesture and chewing based approaches we can conclude that
swallowing sensor may be the most promising option for creation of a single sensor MIB
device even though it also has several actual and potential limitations. First potential
limitation is situations where swallowing rate is elevated for other reasons than food intake,
e.g. mental strain, emotional reactions, etc. For example, in a study conducted by Cuevas et
al. on data from 38 generally healthy undergraduates pleasant low arousal, neutral, or
aversive high arousal condition all resulted in significantly increased spontaneous
swallowing rates with means of 7.9 ± 1.9 (standard error), 15.8 ± 2.4, and 23.7 ± 3.6
swallows per 30 min, respectively [3]. In this case even the high arousal condition resulted
only in 23.7 ± 3.6 swallows per 30 min swallowing rate corresponding at most one swallow
per minute. At the same time in our study on using swallowing frequency as predictor of
food intake we have found that the Bayes optimal threshold which defined an optimal
decision boundary between the classes of “food intake” and “no food intake” was equal to 4
swallows per minute [15], i.e. it was at least four times higher than spontaneous swallowing
rate during high arousal emotional state. This is an indication that alteration of spontaneous
swallowing frequency due to emotional state is unlikely to cause problems to our food
intake detection methodology. Further investigation is needed to evaluate the impact of other
potential causes of elevated swallowing rate on food intake detection accuracy. Second
potential limitation of an approach based on swallowing sensor is related to differences in
voluntary swallowing rates for different individuals. These differences are part of our
motivation to evaluate the non-personalized inter-subject model in this work and to compare
its performance to performance of the subject-specific intra-subject model. Even though the
performance for the former model was worse the difference between average food intake
detection accuracies for intra- and inter-subject groups (80.3% and 75.2% correspondingly)
was not significant (p = 0.093, two-sample t-test for comparison and Ryan-Joiner test for
normality of sample distributions) suggesting that aforementioned differences are not
rendering the proposed approach useless. Analysis of larger subject populations for longer
study durations is needed for a conclusive proof and is planned for future work on this
project. Most importantly, third limitation is related the effect of sound artifacts and
background noises on accuracy of acoustical swallowing detection and therefore accuracy of
food intake detection. In our previous work we have assessed this effect on intra-visit
swallowing detection accuracy where the highest accuracy was observed for quiet (no
talking or reading aloud) periods of no food intake (88%) and the lowest one was observed
for periods of food intake combined with talking and background noise (82.9%) [16]. These
results suggest that artifact sounds may negatively impact the detection accuracy. It was not
feasible to perform a similar assessment in current study since cross-validation for both
intra- and inter-subject models involved grouping together subject visits with and without
artifacts and noise. Overall, further investigation of this effect is needed with application of
noise cancellation techniques having the potential to improve the detection accuracy.
Finally, further comparison between different sensor modalities needs to be drawn including
aspects other than detection accuracy such as comfort, acceptance, scalability, etc.
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Highlights

• Automatic detection of food intake based on swallowing data from wearable
non-invasive sensor.

• 44.1 hours of data from 12 subjects with a total of 7305 swallows.

• Average detection accuracies of >80% and >75% for individual and group
models respectively.

• Detection accuracies comparable for obese and lean subjects.

• Principal component analysis and smoothing algorithm improve swallowing
detection accuracy.
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Fig. 1.
Scheme of the two-stage automatic food intake detection
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Fig. 2.
Refinement of the automatic epoch score by a smoothing algorithm in two steps correcting
the situations where: a) a single swallow is split into several parts by a misclassified epoch;
b) accidental epochs are incorrectly classified as swallows
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Fig. 3.
Intra-subject model: distribution of accuracies for per-epoch and per-swallow swallowing
detection and food intake detection versus subject’s BMI with corresponding linear fits
plotted for the case of the highest average food intake detection accuracy highlighted with
bold in Table 1
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Fig. 4.
Inter-subject model: distribution of accuracies for per-epoch and per-swallow swallowing
detection and food intake detection versus subject’s BMI with corresponding linear fits
plotted for the case of the highest average food intake detection accuracy highlighted with
bold in Table 2
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Table 1

Effects of preprocessing (PCA) and postprocessing (smoothing algorithm) on average accuracy for intra-
subject model

Intra-subject model

Average accuracy [Sensitivity, Specificity] (%)

Baseline Baseline + preprocessing Baseline + postprocessing
Baseline +

preprocessing +
postprocessing

Per-epoch 95.1 95.7 95 95.7

swallowing detection [39.3, 98.7] [42.6, 99.2] [40.7, 98.5] [44, 99]

Per-swallow swallowing detection 74.5 [66.2, 81.7] 79.2 [72.5, 84] 75.9 [64.9, 84.8] 80.4 [71.3, 87]

Food intake detection 76.4 [68.2, 79.2] 75.8 [71.8, 77.5] 77.5 [68.5, 80.4] 80.3 [71.4, 84.2]
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Table 2

Effects of preprocessing (PCA) and postprocessing (smoothing algorithm) on average accuracy for inter-
subject model

Inter-subject model

Average accuracy [Sensitivity, Specificity] (%)

Baseline Baseline + preprocessing Baseline + postprocessing
Baseline +

preprocessing +
postprocessing

Per-epoch swallowing detection 91.5 [36.3, 95.2] 93.5 [25, 98] 90.9 [39, 94.3] 93.3 [26.5, 97.8]

Per-swallow swallowing detection 64 [62.1, 69.6] 65.3 [52.1, 72.9] 66.4 [60, 73.1] 66.7 [51.5, 75.6]

Food intake detection 74.2 [70.7, 75.7] 59.8 [66.1, 57.5] 75.2 [67.9, 78.5] 60.1 [64.7, 58.1]
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