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Abstract

Predicting miRNAs is an arduous task, due to the diversity of the precursors and complexity of enzyme processes. Although
several prediction approaches have reached impressive performances, few of them could achieve a full-function recognition
of mature miRNA directly from the candidate hairpins across species. Therefore, researchers continue to seek a more
powerful model close to biological recognition to miRNA structure. In this report, we describe a novel miRNA prediction
algorithm, known as FOMmiR, using a fixed-order Markov model based on the secondary structural pattern. For a training
dataset containing 809 human pre-miRNAs and 6441 human pseudo-miRNA hairpins, the model’s parameters were defined
and evaluated. The results showed that FOMmiR reached 91% accuracy on the human dataset through 5-fold cross-
validation. Moreover, for the independent test datasets, the FOMmiR presented an outstanding prediction in human and
other species including vertebrates, Drosophila, worms and viruses, even plants, in contrast to the well-known algorithms
and models. Especially, the FOMmiR was not only able to distinguish the miRNA precursors from the hairpins, but also
locate the position and strand of the mature miRNA. Therefore, this study provides a new generation of miRNA prediction
algorithm, which successfully realizes a full-function recognition of the mature miRNAs directly from the hairpin sequences.
And it presents a new understanding of the biological recognition based on the strongest signal’s location detected by
FOMmiR, which might be closely associated with the enzyme cleavage mechanism during the miRNA maturation.
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Introduction

MicroRNAs (miRNAs) are ,22-nucleotide RNAs derived from

pri-miRNA transcripts through two important enzyme processes,

where the first process is recognized and cut by Drosha and

DGCR8 for pre-miRNA formation from pri-mRNA, and the

second is by Dicer for miRNA maturation from pre-miRNA [1,2],

but the recognition mechanism is still obscure [2–5]. Although

many miRNAs have been identified in some species by

experimental method, it is believed that there are still a large

number of miRNAs uncovered, including those with low

expression or in other species [6,7]. Therefore, computational

prediction is regarded as a rapid and effective way to solve these

problems in contrast to the hard experimental work, however, the

diversity of the precursors and complexity of enzyme processes

bring challenge for computational approaches to distinguish the

real miRNAs from the pseudo-miRNA hairpins with similar stem-

loops.

To date, there are mainly four kinds of computational

approaches have been tried [8]: (1) A homology-based approach,

such as miRNAlign [9], aligns the secondary structure of pre-

miRNAs to detect miRNAs. (2) A filter-based approach, such as

MIRScan [10] and MiRSeeker [11], picks out pre-miRNAs from

an initial set of candidate stem-loops based on GC content,

minimum free energy (MFE) and structural filters. (3) A target-

centered approach depends on the highly conserved motifs in 39-

UTRs [12]. (4) Machine learning approaches include support

vector machine (SVM), hidden Markov model (HMM) and naı̈ve

Bayes classifier (NBC), such as Triplet-SVM [6], MiPred [13],

miRank [14], CID-miRNA [15], HHMMiR [16], CSHMM [17]

and MatureBayes [18]. However, the first three approaches are

poor to identify new miRNAs across species lack of homologies.

Although the machine leaning approaches achieve satisfactory

performance in several species, they are generally limited into a

single-function prediction, for instance, either only predicting

precursors from hairpins [6,13–17] or miRNAs from precursors

[18].

In this study, based on the secondary structure pattern of

miRNA precursors, we try to find out a common structural feature

associated with miRNA formation, and describe a new miRNA

predictor by using a fixed-order Markov model in order to realize

a full-function recognition of mature miRNA directly from the

sequence segments with similar stem-loop hairpin across species.

Materials and Methods

Data Preparation
The sequences of miRNAs companied with their precursors

were downloaded from miRBase database (release 16) [19,20],

containing 1046 sequences from human, 6746 from vertebrates,

580 from worms, 235 from viruses and 3052 from plants. Among

them, 809 human miRNA sequences were randomly selected out
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as the positive training set (D1), the remaining 237 human

sequences and all of those from other species as positive test set.

On the other hand, there were 8494 human pseudo precursors

and 754 ncRNAs obtained from microPred website [6,21], where

5890 pseudo ones and 551 ncRNAs were randomly selected out as

negative training set (D2), and the remaining as negative test set.

Based on these data, the model’s parameters would be trained only

in part of human sequences (D1 and D2), but be estimated in

human itself and all other species.

Construction of the Stem-bulge-gap Notation
For this model study, we established a stem-bulge-gap notation

to describe the secondary structure of hairpin. Figure 1 illustrated

the construction process of the notation, at first, the dot-bracket

notation was produced by RNAfold [22,23], then converted to a

stem-loop structure and finally converted into the stem-bulge-gap

notation. Moreover, to avoid the noise from the stem-branches, we

appointed the longest stem as the main stem, and treated other

stem-branches into loops, bulges or gaps.

The Establishment of a Fixed-order Markov Model for
miRNA Recognition

A modified fixed-order Markov model was employed to explore

the secondary structure pattern of miRNA on the stem-bulge-gap

notation. According to the style of Begleiter [24] and Shmilovici

[25], we let S be a finite alphabet of size DSD. In the case of this

paper S~fo,D,!, : ,x,-g and DSD~6. To consider a sequence

xn
1~x1x2 � � � xn where xi[S was the symbol at the position i, with

1ƒiƒn in the sequence and xixiz1 was the concatenation of xi

and xiz1. Based on the training set xn
1, a model parameter Pr was

assigned as the probability of the next symbol given the position

and previous context. For a context s[S� where the S� represents

a fixed length of context set, the learner generated a conditional

probability distribution Pr(xi Ds,i) for each symbol xi[S. For

variable-order Markov (VOM) model estimating conditional

distribution of the Pr(xi Ds) with a variant context length DsDƒD,

we proposed the conditional distribution with a fixed length

DsD~D, as a special case of the VOM model.

To calculate the probability of the model, the count Nxi
(s,i)

denoted the number of occurrences in which symbol x in position i

following context s in the training sequence. The conditional

probability was defined as

Pr(xi Ds,i)~
Nxi

(s,i)z1=2

mzDSD=2

Where m denoted the number of the training sequences. Once the

conditional probability distribution was estimated, the probability

of a sequence for a given model could be calculated by

P(x)~Pr0(x1 � � � xD) P
n

i~Dz1
Pr(xi Dxi{D � � � xi{1,i)

~ P
n

i~Dz1
Pr(xi Dxi{D � � � xi{1,i)

Where Pr0(x1 � � � xD) was the occurrence probability of the initial

context, and we let it be 1. To distinguish pre-miRNAs from other

hairpin sequences, a True model was constructed to represent true

pre-miRNA and a False model for pseudo pre-miRNA. Then each

stem-bulge-gap sequence x was scored by:

log-odds-ratio(x)~ log
P(xDTrue)

P(xDFalse)

~
Xn

i~Dz1

log
Prz(xi Dxi{D � � � xi{1,i)

Pr{(xi Dxi{D � � � xi{1,i)

~
Xn

i~Dz1

log R

To handle events in different level of countsNxi
(s,i), the

calculation of R was defined asM

R~

1, Nz
xi

(s,i)~0 &N{
xi

(s,i)~0

(0:5=m{)=Pr{(xi Ds,i), Nz
xi

(s,i)~0 &N{
xi

(s,i)w0

Prz(xi Ds,i)=(0:5=mz), Nz
xi

(s,i)w0 &N{
xi

(s,i)~0

Prz(xi Ds,i)

Pr{(xi Ds,i)
, Nz

xi
(s,i)w0 &N{

xi
(s,i)w0

8>>>>><
>>>>>:

Figure 1. Illustration of the construction of the stem-bulge-gap notation. In the stem-bulge-gap notation at the bottom line, the symbols of
‘|’, ‘!’ and ‘:’ represent respectively the base pair of ‘CG’, ‘AU’ and ‘GU’, the symbols of ‘o’, ‘x’ and ‘-’ represent respectively the loop, bulge and gap. In
the asymmetric bulges, the symmetric part is indicated with ‘x’ and the asymmetric part with ‘-’.
doi:10.1371/journal.pone.0048236.g001

MicroRNA Prediction Using FOM Model

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e48236



Another similar FOM model were used for mature miRNA

strand identification. StrPr, like Pr, was assigned as the

probability of strands given the previous context of stem-bulge-

gap sequence and position.

StrPr(stri Ds,i)~
Nstri

(s,i)P
stri
0[STR�

Nstri
0 (s,i)

Where str was a strand symbol, STR~f50,30,bothg was alphabet

of strands and str[STR, the count Nstri
(s,i) denoted the number

of occurrences in which strand symbol str in position i following

context s. And the strand probabilities of a stem-bulge-gap

sequence were calculated by

StrP(strDx)~ P
n

i~Dz1
StrPr(stri Dxi{D � � � xi{1,i)

The str[STR with maximum value of StrP(strDx) would be the

strand of the sequence x.

Feature Selection
In this study, thirty-six structure features from the previous

studies were concerned about as well [21,26–28]. Out of them,

only three MFE-related features (MFEI1 [27] MFEI2 [28] MFEI4

[21]) were found be helpful to improve performance of FOM in

certain level. Based on a binary logistic regression analysis, the

coefficients (MFEI1: 20.209, MFEI2: 0.034, MFEI4: 1.679 and

Const: 213.686) were adopted.

Pipeline for the Prediction of miRNA
According to the above model definition, we constructed a

miRNA predictor with the pipeline:

(1) Data preparation. All the hairpins were converted into

the stem-bulge-gap notation for the model computation. The

24 bp stem-bulge-gap segments covering the mature miRNA in

precursors of D1 dataset, and the same size segments sliding with

1 bp step size in pseudo miRNA precursors of D2 were used for

calculating model parameters.

(2) Model training. A set of continuous FOM scores were

calculated in a window size of 24 bp sliding on each hairpin from

loop to tail with 1 bp step size, and three MFE-related features

were added into FOM score as FOM plus score (FOM plus score

= FOM score+506Feature score) for improving the signal. After

that, the best FOM plus score was screen out from the first peak

followed by a valley of at least 5 bp size. Then one segment with

the best score was screened out in each hairpin for judgment,

meanwhile, the strand information (59, 39 or both) where miRNA

located was collected as well. For the training dataset, a threshold

of FOM plus score was chosen according to the best classification.

(3) miRNA judgment. The screened segment was confirmed

as the mature miRNA region, if its FOM plus score reached the

threshold. Finally, the miRNA strand was figured out by the

highest probability of strand emergence in the FOMmiR

predictor.

Figure 2. Distribution of the signal scores in positive and negative datasets.
doi:10.1371/journal.pone.0048236.g002

Figure 3. Receiver Operating Characteristic Curve of FOMmiR
predictor.
doi:10.1371/journal.pone.0048236.g003
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Assessment of Prediction System
Several indexes were used to assess the performance of the

model: Sensitivity (Sen), Specificity (Spe) [7], and Accuracy (Acc).

Average sensitivity was measured by 5-fold cross-validation on a

positive dataset.

Sen~
TP

TPzFN

Spe~
TN

TNzFP

Acc~
TPzTN

TPzFPzTNzFN

Results

Evaluation of the Model Parameters
As described in Methods, we designed a fixed-order Markov

model for miRNA identification, known as FOMmiR. Firstly, the

fixed context’s length D was been estimated based on the

performance of positive and negative signal discrimination. The

third order (D = 3) was much stable and chosen into FOMmiR

predictor due to a consistent classification between the training

and test dataset. Although the third-order Markov model achieved

a satisfactory performance with independent FOM score

(Figure 2A), the three MFE-related features were added as FOM

plus score in order to improve the accuracy in certain level

(Figure 2B). Then, Receiver operating characteristic curve (ROC)

was drawn for threshold judgment (Figure 3). While the threshold

value set to 11, the predictor got the best classification in the

training dataset with 91.47% sensitivity (Sen), 91.07% specificity

(Spe) and 91.11% accuracy (Acc).

Evaluation of the Model Stability Using Five-fold Cross
Validation

In order to examine the stability of FOMmiR predictor, the

classification performance was evaluated with 5-fold cross

validation. The result showed that the FOMmiR still achieved a

high performance with 91.4762.52% sensitivity, 90.8460.59%

specificity and 90.9160.70% accuracy, and which was very close

to the above performance in the whole training dataset. Therefore,

it suggested that this predictor was quite stable.

Performance of miRNA Precursor Classification
To evaluate the performance of pre-miRNA classification, a

comparative test was performed among different approaches

against the independent test dataset composed of 273 real pre-

miRNAs and 2807 pseudo pre-miRNAs. Despite some ap-

proaches not available any longer, we were fortunate to

compare FOMmiR with Triplet-SVM [6], MiPred [13], CID-

miRNA [15] and CSHMM [17], among which only CSHMM

could be retrained with D1 and D2 dataset. Although the

different training conditions of other three approaches might

bring some small deviations to the comparative evaluation, at

least the result displays that FOMmiR was able to achieve a

satisfactory prediction as well as them, or even better (Table 1).

Furthermore, the FOMmiR not only identified the real pre-

miRNA, but also indicate the mature miRNA position that the

others were unable to do. Given these, the FOMmiR exhibited

an outstanding discriminatory power.

Performance of Cross-species Classification
Cross-species performance is very important for a model trained

in known species to predict new species, so it requests the model

should hold a common structure feature for miRNA recognition.

Here we tested the FOMmiR prediction rate in four species with

the parameters trained only on human dataset. Moreover, a

comparative test were performed with the four well-known

approaches. The result showed that FOMmiR kept high

sensitivities in the specie of vertebrates, worms and viruses, even

plants (Table 2). It suggested that the FOMmiR model was reliable

across species, and the FOMmiR parameters contained the basic

recognition feature of the miRNA.

Performance of Locating Mature miRNA Region
At the same time as the FOMmiR identified the pre-miRNA

from the candidate hairpins, the mature miRNA region had been

located. we compared its localization performance with that of

MatureBayes. The MatureBayes uses naive Bayes algorithm to

identify the mature miRNA from pre-miRNA, which has

significantly better performance than the two existing approaches

with same function, ProMiR and BayesMiRNAfind [18]. For a

large number of random test set from different species, the

comparative test was performed between FOMmiR and Mature-

Bayes. The distances were calculated between the actual mature

miRNA and the predicted mature miRNA. It was obvious in

Figure 4 that the localization performance of FOMmiR was close

to that of MatureBayes.

Performance of Identifying Mature miRNA Strand
Identifying the mature miRNA strand from the complementary

strands seems to be very difficult, few of approaches was reported

Table 1. The performances of pre-miRNA prediction.

Method Year Algorithm Sen Spe Acc

Triplet-SVM 2005 Support vector
machine

72.15% 91.09% 89.62%

MiPred 2007 Random Forest 93.25% 6.59% 13.41%

CIDmiRNA 2008 Stochastic context
free grammar

75.95% 96.29% 94.71%

CSHMM 2010 Context sensitive HMM88.19% 71.46% 72.77%

FOMmiR 2012 Fixed order Markov
model

89.45% 91.27% 91.13%

doi:10.1371/journal.pone.0048236.t001

Table 2. Comparison of sensitivity across different species.

Method
Vertebrates
(6746)

Plants
(3052)

Drosophila
(1205)

Worms
(580)

Viruses
(235)

Triplet-SVM 75.26% 65.27% 85.39% 85.00% 65.11%

MiPred 92.48% 47.02% 93.94% 95.52% 96.60%

CIDmiRNA 75.85% 73.23% 85.81% 86.90% 70.64%

CSHMM 93.60% 91.43% 95.68% 97.76% 91.06%

FOMmiR 91.76% 93.55% 97.18% 97.07% 89.79%

doi:10.1371/journal.pone.0048236.t002
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Figure 4. Distribution of distances between the real and predicted mature miRNA region.
doi:10.1371/journal.pone.0048236.g004

Table 3. Quantitative distribution of miRNA strands in
positive training dataset.

Predicted

Strand 5p 3p both

True 5p 124 68 25

3p 0 269 7

both 0 40 207

doi:10.1371/journal.pone.0048236.t003

Table 4. Quantitative distribution of miRNA strands in
positive test dataset.

Predicted

Strand 5p 3p both

True 5p 14 45 17

3p 0 54 15

both 1 40 26

doi:10.1371/journal.pone.0048236.t004
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to conquer it. Nevertheless, in this study, we extracted the strand

information where the mature miRNA located and defined it as

another FOM parameter, so the miRNA stand could be checked

out from the miRNA region. The result displayed that the strand-

check accuracy reached to 86.5% in positive training dataset

(Table 3) and 63.7% in the positive test dataset (Table 4).

Discussion and Conclusions

In recent years, a lot of algorithms and models have been tried

to predict pre-miRNA or mature miRNA. The excellent ones are

always concerned about, not only because it could predict new

miRNA, but also because it might interpret the enzyme cleavage

mechanism. Although the single-function prediction seems to be

close to success, new generation of full-function prediction is very

expected.

From the view of system biology, the biological processes always

employ the parsimony principle to obtain the best energy

efficiency rate. So we suppose that both Drosha/DGCR8 complex

and Dicer might focus on a similar structure pattern of miRNA

region, despite two independent biological processes needed for

the final maturation of miRNA. In this study, we start to find the

discriminatory signals in the mature miRNA regions, where the

primary structure, secondary structure and their combination have

been analyzed respectively in the fixed-order Markov model. But

only the pure secondary structure could exhibit the significant

signals. It reflects that enzyme recognition is mainly based on the

secondary structure.

Based on the secondary structure pattern in the style of stem-

bulge-gap notation, the FOMmiR predictor has been built using a

fixed-order Markov model and successfully realized a full-function

recognition of mature miRNA directly from the hairpins with

similar stem-loops. All of the tests displayed that no matter on the

classification of precursors, the localization of mature miRNA

regions or on the cross-species ability, this approach achieves

satisfactory performances in contrast to those well-known ones.

Moreover, the FOMmiR experienced a successful trial in

identifying the mature miRNA strand, although this function

remains to improve.

The secondary structure of pre-miRNAs in plants seems much

more complex than those in other species, due to more stem-

branches existed in plants. Here we generally focus on the longest

stem as the main stem in order to decrease the noise from those

stem-branches, so the FOMmiR significantly increased the

performance in plants than other algorithms did. On the other

hand, with human-trained parameter, both of the FOMmiR and

other algorithms obtained a similar result, in which the sensitivity

in vertebrates is less than those in Drosophila and worm, even

plants (Table 2).

With regard to the model construction, the FOMmiR, as one of

machine learning approaches, is much simpler than those of the

hidden Markov model, the stochastic context free grammar model

and the support vector machine-based methods. Although the

actual processes of the biological recognition are obscure, we have

got a sense of the potential mechanism during the model

construction. Briefly, the quadruple codes on the secondary

structure pattern are quite crucial for the miRNA recognition.

Overall, in this study, we provide a new generation of miRNA

prediction algorithm, using a fixed-order Markov model based on

the secondary structure pattern, which successfully realizes a full-

function recognition of the mature miRNAs directly from the

hairpin RNA molecules.
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