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The efficient synthesis of enantiopure, trisubstituted cryptophane-A derivatives, organic host
molecules with unusually high xenon affinity is reported. Synthesis and chromatographic
separation of (+/-) tri-Mosher’s acid-substituted cryptophane diastereomers gave ready access to
the enantiopure cryptophanes, which are critical components in the design of enantiomerically
pure 129%e biosensors. Hyperpolarized 129Xe NMR spectroscopy identified single resonances for
both trisubstituted cryptophane diastereomers that were separated by 9.5 ppm. This highlights
opportunities for using enantiopure xenon biosensors in the simultaneous detection of 129Xe in
different biochemical environments.

The need for imaging agents and analytical tools that can report on the concentration and
activity of various biomolecules in complex media has motivated the development of 129Xe
NMR biosensors. 1 These agents have the potential to detect cancer and other diseases by
localizing hyperpolarized (hp) 12%Xe to a diseased tissue and/or by multiplexed detection of
different protein biomarkers.1 To date, cryptophane-A organic cages, in which two
cyclotriguaiacylene (CTG) units are connected by three ethylene oxide linkers, show the
highest xenon binding affinity with dissociation constants ~25 pM at physiological
temperature in aqueous solution.1-2 Functionalized 129Xe cryptophane biosensors can be
targeted to different protein receptors, and identified by changes to the frequency of the
bound 129Xe nucleus.3 The use of enantiopure cryptophanes is preferred over racemic
mixtures, which have been shown to produce multiple, diastereomeric peaks upon binding to
chiral protein surfaces. # Similarly complex hp 129Xe NMR spectra are observed when
racemic cryptophanes are modified with chiral small molecules or peptides, based on
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diastereomeric splitting.> For the sensitive detection of chiral biological analytes,
enantiopure cryptophanes that offer well resolved “bound” and “free” 129Xe NMR peaks
should offer substantial advantages. Enantiopure cryptophanes have also been employed for
chiral recognition of small guests. 6 Here, we report a new method for producing
enantiopure cryptophane for many different applications.

Until now, the resolution of chiral cryptophanes and hemicryptophanes has typically
required expensive HPLC methods and yielded only small quantities of optically pure
material.” Another approach has been the synthesis of enantiopure cryptophanes from the
optically pure CTG units, but one limitation is possible racemization of CTG during the
subsequent synthetic steps.8 Recently, Dutasta and coworkers employed (-)-camphanic
chloride as a chiral resolving agent to resolve mono-cryptophanol through separation of the
resulting diastereomers. 2 The diastereomers were not separable by chromatography on
silica gel or reversed-phase HPLC but crystallographic resolution has recently been
improved to give both enantiomers in 25% yield. 10 However, this crystallographic method
is time-consuming. The low yield of pure cryptophane diastereomers limits the production
of enantiomerically pure cages for uses in xenon biosensors and host-guest chemistry,
broadly defined.

Dutasta et al. previously demonstrated the chromatographic separation of tri-functionalized
hemicryptophanes. 11 We hypothesized that a pair of cryptophane-A diastereomers
substituted with three chiral auxiliaries would also result in a significant difference in
polarity. Indeed, substitution with three chiral resolving groups allowed efficient separation
and isolation of cryptophane diastereomers using silica gel column chromatography.
Deprotection of the isolated diastereomers yielded the enantiopure trisubstituted
cryptophanes, whose chemical and physical properties can be tuned at the three positions.

According to Scheme 1A, diastereomers 2a and 2b were synthesized from trihydroxy
cryptophane 1, which was obtained by a previously published 6-step route. 12 Trihydroxy
cryptophane 1 was reacted with 3.3 equiv (S-Mosher’s acid in the presence of DMAP/Et3N.
The Mosher’s acid moiety was chosen as a readily available and sterically bulky chiral
resolving agent. The reaction proceeded relatively slowly and went to ~70% completion
after stirring for 2 days at 70 °C in DMF solvent. The resulting cryptophane-A diastereomers
2a and 2b were successfully separated by column chromatography (silica gel, EtoO:CH,Cly,
0.5:99.5, v/v) to give each enantiomer in 35% yield. Resolved diastereomers 2a-(9)-(-) and
2b-(9-(+) were easily distinguished by *H NMR spectroscopy (Scheme 1B), each showing
four singlets with different chemical shift values for aromatic protons. In contrast, the
aromatic region of the diastereomeric mixture exhibited eight singlets in the same region
(Scheme 1B). The enantiopurity of the isolated diastereomers was confirmed by electronic
circular dichroism (ECD) spectroscopy showing the same peaks with opposite sign (Fig. 1a).

The interaction between xenon and the trisubstituted cryptophane diastereomers 2a and 2b
was investigated by hp 129Xe NMR spectroscopy in a non-intercalating organic solvent,
1,1,2,2-tetrachloroethane-d, (C,D,Cl,). Hyperpolarized 129Xe was mixed with sample
solution in an airtight NMR tube and spectra were taken quickly with 4 transients (Fig. 1b).
Standarized by the signal from dissolved hp 129Xe in C,D,Cl4,13 hp 129Xe NMR chemical
shifts for the isolated diasteromers 2a-(-) (67.5 ppm, Fig. S2a) and 2b-(+) (77.0 ppm, Fig.
S2b) were recorded 9.5 ppm apart, which is the largest chemical shift difference reported for
cryptophane diastereomers. Previously, for the mono-(=)-camphanic acid cryptophane
diastereomers, a chemical shift difference of ~7 ppm was observed for the two
diastereomers.14 Notably, for the camphanic acid derivative, the more downfield peak arose
from the cryptophane-(-) diastereomer, whereas with three Mosher’s acids it was the
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cryptophane-(+) diastereomer. With a 1:1 mixture of diastereomers 2a and 2b, the two
resonances are clearly resolvable (Fig. 2b) by hp 122Xe NMR spectroscopy.

The isolated cryptophane diastereomers are useful precursors for preparing various
enantiopure functionalized cryptophanes. Removal of the Mosher moieties occurs without
loss of optical activity. Diastereomers 2a and 2b were deprotected via basic hydrolysis at 70
°C, affording enantiopure trihydroxy cryptophanes 3a-(-) and 3b-(+) (Scheme 2). The
recorded ECD spectra were mirror images (within experimental error) of each other, as
expected for a pair of enantiomers (Fig. S1a). In the absence of an X-ray crystal structure for
the isolated enantiomers, the structural assignment for the two enantiomers was made by
reacting cryptophane 3b-(+) with methyl iodide to yield (+)-cryptophane-A. Its recorded
ECD spectrum (Fig. S1c) was found to be opposite of the previously reported spectrum for
(-)-cryptophane-A.1°

Similarly to (+)-cryptophane-A, various trisubstituted enantiopure cryptophane derivatives
could be easily synthesized from trihydroxy cryptophane enantiomers 3a-(-) and 3b-(+). For
example, reaction with excess propargyl bromide gave the enantiomerically pure
tripropargyl cryptophanes 4a-(-) and 4b-(+) (Scheme 2, Fig. S1b). We previously showed
that alkyl azides can react with tripropargyl cryptophane in nearly quantitative yields via the
Cu(1)-catalyzed Huisgen [3 + 2] cycloaddition reaction. 16 This route gave enantiopure
tripropargyl cryptophanes 4a-(-) and 4b-(+), each in 15% overall yield starting from
racemic trihydroxy cryptophane 1 (+/-).

In conclusion, an efficient synthesis of enantiopure trifunctionalized cryptophanes was
developed using chromatographically resolved trisubstituted cryptophane diastereomers.
ECD spectroscopy confirmed the expected chiroptical properties of the isolated
diastereomeric and enantiomeric pairs. Hyperpolarized 129Xe NMR chemical shifts were
recorded at 9.5 ppm apart for the cryptophane diastereomers. The potential for synthesizing
gram-scale quantities of enantiomerically pure cryptophane would provide access to the
various functionalized cryptophanes, precursors for various cryptophane-based enantiopure
biosensors. Particularly, enantiopure Xe biosensors are desired to facilitate high-resolution
X-ray crystallographic studies® 4b. 17 and to simplify the assignment of peaks in 129Xe
NMR spectra.
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Figure 1.

(a) ECD spectra of diastereomers 2a and 2b (~0.5 mM) in 1,4-dioxane. (b)
Hyperpolarized 129Xe NMR spectra of diastereomers 2a and 2b (~ 10 mM) in C,D,Cl, at
299 + 2 K.
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(A)Synthesis of trisubstituted diastereomers of cryptophane-A from trihydroxy cryptophane
1. (B) Aromatic region of 1H NMR spectra of mixture of diastereomers, 2a and 2b.
Diastereomers 2a and 2b were isolated by column chromatography with diastereomeric
excess 298%.
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