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Infantile Encephaloneuromyopathy
and Defective Mitochondrial Translation
Are Due to a Homozygous RMND1 Mutation

Beatriz Garcia-Diaz,1 Mario H. Barros,2 Simone Sanna-Cherchi,3,4 Valentina Emmanuele,1

Hasan O. Akman,1 Claudia C. Ferreiro-Barros,5 Rita Horvath,6 Saba Tadesse,1 Nader El Gharaby,7,8

Salvatore DiMauro,1 Darryl C. De Vivo,1 Aly Shokr,7 Michio Hirano,1,* and Catarina M. Quinzii1

Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was

born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and

lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial transla-

tion. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and

identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504þ1G>A) of RMND1 (required for meiotic nuclear

division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased

wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that

was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities

of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of themutant fibro-

blasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary

conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human

disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for

understanding the function of this protein in mitochondrial protein translation.
Resulting from mitochondrial or nuclear DNA defects,

disorders of mitochondrial protein synthesis have

been reported in a heterogeneous group of individuals

presenting predominantly with prenatal- or congenital-

onset lethal encephalopathies associated with combined

deficiencies of respiratory-chain and oxidative-phos-

phorylation (OXPHOS) enzymes.1–3 Mutations in nuclear

genes have been described in eight mitochondrial trans-

fer-RNA-modifying factors,4–13 three mitochondrial ribo-

somal proteins,14–16 and three mitochondrial elongation

factors.17–22 Additional mutations have been documented

in the gene encoding the translational activator of cyto-

chrome c oxidase (COX) I (TACO1) (MIM 612958)23 and

in C12orf65 (encoded by C12orf65 [MIM 613541]), a

protein belonging to the family of mitochondrial class I

peptide release factors.24

In 2008, we described an 18-day-old male infant (indi-

vidual VI-1 in Figure 1) who was born to consanguineous

parents from Saudi Arabia and who presented with severe

neonatal encephaloneuromyopathy and lactic acidosis.1

At birth, the infant was unresponsive but was successfully

resuscitated and intubated. He had few spontaneous limb

movements and required mechanical ventilation. Exami-

nation revealed prominent tongue fasciculations, bilateral

equinus foot deformities, and profound hypotonia of the
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arms and legs. Tendon reflexes were absent. He developed

myoclonic jerks and died at the age of 18 months. A

muscle biopsy when he was 24 days old showed severe

COX (complex IV) deficiency. Fibroblasts showed a gener-

alized and severe defect of mitochondrial protein syn-

thesis, reductions of all mitochondrial-translated products,

normal mitochondrial transcript levels, reduction in the

steady-state levels of complexes I, IV, and V, and a normal

complex II (encoded entirely by nuclear genes).1 We have

now characterized four additional affected familymembers

and have performed homozygosity mapping in the family

(Figure 1). Three affected infants (VI-3, VI-7, and VI-8)

similarly presented with severe neonatal encephaloneur-

omyopathy at birth and showed lethargy, respiratory

failure, profound floppiness, hyporeflexia or areflexia,

equinus deformities, lactic acidosis, and death in the

first year of life, whereas the fifth affected individual

(VI-9) was stillborn and did not have skeletal deformities

(Table S1, available online). Deficiencies in the activity of

multiple mitochondrial respiratory-chain enzymes were

confirmed in individual VI-3 fibroblasts (Table 1).

Informed consent for analyses of biological samples

was obtained under a protocol approved by the institu-

tional review board at Columbia University Medical

Center. Genomic DNA was purified from blood according
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Figure 1. Pedigree of the family
The following symbols are used: black
symbols, affected individuals; open sym-
bols, unaffected relatives; small black sym-
bols, stillborns; diagonal lines, deceased
persons; and asterisks, DNA available.
to standard procedures. To identify areas of shared homo-

zygosity among affected individuals, we performed a high-

density genome-wide genotyping of four affected and

eight unaffected relatives by using the Illumina 660W-

Quad gene chip array (Illumina, San Diego, CA), which

features over 650,000 markers across the genome. Clus-

tering, normalization, and genotype calls were performed

with the dedicated GenomeStudio 2010.3 Genotyping

Module (Illumina). SNP genotypes were analyzed in

PLINK software for standard quality controls.25 Genome-

wide homozygosity mapping, which we conducted with

the Homozygosity Mapper program by using default

parameters and restricting the analysis to areas of homo-

zygosity shared between all affected individuals, identified

a single region of homozygosity shared identically by

descent in all affected individuals (Figure S1A). This region

spanned <1Mb between markers rs519861 and rs926777

in 6q25 and included only seven coding genes (Fig-

ure S1B). We sequenced all exons of the seven genes

included in the candidate locus by dideoxy DNA sequenc-

ing. All affected individuals were homozygous for a G-to-A

transition (c.504þ1G>A) in the canonical splice donor

site of exon 2 of the long isoform of RMND1 (RefSeq

accession number NM_017909.2) (Figure 2). Parents

were carriers, four unaffected siblings were found to be

heterozygous, and two were homozygous for the wild-

type allele. This variant was absent in 210 control alleles,

as well as in dbSNP 135 and the 1000 Genomes
Table 1. Activity of Mitochondrial Respiratory-Chain Enzymes in VI-3 and Control Fibroblasts
Vector or with a Construct Encoding RMND1 Isoform 1

Complex VI-3 Fibroblasts Control Fibroblasts
VI-3 with Empty
Vector

Control with Empty
Vector

IV/CS 0.06 5 0.002 0.69 5 0.02 0.11 5 0.07 0.59 5 0.44

IIþIII/CS 0.05 5 0.001 0.11 5 0.03 0.02 5 0.01 0.05 5 0.02

IþIII/CS 1.1 5 0.88 2.59 5 0.07 0.98 5 0.79 1.75 5 0.77

Activity is expressed in mmol/min/mg protein and is normalized to citrate synthase. Values represent the me
experiments and three different transfections. The following abbreviations are used: complex IV, cytochrome
chrome c reductase; complexes IþIII, nicotinamide dehydrogenase (NADH) cytochrome c reductase; and CS
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Project. Primers used for sequencing

RMND1 are listed in Table S2.

To evaluate RMND1 mRNA and

protein in fibroblasts from individual

VI-3 and controls, we performed real-

time PCR (RT-PCR) and immunoblot

analyses. RT-PCR analysis of RMND1

showed three transcripts expressed

from the mutant allele: (1) the wild-
type (31% 5 1.5), encoding a 449 amino acid protein;

(2) a longer transcript (40% 5 3.5) that has 88 additional

nucleotides and that leads to the insertion of a premature

stop codon at codon 171, 54 amino acids upstream of

the start of the only known functional domain of the

protein (amino acids 225–404); and (3) a shorter variant

(32% 5 2.5), in which a cryptic splice site in exon 2 is

activated and produces an in-frame deletion of 75 nucleo-

tides (25 amino acids) (Figure 2). In addition, quantitative

RT-PCR (qRT-PCR) with a probe that detects all three splice

variants showed mildly reduced RMND1 expression rela-

tive to that of the b-actin (ACTB) transcript in individual

VI-3 compared with the control (Figure 3A). In accordance

with the marked reduction of the wild-type transcript,

immunoblots showed decreased levels of the 52 kDa

band corresponding to the expected RMND1 long isoform

and a 28 kDa band in VI-3 fibroblasts compared with

control fibroblasts (Figure 3B–3C).

To confirm the pathogenicity of the mutation, we

overexpressed RMND1 in VI-3 and control fibroblasts.

Efficiency of overexpression was confirmed by qRT-PCR

and immunoblots (Figure S2). Biochemical activities of

mitochondrial respiratory-chain enzymes, as well as COX

and succinate dehydrogenase (SDH) cytochemistry, were

performed as described.26

In mutant fibroblasts, the biochemical activities of mito-

chondrial enzymes were greater after RMND1 cDNA over-

expression than after empty-vector transfection (Table 1).
after Transient Transfection with Empty

VI-3 with RMND1 Control with RMND1

0.14 5 0.08 0.5 5 0.41

0.03 5 0.02 0.04 5 0.02

1.46 5 0.59 1.80 5 1.29

an 5 standard deviation of at least three different
c oxidase (COX); complexes IIþIII, succinate cyto-
, citrate synthase.



Figure 2. Schematic Representation of
RMND1 Wild-Type and Aberrant Tran-
scripts
RMND1 has four splicing variants,
of which only three encode proteins:
ENST00000367303 (12 exons, isoform 1
[I1]), ENST00000367303 (11 exons, iso-
form 2 [I2]), and ENST00000444024 (9
exons, isoform 3 [I3]). All three coding
variants contain a DUF155 domain indi-
cated by a purple box. Coding regions are
represented by blue boxes, and noncoding

regions are represented by white boxes. The longest transcript has a predicted N-terminal 33 amino acid mitochondrial targeting
sequence (MTS). On the left is agarose gel showing the PCR product of RMND1 cDNA from control (C) and VI-3 fibroblasts. ‘‘L’’ indicates
the 100 bp DNA ladder. Splice-site mutation c.504þ1G>A (arrow) produces two aberrant transcripts (AT1 and AT2) and reduces the
amount of wild-type transcript (middle band). The longer transcript, AT1, includes the insertion of 88 nucleotides after exon 2 and
generates a premature stop at codon 171. In the shorter variant, AT2, a cryptic splice site in exon 2 is activated and results in an in-frame
deletion of 75 nucleotides and a protein 25 amino acids shorter than the wild-type. RNA was extracted by the PureLink RNA Mini Kit
(Ambion, Austin, TX) and reverse transcribed into cDNAwith the VILO RT-PCR kit (Invitrogen, Grand Island, NY). RT-PCR of exons 2–7
was performed, and the RT-PCR products were electrophoresed in 2% agarose gels.
Specifically, we observed enhanced activities of complexes

IþIII (55.7% 5 5.7 after empty-vector transfection and

90.7% 5 5.7 after RMND1 transfection) and IV (16.3% 5

4.7 after empty vector transfection and 23.3% 5 7.1 after

RMND1 transfection) (Figure 4A). Increased COX activity

without change in baseline normal SDH activity was

confirmed by cytochemistry (Figure S3).

Quantitative evaluation of the steady-state level of respi-

ratory-chain enzyme subunits by immunoblot analyses

with the Total OXPHOS Complexes Detection Kit cocktail

of antibodies (MitoSciences, Eugene, OR, USA) revealed

decreased amounts of mitochondrial-encoded OXPHOS

subunits that increased after transfection with wild-type

RMND1 cDNA. Specifically, after RMND1 overexpression,

as well as after normalization to SDH as a marker of mito-

chondrial mass, there were significant increases in levels of

complex I (51.1% 5 8.0 after empty-vector transfection

and 71.5% 5 17 after RMND1 transfection) and com-

plex IV (47% 5 8.0 after empty-vector transfection and

82% 5 16 after RMND1 transfection) in absolute values

(Figures 4B–4C).

To further investigate the function of RMND1, we used

shRNA-mediated knockdown of the protein. The clone

with the lowest levels of RMND1 transcript and protein

(about 60% of wild-type levels) was chosen for measur-

ing respiratory-chain and OXPHOS activities, steady-state

level, and synthesis (Figure 5).

To assessmitochondrial translation, pulse labeling of cell

cultures from shRNA and control clones was performed as

described1 with slight modifications. Consistent with our

observations in mutant fibroblasts, as compared to wild-

type cells, those with 60% depletion of RMND1 showed

decreased activities of complexes IþIII (75%) and IV

(83%), reduced levels of complexes I (59%) and IV (62%),

and diminished mitochondrial proteins synthesis (60%)

(Figures 5A–5C).

To assess the potential role of RMND1 in the assembly of

ribosomal subunits, we measured 12S and 16S rRNA levels

by qRT-PCR. We did not detect any differences in 12S and

16S rRNAs among mutant skin fibroblasts, RMND1-
The Americ
depleted HeLa cells, or corresponding wild-type cells

(data not shown).

To confirm the localization of RMND1 in the mito-

chondria of mammalian cells, we performed immunohis-

tochemistry and immunoblots. Fluorescence images,

collected and analyzed by a laser-scanning confocal micro-

scope showed that the fusion protein colocalizeswithmito-

chondria (Figure 6A). An immunoblot of isolated cytosolic

fraction, endoplasmic reticulum (ER), crude mitochondria,

pure mitochondria, and ER þ mitochondria from HeLa

cells showed a 52 kDa band in all fractions and a 28 kDa

band in total cell lysate and in all mitochondrial-contain-

ing fractions (Figure 6B). The 28 kDa band was absent in

both the cytosol and ER fractions (Figure 6B). An immuno-

blot with YFP antibody (1:1000, 632380, Clontech) of

whole 239T cell extracts transfected with a construct en-

coding YFP-RMND1 fusion protein confirmed the speci-

ficity of the two bands, corresponding to the expected

long RMND1 isoform (52 kDa) and to the presumably

cleaved mitochondrial protein (28 kDa) (Figure 6C).

We generate a disrupted version of Saccharomyces cerevi-

siae rmnd1 (RMND1 ortholog) to investigate mitochondrial

function.28,29 Mitochondrial fractionation and intramito-

chondrial localization of Ydr282cp with an antibody

against the HA epitope were performed as described.30

An immunoblot with the HA epitope antibody detected

a ~50 kDa protein (Figure S4).

In accordance with data on the ydr282c mutant strain in

the yeast genome collection, yeast containing the ydr282c-

null allele showed a normal phenotype, including normal

growth in respiration-dependent glycerol medium and

mitochondrial protein synthesis (Figure S5).

Mitochondrial protein synthesis is a complex and still

poorly understood process requiring a number of initia-

tion, elongation, and termination factors, all of which

are encoded by nuclear genes together with mtDNA-

encoded ribosomal and transfer RNA.31 Defects in 18 genes

directly or indirectly involved in mitochondrial pro-

tein synthesis have been described.1,4–25 In muscle and

fibroblasts from an individual with consanguineous
an Journal of Human Genetics 91, 729–736, October 5, 2012 731



Figure 3. RMND1 Is Partially Reduced in VI-3 Fibroblasts
(A) qRT-PCR was performed for characterizing the expression level
of RMND1 mRNA in VI-3 fibroblasts with the use of TaqMan
Assays for RMND1 and ACTB (b-actin) transcripts (Applied
Biosystems). Values are expressed as percentages of controls.
Data are represented as the mean 5 standard deviation and are
the results of at least three different experiments. The asterisk (*)
indicates a Student’s t test p < 0.05.
(B and C) Immunoblot for measuring the level of RMND1 in VI-3
fibroblasts. Proteins were extracted, and concentrations were
measured with the BCA Protein Assay Kit (Pierce). Five micrograms
of protein was electrophoresed in a SDS-12%-PAGE gel, transferred
to Immun-Blot PVDF membranes (Biorad, Hercules, CA, USA), and
probed with rabbit polyclonal RMND1 antibody (product
#HPA031399, Sigma-Aldrich, St. Louis, MO) at a 1:1,000 dilution. A
mouse monoclonal actin antibody (Sigma-Aldrich) was used at a
1:10,000 dilution. Protein-antibody interaction was detected with
peroxidase-conjugated goat anti-mouse IgG antibody (1:5,000)
(Sigma-Aldrich) with SuperSignal chemiluminiscence detection kit
(Thermo Fisher Scientific,Waltham,MA). Quantitation of the bands
was performed by densitometric analysis with the National Insti-
tutes of Health ImageJ software package (version 1.45). Values are
expressed as percentages of controls. Data are represented as the

Figure 4. Complementation Analysis in VI-3 and Control Fibro-
blasts
After transient transfection with a construct encoding wild-type
RMND1, mutant cells showed increased biochemical activities of
mitochondrial respiratory-chain enzymes normalized to citrate
synthase (CS) (A) and an increase in the steady-state level of mito-
chondrial OXPHOS subunits (B and C). Values are represented as
the mean 5 standard deviation, reflect the results of at least three
different transfection experiments, and are expressed as per-
centages of the untransfected control. The asterisks (*) indicate
a Student’s t test p < 0.05.

732 The American Journal of Human Genetics 91, 729–736, October
parents and a fatal infantile-onset encephalomyopathy

with lactic acidosis, we previously demonstrated evidence

of a mitochondrial protein synthesis by documenting
mean 5 standard deviation and are the results of at least three
different experiments. The asterisks (*) indicate a Student’s t test
p < 0.05. The following abbreviations are used: C1–C4, controls;
and actin, b-actin.
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Figure 5. Effects of RMND1 Knockdown in HeLa Cells
HeLa cells were cultured in DMEMwith 10% fetal bovine serum (FBS) until they were 70%–80% confluent. Transfection with a scramble
shRNA-pLKO plasmid (negative control) and a RMND1-specific TRC shRNA-pLKO plasmid construct (TRCN0000135730, Sigma Aldrich)
was mediated by Lipofectamine 2000 (Invitrogen). Five hours after transfection, cells were selected with Puromycin in DMEM 2% FBS,
and transfected clones were individually expanded in DMEM 10% FBS. RMND1 knockdown was assessed in 30 clones by qRT-PCR and
immunoblot analysis.
(A) Activity of mitochondrial respiratory-chain enzymes.
(B and C) Immunoblot analysis of the steady-state levels of mitochondrial respiratory enzymes (B) and pulse labeling with [35S] methi-
onine of mitochondrial proteins (C). A total of 53 105 cells cultured in 10 cm culture plates were washed inmethionine-free DMEM and
subsequently incubated in the same medium supplemented with 15% dialyzed FBS, 1.2 mM sodium pyruvate, and glucose for 30 min.
Cytosolic protein synthesis was inhibited by the addition of emetine (0.1 mg/ml) for 7 min at 37�C. Mitochondrial proteins were labeled
with 50 mCi [35S]-methionine Redivue (Amersham Biosciences, Piscataway, NJ) in methionine-free medium and incubated for 1 hr at
37�C. After treatment, cells were incubated for 10 min in DMEM supplemented with 10% FBS and were collected by scraping. Protein
aliquots (15 mg per sample) were electrophoresed in a 4%–12% Bis-Tris polyacrylamide gradient gel for 4 hr at 85V. The gel was dried for
60 min at 80�C and analyzed with a phosphorimager. The seven subunits of complex I (ND), three subunits of complex IV (COX), and
two subunits of complex V (ATP) are indicated at the left. Values are expressed as percentages of the control and are represented as the
mean 5 standard deviation. One asterisk (*) indicates a Student’s t test p < 0.05; ** indicates a Student’s t test p < 0.01.
severe COX deficiency, partially reduced biochemical

activities of complexes I and V, normal SDH activity, and

decreases of all mitochondrial-translation products with

normal levels of mitochondrial transcripts.1
The Americ
Here, we report four additional affected relatives, homo-

zygosity mapping, and identification of a homozygous

splice-site mutation in the gene encoding RMND1 in

all four affected individuals. We have shown that the
an Journal of Human Genetics 91, 729–736, October 5, 2012 733



Figure 6. RMND1 Localization in Mammalian Cells by Immunohistochemistry and Quantitation by Immunoblot Analysis
(A) RMND1 cDNAwas amplified from a commercial vector containing the human full-length cDNAwith the use of a BamHI-recognition-
site-integrated forward primer 50-AGGATCCGCCATGCCAGCCACACTCCTCAGAGCCG-30 and AgeI-recognition-site-integrated reverse
primer 50-CGACCGGTGATTTCATGGTTGGAAGGTGTG-30. PCR product was digested with BamHI and AgeI and cloned into a pEYFP
expression vector in-frame and upstream of the YFP coding sequence. Fidelity of the fusion RMND1-YFP construct in the expression
vector was verified by sequencing, and 2.5 mg was used for transiently transfecting human embryonic kidney (HEK) 293T cells as
described above. Culture media were supplemented with 0.1 mM MitoTracker Red (Invitrogen) for 30 min before the cells were fixed
with 4% formalin PBS for the detection of mitochondria.
(B) Purification ofmitochondria and cellular fractions was performed as previously described,27 and immunoblot analysis was performed
with primary antibodies anti-RMND1 (1:1,000, Sigma), anti-Complex II (1:5,000, MitoScience, Abcam, Cambridge, MA), anti-APH1a
(1:1,000, Abcam), and anti-Vinculin (1:5,000, Sigma-Aldrich, St. Louis, MO) and either peroxidase-conjugated anti-rabbit (1:2,000) or
peroxidase-conjugated anti-mouse IgG (1:5,000) as a secondary antibody (Sigma-Aldrich). Cellular fractions were isolated from HeLa
cells (25 mg of protein from the total lysate [L]), and equal amounts (6 mg) from each fraction (cytoplasmic fraction [CF], endoplasmatic
reticulum [ER], crude mitochondria [CMt], pure mitochondria [PMt], and ER þ mitochondria [ERMt]) were loaded onto the gel. The
known molecular masses (in kDa) of proteins used for confirming cell-fraction enrichment are indicated in the left margin of the gel.
(C) Immunoblot analysis of total HEK 293T cell extracts transfected with YFP-RMND1 fusion protein with the antibody against green
fluorescent protein confirmed the specificity of the two bands detected by the RMND1 antibody.
c.504þ1G>A splice donor mutation reduces the wild-type

transcript and produces two aberrant transcripts. One

alters the reading frame of the protein and produces

a prematurely truncated protein with loss of the DUF155

domain. The other is predicted to produce a protein trun-

cated by 25 amino acids. The fact that the truncated

protein was absent in an immunoblot with an antibody

that recognizes the carboxy-terminus of RMND1 suggests

that this aberrant polypeptide is unstable and degraded.

These data, together with the results of the RNA inter-

ference of the wild-type transcript—showing reduced

mitochondrial protein synthesis in partially depleted

cells—indicate that the disease is caused by loss, rather

than toxic gain, of function. We did not find mutations

in RMND1 in ten other individuals with documented

defects of mitochondrial protein synthesis,2 suggesting

that mutations in RMND1 might be rare.

According to Uniprot, RMND1has at least three isoforms

produced by alternative splicing: isoform 1, the longest one

(449 amino acids), is localized tomitochondria;32 isoform2

(lacking amino acids 1–211); and isoform 3 (containing

alternative amino acids 205–208 DAAN>GTSS andmissing

amino acids 209–449). However, in addition to the pre-

dicted 52 kDa full-length RMND1, immunoblot analysis

revealed a shorter protein (28 kDa), which was abundant

in purifiedmitochondrial fractions; therefore, we postulate

that the 28 kDa RMND1 is the cleaved mitochondrial

protein. We sublocalized the yeast ortholog, Ydr282c, to

the inner mitochondrial membrane with the C terminus

facing the intermembrane space.

RMND1 belongs to the sif2 family, an evolutionary

conserved family of proteins that have unknown function

and that share the DUF155 domain. rmnd1 is conserved in
734 The American Journal of Human Genetics 91, 729–736, October
species down to yeast. The S. cerevisiae ortholog, YDR282C,

has no known functions but has been reported to interact

with the functional ortholog of the human Nieman Pick

C1 protein, which is involved in sphingolipid metabo-

lism.33 Although we have shown that the yeast rmnd1 or-

tholog is a mitochondrial protein, the fact that yeast null

for rmnd1 are viable in glycerol medium indicates that

respiration is not severely affected. Therefore, either the

protein is not involved in yeast mitochondrial protein

synthesis or its function overlaps with those of other

proteins in yeast. In fact, divergent functions in yeast

and humans have been observed for other mitochondrial

proteins, including TACO1, which is required for human

COX I mitochondrial-translation activation, whereas the

yeast ortholog does not serve this function.23 Although

COX deficiency is prominent in the affected indi-

vidual’s muscle and fibroblasts, the involvement of other

respiratory-chain enzymes and the generalized mitochon-

drial-translation defect in mutant fibroblasts and in

RMND1 knockdown cells indicate that RMND1 is not a

COX-subunit-specific translational activator.

Intriguingly, several RMND1 orthologs seem to be

involved in cell division,34 and mitochondrial ribosomal

proteins have been shown to be involved in cell-cycle regu-

lation.35 However, against the notion that RMND1 is a

structural ribosomal protein are the normal levels of 12S

and 16S rRNA in mutant fibroblasts and in RMND1-

depleted HeLa cells because mutations in mitochondrial

small-subunit ribosomal proteins have been shown to

decrease 12S rRNA.14,15

In conclusion, we have identified a human mutation

affecting a DUF155 protein in a family with a severe auto-

somal-recessive mitochondrial-translation defect. Further
5, 2012



studies are necessary for understanding the function of

RMND1 and elucidating its role in mitochondrial protein

synthesis.
Supplemental Data

Supplemental Data include five figures and two tables and can be

found with this article online at http://www.cell.com/AJHG.
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