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An RMND1 Mutation Causes Encephalopathy Associated
with Multiple Oxidative Phosphorylation Complex
Deficiencies and a Mitochondrial Translation Defect

Alexandre Janer,1,2,4 Hana Antonicka,2,4 Emilie Lalonde,1 Tamiko Nishimura,2 Florin Sasarman,2

Garry K. Brown,3 Ruth M. Brown,3 Jacek Majewski,1 and Eric A. Shoubridge1,2,*

Mutations in the genes composing the mitochondrial translation apparatus are an important cause of a heterogeneous group of oxida-

tive phosphorylation (OXPHOS) disorders. We studied the index case in a consanguineous family in which two children presented with

severe encephalopathy, lactic acidosis, and intractable seizures leading to an early fatal outcome. Blue native polyacrylamide gel electro-

phoretic (BN-PAGE) analysis showed assembly defects in all of the OXPHOS complexes with mtDNA-encoded structural subunits, and

these defects were associated with a severe deficiency in mitochondrial translation. Immunoblot analysis showed reductions in the

steady-state levels of several structural subunits of the mitochondrial ribosome. Whole-exome sequencing identified a homozygous

missensemutation (c.1250G>A) in an uncharacterized gene, RMND1 (required for meiotic nuclear division 1). RMND1 localizes tomito-

chondria and behaves as an integral membrane protein. Retroviral expression of the wild-type RMND1 cDNA rescued the biochemical

phenotype in subject cells, and siRNA-mediated knockdown of the protein recapitulated the defect. BN-PAGE, gel filtration, and mass

spectrometry analyses showed that RMND1 forms a high-molecular-weight and most likely homopolymeric complex (~240 kDa) that

does not assemble in subject fibroblasts but that is rescued by expression of RMND1 cDNA. The p.Arg417Gln substitution, predicted to

be in a coiled-coil domain, which is juxtaposed to a transmembrane domain at the extreme C terminus of the protein, does not alter

the steady-state level of RMND1 but might prevent protein-protein interactions in this complex. Our results demonstrate that the

RMND1 complex is necessary for mitochondrial translation, possibly by coordinating the assembly or maintenance of the mitochon-

drial ribosome.
Mitochondria contain their own translationmachinery for

the synthesis of the 13 mtDNA-encoded polypeptides that

are essential structural components of the oxidative phos-

phorylation (OXPHOS) complexes. Whereas the mito-

chondrial genome (mtDNA) itself codes for the two rRNAs

and 22 tRNAs necessary for translation, all of the other

components of the translation apparatus are encoded in

the nucleus and must be targeted to the mitochondrion.

Mutations in genes affecting mitochondrial translation

are common causes of OXPHOS disorders in adults and

children.1,2 For instance, mutations in all of the mito-

chondrial tRNAs have been associated with disease, and

although they make up less than 10% of mtDNA, they

account for a large proportion of mtDNAmutations associ-

ated with human mitochondrial disease.3 Most of the

diseases that have been identified in the nuclear-encoded

components of the translation machinery are early-onset,

fatal disorders that are inherited in an autosomal-recessive

fashion.2 Although not universally true, many of the

translation defects cause deficiencies in more than one

OXPHOS complex. There is, however, a great deal of het-

erogeneity (often gene specific, but not always) in pheno-

typic presentation, which is an enduring mystery. In

addition, it is likely that many translation factors remain

unknown as new factors continue to be identified by the

investigation of individuals with translation defects.4
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In this study, we investigated a subject who presented

with an encephalopathy and lactic acidosis. Informed

consent was obtained, and the institutional review board

at the Montreal Neurological Institute approved the

research studies. The subject, a girl, was the fourth child

of consanguineous parents. There are three older female

siblings, the first two of whom are normal. The third

daughter developed intractable seizures at 2 months of

age, and a computed tomography (CT) scan showed cere-

bral atrophy and microcephaly. She died at the age of

13 months. The proband was normal at birth but devel-

oped seizures on day 6. She was hypotonic and required

tube feeding. At 4 months of age, she had unremitting

seizures and her head circumference was not increasing.

The liver was slightly enlarged, but there was no spleno-

megaly. The blood lactate concentration was 3.56 mmol/l

(the normal range is 0.63–2.44 mmol/l), and the cerebro-

spinal-fluid lactate concentration was 3.43 mmol/l (the

normal range is 0.90–2.80 mmol/l). The lactate to pyruvate

ratio in the blood was 21.2 (the normal ratio is 10–20).

Blood ammonia, urine amino acids, and organic acids

and lysosomal-enzyme studies were all normal. Cyto-

chrome c oxidase (COX) activity in cultured fibroblasts

was 4 nmol/mg protein/min (the normal range is 30–90),

and the COX to citrate synthase ratio was 0.11 (normal

is >1). The subject died at 5 months of age. At autopsy,
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Figure 1. Characterization of Biochemical and Molecular
Defects in Subject Fibroblasts
Control and subject fibroblasts were analyzed by BN-PAGE (A) and
by pulse labeling of the mtDNA-encoded polypeptides (B).
(A) Each of the five OXPHOS complexes (I–V) was visualized with
a subunit-specific antibody that recognizes the native complex
as follows: CoI (NDUFA9), CoII (SDHA), CoIII (UQCRC1), CoIV
(COX4), CoV (ATP5A1). Complex II is the loading control.
(B) The seven subunits of complex I (ND), one subunit of complex
III (cyt b), three subunits of complex IV (COX), and two subunits
of complex V (ATP) are indicated to the right of the figure.

Figure 2. Steady-State Levels of Mitochondrial DNA, mRNAs,
rRNAs, and Mitochondrial-Translation Proteins
(A) Southern blot analysis of genomic DNA extracted from control
and subject fibroblasts. Hybridization was performed with probes
directed against a 16 kb fragment of the mitochondrial genome,
and the nuclear 18S rRNA gene was used as a loading control.
(B) Northern blot analysis carried out with total RNA extracted
from control and subject fibroblasts. Hybridization was performed
with probes specific to mitochondrial mRNAs encoding the three
COX subunits, one of the complex I subunits (ND1), and the 12S
and 16Smitochondrial ribosomal RNAs. Beta-actin was used as the
loading control.
(C) Immunoblot analysis of control and subject fibroblasts with
antibodies against the mitochondrial-translation elongation
factors (EFG1and EFTs) and the mitochondrial ribosomal proteins
MRPL32 (a kind gift of T. Langer, Cologne), MRPL13,MRPL15, and
MRPS2 (kind gifts of L. Spremulli, UNC Chapel Hill). The 70 kDa
subunit of complex II (SDHA) was used as a loading control.
the brain showed marked atrophy of the cortex but a rela-

tively normal cerebellum and brain stem. The cord was

also atrophic. There was symmetrical ventricular dilata-

tion, and the corpus callosum was thin. Microscopically,

there was widespread vacuolation of cortical gray matter

and status spongiosus and extensive loss of myelin in the

brain stem.

To further investigate the nature of the biochemical

defect, we first immortalized the subject fibroblasts as

described previously.5 The COX activity in these cells was

26 5 11% of control levels (n ¼ 34). BN-PAGE analysis6

revealed marked assembly defects in complexes I, III, IV,

and V (Figure 1A), suggesting a mitochondrial-translation

defect. Confirming this prediction, the synthesis of the

mtDNA-encoded polypeptides, investigated by pulse label-

ing the mitochondrial translation products with a mixture

of [35S] methionine and [35S] cysteine,7 was severely and

uniformly decreased to <20% of control levels (Figure 1B).

Although this pattern of mitochondrial-translation defi-

ciency is similar to that found in other subjects with

genetically defined mitochondrial-translation defects,8–10

it represents the most severe generalized mitochondrial-

translation decrease that we have observed.

Southern blot analysis of subject fibroblasts showed

no decrease in the level of mtDNA when normalized to

the cytoplasmic 18S rRNA gene (Figure 2A), excluding

a mtDNA depletion syndrome. Northern blot analysis
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of several mitochondrial mRNAs (normalized to actin

mRNA) showed an increase of 2–5 fold in all of those exam-

ined (Figure 2B). The 12S mitochondrial rRNA level was

also 1.53 higher in subject fibroblasts than in controls;

however, the 16S rRNA was relatively decreased (0.83 the

control) (Figure 2B). Immunoblot analysis, carried out on

fibroblasts solubilized in 1.5% lauryl maltoside, showed

near control levels of the mitochondrial-translation elon-

gation factors but severely decreased levels of several mito-

chondrial ribosomal subunits (MRPL13, MRPL32, and

MRPS2) (Figure 2C), suggesting that the mitochondrial-

translation defect could be due to impaired assembly or

maintenance of the mitochondrial ribosome.

Microcell-mediated chromosome-transfer studies11 and

sequencing of several candidate genes failed to reveal a

causative mutation, so we used whole-exome sequencing

to search for a homozygous mutation. DNA from exonic

regions was captured with the Agilent SureSelect Human

All Exon Kit v.1 and sequenced on one lane of an

Illumina GAIIx with single-end sequencing of 76 bp

reads. Read alignment and variant identification were

performed as previously described.12 The average coverage

in the National Center for Biotechnology Information

Consensus Coding Sequence was 23.53, resulting in

approximately 65,000 variants passing the SAMtools

varFilter13 (default parameters, as well as a minimum SNP
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Figure 3. Mutational Analysis of RMND1 and Mitochondrial Localization of the Protein
(A) DNA sequence analysis of RMND1 cDNA indicates the position of the homozygous c.1250G>Amutation in the subject compared to
the control.
(B) A schematic representation of RMND1 (not to scale) shows the predicted domains and the position of the p.Arg417Gln substitution.
The following abbreviations are used: MLS, mitochondrial localization signal; DUF155, domain of unknown function 155; CC, coiled-
coil domain; and TM, transmembrane domain.
(C) The alignment of the amino acid sequences of RMND1 homologs in different species shows that the mutated arginine (black rect-
angle) is conserved only in the vertebrates.
(D) Control fibroblasts transiently expressing RMND1-EGFP (left panel, green) were incubated with an antibody against the mitochon-
drial protein SLIRP (middle panel, red). The far right panel showing the overlay is counterstained with DAPI for visualization of the
nucleus.
(E) Alkaline carbonate extraction of mitochondria fromHEK cells stably expressing a C-terminalMyc-tagged RMND1. Immunoblot anal-
ysis with anMyc antibody shows that RMND1 is an integral membrane protein. SDHA (soluble, membrane-associated protein) and COX
subunit 2 (integral inner membrane protein) were used as controls.
quality of 20 and a minimum indel quality of 50, were

used). This number was significantly reduced to approxi-

mately 1,000 candidates after we filtered any previously

identified variants in dbSNP (v.131), the 1000 Genomes

Project (July 2010 release), and ten local exomes. In addi-

tion, because of the subject’s consanguinity, homozygous

nonsynonymous alleles were prioritized, leading to only

22 candidates. Finally, we searched for known and pre-

dicted mitochondrial proteins (by using the Mitocarta

database14), and RMND1 (required for meiotic nuclear

division 1), an uncharacterized gene, emerged as the only

candidate. Sanger sequencing of RMND1 in the subject
The Americ
cDNA and genomic DNA confirmed the homozygous mis-

sense mutation (c.1250G>A) identified by whole-exome

sequencing (Figure 3A); this mutation was predicted to

cause amino acid substitution p.Arg417Gln (RefSeq acces-

sion number NM_017909.2). DNA was not available for

analysis from any of the other family members.

Bioinformatic analysis of the protein sequence revealed

the presence of a DUF155 domain (Figure 3B) that is shared

by members of the RMD1/Sif2 family comprising RMD1

(the yeast homolog of RMND1) and four other yeast genes,

viz., RMD8, SIF2, SIF3, and YDR282C. RMND1 is also pre-

dicted to contain a mitochondrial localization signal at
an Journal of Human Genetics 91, 737–743, October 5, 2012 739



Figure 4. Rescue of the Biochemical Phenotype by RMND1 Expression and Recapitulation of the Defect by siRNA-Mediated Knock-
down of the Protein
(A) BN-PAGE analysis of controls and subject fibroblasts expressing RMND1 from a retroviral vector (pBABE). Each of the five OXPHOS
complexes (I–V) was visualized with a subunit-specific antibody.
(B) Immunoblot analysis of the same samples as in (A) for expression of RMND1, individual structural subunits of the five OXPHOS
complexes, and two mitochondrial ribosomal subunits. The 70 kDa subunit of complex II (SDHA) was used as a loading control.
(C) Analysis of mitochondrial translation products in control and subject fibroblasts transduced with retroviral vectors expressing
RMND1-HA or RMND1-flag.
(D) Stealth RNAi-mediated knockdown of RMND1. The upper panel shows the level of knockdown of RMND1 on an immunoblot
with VDAC1 (porin) as a loading control. The bottom panel shows the BN-PAGE analysis in the control, RMND1 knockdown, and
subject cells.
the N terminus and a coiled-coil domain (where the muta-

tion is localized) juxtaposed to a transmembrane domain

at the extreme C terminus (Figure 3B).

RMND1 is evolutionarily conserved down to yeast (from

which the name is derived), but the S. cerevisiae gene

product is reported to be cytosolic in a high-throughput

study of the cellular localization of the gene products ex-

pressed from genes chromosomally tagged with green fluo-

rescent protein.15 All the other members of the SIF2 family

are thought to have either nuclear or cytosolic localiza-

tions. Alignment of the amino acid sequences of RMND1

homologs (Figure 3C) shows that the mutated residue is

only conserved in vertebrates (40 of 40 vertebrates for

which the complete RMND1 sequence is available in

Ensembl). For confirming the mitochondrial localiza-

tion of RMND1, control fibroblasts transiently expressing

RMND1-EGFP were grown on coverslips, fixed with 4%

paraformaldehyde, and analyzed by immunofluorescence.

This analysis showed a nearly perfect colocalization of the

EGFP signal with mitochondria detected with a SLIRP anti-

body (Figure 3D). Alkaline carbonate extraction of isolated

mitochondria5 from a stable human embryonic kidney

(HEK) cell line expressing RMND1-Myc demonstrated that

it behaves as an integral membrane protein (Figure 3E).

Similar results were obtained for the native protein in

both control and subject fibroblasts (data not shown).

To confirm the pathogenicity of the RMND1 muta-

tion, we used a retroviral vector to express the wild-type
740 The American Journal of Human Genetics 91, 737–743, October
RMND1 cDNA in subject fibroblasts. The RMND1 cDNA

was amplified by OneStep RT-PCR (QIAGEN) with specific

primers modified for Gateway-compatible vectors and was

cloned into pBABE, modified to be Gateway-compatible.4

The Phoenix packaging cell line was transiently trans-

fected with the retroviral construct according to the

HBS/Ca3(PO4)2 method (see Web Resources). Fibroblasts

were infected 48 hr later by exposure to virus-containing

medium in the presence of 4 mg/ml of polybrene.4 Expres-

sion of the wild-type RMND1 cDNA rescued the assembly

defects in the OXPHOS complexes (Figure 4A). (RMND1

C-terminally tagged with either a flag or Myc epitope also

rescued the assembly defects; data not shown). Immuno-

blot analysis with a polyclonal antibody (Sigma) raised

against a peptide antigen (amino acids 336–412) of

RMND1 showed a specific 35 kDa band that increased in

intensity when the cDNAwas expressed from the retroviral

vector (Figure 4B), suggesting that RMND1 is processed

beyond the mitochondrial localization sequence (amino

acid residue 32, predicted by MITOPROT) because the

molecular weight of that species would be 48 kDa. Consis-

tent with this interpretation, analysis of immunopre-

cipitated RMND1 by mass spectrometry (n ¼ 7) failed to

identify a peptide N terminal of amino acid 127, whereas

the coverage of the protein C terminal to this residue was

73%. The steady-state level of RMND1 in subject fibro-

blasts was similar to that in controls (Figure 4B), indicating

that the mutation does not destabilize the protein and that
5, 2012



Figure 5. RMND1 Is Part of a High-Molecular-Weight Protein
Complex that Does Not Assemble in the Subject
(A) Size-exclusion-chromatography analysis was carried out with
mitochondria from HEK cells expressing RMND1-Myc. Immuno-
blotting with antibodies against either the native protein or the
Myc epitope demonstrated that both the endogenous and overex-
pressed proteins are part of a complex of about 240 kDa. The COX
subunit 1 of COX (230 kDa) and LRPPRC (250 kDa) were used as
molecular-weight references.
(B) BN-PAGE analysis of control and subject fibroblasts expressing
RMND1-Myc from a retroviral vector. An antibody directed against
the native protein shows that RMND1 forms a 250 kDa complex
that does not assemble in the subject. The complex is restored in
subject cells expressing RMND1-Myc. SDHA was used as a loading
control.
the phenotype is most likely due to a loss of function of

the mutant RMND1. The steady-state levels of all analyzed

OXPHOS-complex components, as well as mitochondrial

ribosomal proteins in subject fibroblasts expressing the

wild-type RMND1 cDNA, were also comparable to levels

in controls (Figure 4B). Finally, we tested whether expres-

sion of the wild-type RMND1 rescued the mitochondrial-

translation defect in subject fibroblasts. Mitochondrial

protein synthesis was completely restored by retroviral

expression of either RMND1-Myc or RMND1-flag in subject

fibroblasts (Figure 4C).

To further investigate the function of RMND1, we used

RNAi-mediated knockdown of the protein. Three different

Stealth RNAi duplexes were designed with Block-iT RNAi

Designer (Invitrogen). The different RNAi constructs were

transiently transfected into control fibroblasts with Lipo-

fectamine RNAimax (Invitrogen) at a final concentration

of 12 nM. The transfections were repeated on days 3

and 6, and the cells were harvested and analyzed on

day 9. The Stealth KD2 duplex (50�CAAACCAAAUCUGUU

GGGUUCUAAA-30) produced the most robust RMND1

knockdown (Figure 4D, top panel), so we continued the

BN-PAGE analysis with this construct. The OXPHOS-

assembly defects produced by RNAi-mediated knockdown

of RMND1 were very similar to those found in the RMND1

subject (Figure 4D), confirming that RMND1 is required for

normal assembly of the OXPHOS complexes.

We next asked whether RMND1 was part of a protein

complex. We isolated mitochondria from HEK cells stably

expressing RMND1-Myc, solubilized them, and analyzed

them by gel filtration as previously described.16 RMND1-

Myc and the endogenous RMND1 eluted in the frac-

tions between the peak fractions from COX (230 kDa,

Figure 5A) and LRPPRC10 (250 kDa, Figure 5A). To confirm

that RMND1 formed a high-molecular-weight complex,

we carried out a similar analysis by using BN-PAGE. The

complex containing RMND1 ran slightly slower than

that of COX on the first-dimension BN-PAGE, confirming

that it is approximately 240 kDa in size. Strikingly, this

complex almost completely failed to assemble in the

subject cells but was restored by retroviral expression of

wild-type RMND1-Myc (Figure 5B). These data indicate

that the mutation in the coiled-coil domain of RMND1

prevents the formation of a higher-order complex and

that the complex is essential for RMND1 function. To

establish whether the complex contained other proteins,

we immunoprecipitated RMND1-Myc with an Myc anti-

body and ran the immunoprecipitate on a BN-PAGE gel.

Mass-spectrometry analysis of the purified complex identi-

fied only RMND1 (data not shown). Although we cannot

rule out the presence of other proteins at the moment,

this analysis suggests that RMND1 very likely assembles

into a homopolymeric complex.

Although we do not know the exact molecular function

of RMND1, our data show that it is part of a large mito-

chondrial-membrane complex that is required for the

translation of the mitochondrially encoded polypeptides
The Americ
and is thus essential for the biogenesis of the OXPHOS

complexes. The gene products of all the other members

of the RMD/SIF2 family localize to the cytoplasm or

nucleus and have a function in some aspect of meiosis or

sporulation in yeast species. Sif2p, for example, is part of

the Set3 histone deacetylase complex that represses a set

of meiotic genes.17 Although the function of Rmd1p, the

S. cerevisae homolog of RMND1, remains unknown, there

is no evidence that it has a role in mitochondrial transla-

tion or OXPHOS function. RMND1 has apparently evolved

a new function related to mitochondrial translation in

mammalian cells. The substantial decreases in the steady-

state levels in some of the mitochondrial ribosomal sub-

units and the relative decrease in the 16S rRNA in the

RMND1 subject cells both point to a role for RMND1 in

some aspect of the assembly or maintenance of the mito-

chondrial ribosome.

Ribosome assembly is a complex, highly coordinated

process in which protein binding and posttranscriptional

nucleotide modifications drive and stabilize rRNA struc-

tures until the native state is reached. How this is regu-

lated in mammalian mitochondria is largely unknown,

although a few ribosome-biogenesis factors have been

identified. ERAL118,19 and the PPR protein PTCD320 bind

and stabilize the 12S rRNA, and the mitochondrial tran-

scription factor TFB1M is responsible for dimethylating

two highly conserved adenines in a stem loop near the

30 end of the 12S rRNA.21,22 A GTPase, C4orf14 (NOA1),

associates with the mt-SSU, but its precise molecular role

has not been defined.23 Knockdown of any of these fac-

tors compromises mt-SSU assembly and mitochondrial

translation.
an Journal of Human Genetics 91, 737–743, October 5, 2012 741



The only known protein that binds the 16S rRNA is

mTERF4, which forms a complex with the RNA dimethyl

transferase NSUN4 presumably to methylate a cytosine

residue (not yet identified) on the 16S rRNA.24 Interest-

ingly, a tissue-specific knockout of Mterf4 in the heart

results in a large increase in both mt-SSU and mt-LSU

without a corresponding increase in monosome forma-

tion, suggesting that it is not required for the assembly or

stability of the individual subunits per se. The GTPase

MTG1 is thought to play a role in mt-LSU assembly on the

basis of its ability to partially rescue a deletion of the yeast

ortholog, but its precise role has not been defined.25

Assembly of the mature ribosome requires proteolytic

processing of MRPL32, a task performed by the m-AAA

protease.26 C7orf30, a protein of the widely expressed

DUF143 family, was shown to associate with the mt-

LSU,27,28 specifically with MRPL14,29 but its role in the

assembly of mt-LSU and the downstream effects on trans-

lation remain controversial. Aside from the m-AAA pro-

tease in the list above, RMND1 stands out because of all

the proteins involved in ribosome biogenesis, it is the

only one that forms a membrane-anchored complex. We

speculate that this could act to stabilize or position the

mitochondrial ribosome perhaps by linking it through

to the outer membrane. Further detailed studies will be

necessary for testing this hypothesis.
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Appliquée. E.A.S. is an International Scholar of the Howard

Hughes Medical Institute. J.M. is a recipient of a Canada Re-

search Chair. The authors wish to acknowledge the contribu-

tion of the high-throughput sequencing platform of the McGill
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Web Resources

The URLs for data presented herein are as follows:

BLOCK-iT RNAi Designer, http://rnaidesigner.invitrogen.com/

rnaiexpress

Transfection protocol for Phoenix retroviral packaging cell line,

http://www.stanford.edu/group/nolan/protocols/pro_helper_

dep.html
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