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Purpose. Retinal ganglion cell (RGC) death and failed axonal
regeneration after trauma or disease, including glaucomatous and
mitochondrial optic neuropathies, are linked increasingly to
dysfunctional mitochondrial dynamics. However, how mitochon-
drial dynamics influence axon growth largely is unstudied. We
examined intrinsic mitochondrial organization in embryonic and
postnatal RGCs and the roles that mitochondrial dynamics have in
regulating neurite growth and guidance.

MerHODS. RGCs were isolated from embryonic day 20 (E20) or
postnatal days 5 to 7 (P5-7) Sprague-Dawley rats by anti-Thyl
immunopanning. After JC-1 loading, mitochondria were analyzed
in acutely purified RGCs by flow cytometry and in RGC neurites by
fluorescence microscopy. Intrinsic axon growth was modulated by
overexpressing Kriippel-like family (KLF) transcription factors, or
mitochondrial dynamics were altered by inhibiting dynamin
related protein-1 (DRP-1) pharmacologically or by overexpressing
mitofusin-2 (Mfn-2). Mitochondrial organization, neurite growth,
and growth cone motility and guidance were analyzed.

Resurts. Mitochondrial dynamics and function are regulated
developmentally in acutely purified RGCs and in nascent RGC
neurites. Mitochondrial dynamics are modulated differentially by
KLFs that promote or suppress growth. Acutely inhibiting
mitochondrial fission reversibly suppressed axon growth and
lamellar extension. Inhibiting DRP-1 or overexpressing Mfn-2
altered growth cone responses to chondroitin sulfate proteogly-
can, netrin-1, and fibronectin.

Concrusions. These results support the hypothesis that mitochon-
dria locally modulate signaling in the distal neurite and growth
cone to affect the direction and the rate of neurite growth. (Invest
Ophbthalmol Vis Sci. 2012;53:7402-7411) DOI:10.1167/
i0ovs.12-10298
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Central nervous system (CNS) neurons fail to regenerate
after injury or disease due to reduced intrinsic axon
growth ability,'~# insufficient neurotrophic factors,>7 and
extrinsic, glial-associated inhibitors.8-19 Increasingly, evidence
suggests these factors act in part by altering mitochondrial
dynamics and function. Mitochondria can be regulated either
directly or indirectly by proteins that are intrinsic neurite
growth regulators, like Kriippellike families (KLFs),'!:12
PTEN,'3-15 and mTOR'®; neurotrophic factors, like BDNF!7-18
and NGF'2-2!; and by extrinsic growth inhibitors, like Nogo,??
semaphorin 32,2324 and chondroitin sulfate proteoglycans
(CSPGs),?5-27 suggesting mitochondria may modulate signaling
controlling neurite growth.

Mitochondria are heterogeneous organelles, differing in
subcellular distribution, membrane potential (AVy,), and
metabolic activity that act individually or in networks regulated
by fission, fusion, transport, docking, biogenesis, and mitoph-
agy.?%-3% These dynamics are critical to regulating mitochondrial
distribution and bioenergetics,?'-33 and mutations in proteins
regulating mitochondrial dynamics can lead to mitochondrial
dysfunction, and poor cellular and organism health,34 including
retinal ganglion cell (RGC) degeneration.3>3° Mitochondria are
prominent in growth cones in vitro®” and in vivo,?® and
mitochondrial organization is influenced by cues!®37 and
second messenger systems>>4° that regulate neurite growth.
However, largely unstudied is the developmental organization
of mitochondria in neurites during growth, and the roles
mitochondrial dynamics have in neurite growth and guidance.
We demonstrated that AV, and bioenergetics are regulated
developmentally in RGCs with differing intrinsic neurite growth
potentials. Altering intrinsic neurite growth ability by KLFs
modulates mitochondrial dynamics, and altering mitochondrial
fission/fusion dynamics alters neurite growth rate, and growth
cone motility and decision-making.

MATERIALS AND METHODS

Animals

Experiments conformed to the ARVO Statement for the Use of Animals
in Ophthalmic and Vision Research and were approved by the
University of Miami Institutional Biosafety Committee and the
Institutional Animal Care and Use Committee.

Cell Culture

RGCs were purified from male and female E20-P7 Sprague-Dawley rats
(Harlan Laboratories, Indianapolis, IN) by immunopanning,' and
cultured on poly-D-lysine (70 kilodalton [kDa], 10 pg/mL; Sigma, St.
Louis, MO) and laminin coated (2 pg/mL; Sigma) MatTeK dishes (P35G-
1.0-2-C) as described.42
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Flow Cytometry

Purified embryonic day 20 (E20) or P7 RGCs were equilibrated with
the membrane potential-sensitive dye JC-1 (500 nM; 5,5'6,6'-tetra-
chloro-1,1',3.3 -tetracthylbenzimidazolcarbocyanine iodide; Invitrogen,
Carlsbad, CA) in PBS for 20 minutes with or without FCCP (10 uM;
carbonylcyanide-P-trifluoromethoxyphenylhydrazone; Sigma) and 6 to
50 K cells were analyzed (n = 4 experiments) with forward and side
scatter in a Becton Dickinson FACScan (Becton Dickinson, San Jose,
CA). Data were acquired in list mode, evaluated with WinList software
(Verity Software House, Topsham, ME), and data were analyzed
statistically by ANOVA here and below. To prevent differences in
mitochondrial bioenergetics due to differences in E20 and P7 RGC
preparation, E20 and P7 RGCs were dissected, immunopanned, and
loaded with JC-1 in parallel under the same conditions and time frame.

JC-1 Loading and Analysis

RGCs, dissected and immunopanned in parallel and cultured as above,
were equilibrated with JC-1 (153 nM) for 20 minutes*3 before imaging
the distal 100 to 150 um of neurites not longer than 30 minutes post
equilibration. For analysis, a single set of DIC, and exposure-matched
epi-fluorescent JC-1 monomer and J-aggregate emissions captured with
38 HE and 64 HE excitation and emission filter sets (Zeiss, Thornwood,
NY) respectively, was acquired from each neurite. All images were
processed identically with subtraction calculated from the mean
cytoplasmic fluorescence in FCCP (10 uM) treated controls. JC-1
loading efficiency was optimized, and verified by correlative JC-1 and
DIC time-lapse microscopy, and correlative time-lapse and immunocy-
tochemistry as described** with anti-TOM20 (Abcam, Cambridge, MA).
Low (JC-1 monomer) and high (J-aggregate) potential mitochondria
were quantified with the ImageJ mitochondrial analysis plug-in (ImageJ;
National Institutes of Health, Bethesda, MD). Since individual
mitochondria were indiscernible in clusters, clusters were measured
as one for analyzing and discussing area and linear density. Relative
AV, was calculated from the ratio of the mean JC-1 monomer and J-
aggregate emissions at 530 and 590 nm, respectively.

Time-Lapse Microscopy

After treating cultures with mitochondrial division inhibitor-1 (Mdivi-1;
Sigma), time-lapse images were recorded,?> and lamellar and filopodial
protrusion frequencies analyzed as described.® To compare data from
growth cones differing in size and activity levels, data were normalized
to the pre-addition mean.

Oxygen Consumption and Extracellular
Acidification Rates

Oxygen consumption rate (OCR) and extracellular acidification rate
(ECAR) were measured using the XF96 extracellular flux analyzer per
instruction (Seahorse Bioscience, North Billerica, MA). E20 and P5
RGCs were purified and cultured as above in parallel at approximately
50,000 cells per well in XF96 microplates. At 2 days in vitro (DIV), full-
SATO media was replaced with unbuffered Dulbecco’s modified Eagle’s
medium (DMEM; 250 mM glucose, 1 mM sodium pyruvate, and 2 mM
GlutaMax, pH 7.4). After incubating for 30 minutes in the XF Prep
Station, plates were loaded into the XF96 analyzer. OCR and ECAR
were analyzed by XF96 software from four consecutive rate
measurements before and during oligomycin (1 pM) and FCCP (300
nM) injections from 10 (P5) and 7 (E20) replicate wells. The number of
RGCs per well was normalized by quantifying the total DNA per well
(CyQuant; Molecular Probes, Invitrogen).

Mitochondrial DNA (mtDNA) Detection

mtDNA was detected by treating RGC cultures for one hour with 5-
ethynyl-2’-deoxyuridine (EdU, 10 pM) and processed as described.*”
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EdU was amplified with Click-IT Oregon green (C-10083; Invitrogen),
then anti-Oregon green-HRP (1:1000, A21253; Invitrogen), and
tyramide per instructions (T-20912; Invitrogen). EdU puncta were
quantified by the Image]J particle analysis plug-in (NIH).

Neurite Growth Assay

RGCs were co-transfected by suspending 3-500K RGCs in lipofect-
amine (27 pL) with 0.3 pg pMax-GFP (Amaxa Biosystems GmbH,
Cologne, Germany) and 1.7 pg of KLF4, KLF6, or Mfn-2 plasmid (Open
Biosystems, Huntsville, AL) before electroporation (SCN1 program;
Amaxa). Electroporated cells were washed once with NB-SATO,
centrifuged, resuspended in NB-SATO, and plated as above. Mitochon-
dria labeled with MitoTracker CMXROS (Invitrogen) were incubated
for 2 minutes with a 1:10,000 dilution of a MitoTracker CMXROS stock
(1 mM in dimethyl sulfoxide [DMSO]; Invitrogen) in NB-SATO and then
washed 3 times with NB-SATO. Neurite lengths and MitoTracker-
labeled mitochondria were measured with ImageJ (NIH).

Neurite Guidance Assay

CSPG (3 pg/ml; gift from Vance Lemmon), netrin-1, or fibronectin (2
pg/mL; Sigma) stripes were stamped on glass coverslips pretreated
with HCI (1N, 3 hours) as described*® and then overlaid with laminin
(2 pg/mL) in neural basal (Gibco, Grand Island, NY) at 37°C for 15
minutes before culturing RGCs as above. Neurite crossing and length
were analyzed for at least 100 neurites from at least three separate
experiments.

RESULTS

Mitochondrial Mass, A\,, and Bioenergetics Are
Developmentally Regulated in RGCs

RGCs’ intrinsic axon growth ability decreases developmentally
after birth; compared to embryonic day 20 (E20), intrinsic
axon growth ability decreases approximately 5-fold by
postnatal day 2 (P2) and continues to decrease into adult-
hood.! To determine if mitochondrial mass and A\, also are
regulated developmentally in RGCs during this developmental
window, acutely purified E20 and P7 RGCs, purified and
processed in parallel, were loaded with the A\, -sensitive dye
JC-1%34° and analyzed by flow cytometry (Fig. la). JC-1
monomer emissions at 530 nm, representing the total
mitochondrial mass, were lower in E20 RGCs than in P7
RGCs, consistent with an increased respiratory capacity in
postnatal RGCs (e.g., Figs. 2g, 2i). In contrast, JC-1 emission at
590 nm from JC-1 J-aggregates, which only form in high
potential regions within mitochondria and, thus, represent the
proportion of the total mitochondria at a high membrane
potential, was similar in E20 and P7 RGCs (n =4, Fig. 1b). The
ratio of 590 to 530 nm emissions, which indicates AV,
independent of mitochondrial mass, was higher in E20 RGCs
(0.89 * 0.22) than in P7 RGCs (0.41 £ 0.02, Fig. 1¢). Thus,
although E20 RGCs have fewer mitochondria, a greater
percentage of E20 mitochondria are polarized in acutely
purified RGCs, consistent with a greater workload on E20
mitochondria (e.g., Figs. 2g, 2i). Uncoupling with FCCP>%>!
reduced the relative A\, similarly in E20 and P7 RGCs by 89 *
1.3 and 93 £ 1.5%, respectively (Figs. 1a, 1c). These results
indicated mitochondrial mass and A\, are regulated develop-
mentally in RGCs during the same developmental window as
intrinsic RGC axon growth potential.

In cultured E20 and P5 RGCs, axons initially grow at similar
rates during the first DIV. However, by the second DIV, E20
axons increase their growth rate approximately 5-fold, whereas
P5 RGCs slow.! To determine quantitatively if mitochondrial
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Figure 1. Mitochondrial mass and AV, are regulated developmentally in embryonic and postnatal RGCs. Mitochondrial mass and A\, were

analyzed by flow cytometry in acutely purified E20 and P7 RGCs loaded with JC-1. (a) Representative dot plots for JC-1 emission at 530 nm (JC-/
green), representing the total mitochondrial mass, and at 590 nm (JC-1 red), representing the polarized or high potential mitochondrial mass in E20
and P7 RGCs without (Control) and with the mitochondrial uncoupler/depolarizer FCCP (10 uM). (b) E20 RGCs (black bars) had a smaller total
mitochondrial mass (530 nm) than P7 RGCs (white bars), whereas the polarized (590 nm) mitochondrial mass was similar. (¢) E20 RGCs had a
higher mean AV, (590/530 nm ratio) than P7 RGCs. FCCP depolarization reduced AV, similarly at both ages. N =4 experiments of 6000 to 50,000

events (cells) per experiment. Error bars: SEM. *P < 0.05.

mass and AV, correlate with this change in growth rate, we
analyzed total and polarized (high potential) mitochondrial
areas and linear densities, and A\, in the distal neurites of JC-
1-loaded E20 and P5 RGCs at 1, 2, and 3 DIV.

Initially, JC-1 loading specificity and conditions were
optimized to reveal accurately and consistently the total
mitochondrial population and the proportion of the total
population that was polarized. As used in other studies on
mitochondria in neurites, short incubation times with JC-1
(e.g., 3-5 minutes)>*>3 led to high variability and incomplete
equilibration likely due to the slow equilibration kinetics of JC-
1.43 High concentrations of JC-1 (e.g., 3-30 uM)>2>-% led to
apparent toxicity, including gross morphologic changes in
neurites, mitochondrial deformation, saturated cytoplasmic JC-
1, and non-specific J-aggregates. Thus, we used a loading
concentration optimized to 153 nM, approximately 20 to 200
times lower than used previously, with careful pre-equilibra-
tion and without JC-1 washout*? to prevent re-equilibration
artifacts. Before imaging, JC-1 was equilibrated for 20 minutes
at which point J-aggregates reached their maximum, similar to
the time course reported in other cell types.>> JC-1 specificity
for mitochondria was confirmed with correlative JC-1 imaging,
time-lapse DIC microscopy, and immunocytochemistry®® (not
shown). JC-1 monomers revealed the total mitochondrial
population ranged from round to filamentous organized
individually or in larger complexes (Figs. 2a, 2b). J-aggregates
ranged from small puncta within mitochondria to entire
mitochondria, indicating AV, heterogeneity within and
between mitochondria. Uncoupling mitochondria with FCCP
reduced J-aggregates to barely detectable levels (Fig. 20),
indicating proper JC-1 optimization.

To determine if mitochondrial complex size changes during
neurite growth, total and polarized mean mitochondrial areas
were analyzed in the distal neurites and growth cones of E20 or
P5 RGCs over 3 DIV (Figs. 2d-f). At 1 DIV, total mitochondria,
detected by JC-1 monomer emissions, were organized in larger

complexes at both ages that, by 2 DIV, decreased in area by
75% in E20 RGCs and by 54% in P5 RGCs (Fig. 2d), and then
remained similarly sized at both ages through 3 DIV, consistent
with early mitochondrial biogenesis in neurites followed by
redistribution as neurites elongate. Time-lapse imaging of
mitochondrial transport does not support the selective
transport of mitochondria from the cell soma to the distal
neurite during neurite growth (not shown). Polarized areas
within mitochondria, detected by JC-1 J-aggregate emissions,
were smaller in E20 RGCs than in P5 RGCs and remained
similarly sized over 3 DIV. In contrast, polarized areas in P5
RGCs increased in size 45% between 1 and 2 DIV before
decreasing in size 44% by 3 DIV.

To determine if mitochondrial density also changes in the
distal neurite, we measured the linear mitochondrial density
(LMD; mitochondrial area per unit length of axon) of the total
and polarized regions. The total LMD also changed similarly at
both ages (Fig. 2e). At 1 DIV, the LMD was similar in both ages
before decreasing in E20 RGCs 61% and in P5 RGCs 52% by 2
DIV, and then remaining constant through 3 DIV. Like area, the
polarized LMD in E20 neurites was lower than in P5 at 1 DIV
and remained stable over 3 DIV. In contrast, the polarized LMD
in P5 neurites increased 102% by 2 DIV. Like area, by 3 DIV the
polarized LMD in P5 neurites decreased 74% to below 1 DIV
levels. Thus, the mean total mitochondrial complex area and
the LMD changes similarly as E20 and P5 neurites elongate.
However, the polarized mean area and polarized LMD spikes in
P5 neurites at 2 DIV during the time frame when E20 neurite
growth rate accelerates and P5 neurite growth rate slows.

These differences in polarized LMD translated to differences
in the relative A\r,,. Compared to 1 DIV, the relative A\, in
E20 RGCs increased 198% by 2 DIV (Fig. 2d) and remained
stable through 3 DIV, suggesting E20 mitochondria reached a
steady state conducive to supporting sustained neurite growth.
In contrast, the relative Ay, in P5 neurites spiked at 2 DIV,
increasing 360% before reversing to 1 DIV levels, suggesting
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Figure 2. In nascent RGC neurites, mitochondrial Ay and function are regulated developmentally. (a-c¢) DIC images of the distal neurite and
growth cone (GC). JC-1 monomer emission at 530 nm (green) revealed total mitochondria and JC-1 J-aggregate emission at 590 nm (red) revealed
the high potential, polarized regions within mitochondria. Total mitochondria were detected as individuals (arrows) and as complexes
(arrowbeads) that differed in their degree of polarization ranging from partial (arrows, arrowbeads) to complete (open arrowhbeads). (a) E20 RGC
representing the general organization of mitochondria in large complexes (arrowhead) in E20 and P5 RGCs at 1 DIV. (b) P5 RGC representing
mitochondrial redistribution to smaller clusters in E20 and P5 RGCs by 2 DIV. This P5 RGC also shows increased polarization seen in P5 RGCs at 2
DIV. (¢) FCCP (10 uM) blocked J-aggregates, but not JC-1 monomer uptake. (d-f) Total and polarized mean area (d), LMD (e), and AY,, (f) were
measured at 1, 2, and 3 DIV. (d) Mean areas decreased in E20 (black) and P5 (wbhite) neurites by 2 DIV. In contrast, polarized areas were greater in
P5 at 1 DIV and increased further by 2 DIV before returning to 1 DIV sizes by 3 DIV. (e) LMDs were similar at 1 DIV, and then decreased similarly in
E20 and P5 RGCs by 2 DIV, and then remained similarly sized through 3 DIV. Like mean area, the polarized LMD was initially higher in P5 RGCs at 1
DIV and then increased further by 2 DIV before returning to 1 DIV levels by 3 DIV. () AV, increased in E20 and P5 from 1 to 2 DIV, but to a much
greater extent in P5. A\, remained stable in E20 RGCs through 3 DIV, but reversed in PS5 RGCs by 3 to 1 DIV levels, lower than E20. (g-i) Oxidative
phosphorylation and glycolysis measured at 2 DIV in E20 and P5 RGCs with Seahorse Bioscience technology. (g). Basal respiration is similar in E20
and P5 RGCs, whereas maximal respiration is greater in P5 RGCs. (h). In contrast, basal and maximal glycolysis is greater in E20 RGCs. (i) The basal
and maximal OCR/ECAR ratios are greater in P5 RGCs. Error bars: SEM. Bar: 10 um, n > 30 neurites per age per DIV. *P < 0.001, **P < 0.05.

potential metabolic or oxidative stress in P5 RGC neurites at 2 To determine if these differences in E20 and P5 Ay, at 2
DIV. Together, these results indicate Ay, is regulated DIV correlate with differences in mitochondrial and cellular
developmentally in RGC neurites with differing intrinsic bioenergetics, we measured the OCR and the ECAR rate in E20
neurite growth potentials largely due to developmental and in P5 RGCs at 2 DIV using Seahorse Bioscience technology

differences in the regulation of mitochondrial polarization at (Figs. 2g-i). At 2 DIV, the basal OCR was similar in E20 and P5
2 DIV. RGCs. However, the maximum OCR was greater in P5 RGCs
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(Fig. 1g) consistent with increased oxidative phosphorylation
(OXPHOS) in P5 RGCs and the increased polarized areas, LMD,
and Ay, observed in P5 neurites. In contrast, basal and
maximum ECARs were greater E20 RGCs (Fig. 1h), indicating a
greater basal glycolytic rate and capacity in E20 RGCs. Finally,
the ratio of OCR to ECAR shows that P5 RGC’s energy
production depends more on OXPHOS than on glycolysis than
E20 RGCs. One caveat is that the Seahorse does not distinguish
mitochondria in neurites from mitochondria in cell bodies.
Nevertheless, together these data indicated E20 and P5 RGCs
differ with respect to their bioenergetics at a time point when
neurite growth rate is regulated differentially in E20 and P5
RGCs. Specifically, postnatal development is characterized by
an increase in neurite mitochondrial polarization and whole
cell maximum OCR.

Altering Intrinsic Growth and Mitochondrial
Organization

To determine if altering intrinsic neurite growth ability
regulates mitochondrial dynamics, we over-expressed KLFs
that either suppress (KLF4) or enhance (KLFO6) intrinsic neurite
growth®” (Fig. 3). KLF4 reduced MitoTracker-labeled mito-
chondrial complex size 65 *= 0.5% in E20 RGCs (n = 30
neurites) and 65 *= 0.5 % in P5 RGCs (z = 30 neurites), but did
not decrease mitochondrial density at either age (Fig. 3a). KLF6
also reduced MitoTracker-labeled mitochondria at both ages,
and to a greater extent than KLF4 (Fig. 3a). In contrast to KLF4,
KLF6 reduced mitochondrial density in E20 and P5 RGCs.
These results showed that KLF family transcription factors
regulate mitochondrial size and density, and suggest a
hypothesis that the smaller, less dense mitochondria in the
distal neurite, seen in embryonic RGCs and after KLF6
overexpression, are associated with or are at least sufficient
to support the enhanced neurite growth seen in these two
situations.

To determine if altered mitochondrial dynamics by KLFs
reflected reduced mitochondrial biogenesis, mtDNA replica-
tion was analyzed in E20 and P5 RGCs, and in KLF4 or KLF6
over-expressing RGC neurites by detecting EAU incorporated
into replicating DNA.5%5% After a 1-hour EdU perfusion, EQU
was detected at similar levels in E20 and P5 RGCs as individual
puncta, and in clusters in neurites and in 60 of 60 growth
cones analyzed (e.g., Fig. 3b), similar to the distribution of total
mitochondria in E20 and P5 neurites at 1 DIV (e.g., Fig. 1a),
supporting the hypothesis that these sites represent local
mitochondrial biogenesis in the neurite and in the growth
cone. In contrast, KLF4 reduced EdU puncta in E20 neurites by
98% * 0.4% (n=30) and in P5 neurites by 92% *= 7% (n = 30),
suggesting reduced biogenesis may be associated with the
suppressed neurite growth induced by KLF4. In contrast, KLF6
did not significantly lower EdU-positive puncta despite smaller,
less dense mitochondria, indicating greater mtDNA replication
per mitochondrion (Fig. 3¢). Thus, mitochondrial biogenesis is
similar in E20 and P5 RGC neurites early when neurite growth
rate is similar. However, altering intrinsic growth by KLFs can
differentially regulate mtDNA replication and, thus, biogenesis.

Mitochondrial Dynamics Regulate Neurite Growth
Rate and Growth Cone Motility

Since altering KLF transcription factors altered mitochondrial
dynamics, we asked whether altering mitochondrial dynamics,
in turn, affects neurite growth by inhibiting the mitochondrial
fission-inducing protein, dynamin related protein-1 (DRP-1)
with mitochondrial division inhibitor-1 (Mdivi-1).°%°! Consis-
tent with inhibiting fission, Mdivi-1 increased mitochondrial
lengths in E20 and P5 RGC neurites (Fig. 4). Within 20
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mean mitochondrial area, density, and mtDNA replication. (a)
Normalized to E20, E20 (black) and P5 (white) control (Cntrl) RGC
mitochondria detected with MitoTracker CMXROS had similar mean
areas at similar densities. In contrast, KLF4 reduced the mean area in
E20 and P5 RGCs, but not density at 1 DIV. KLF6 reduced the mean
area in E20 and P5 RGCs to lower levels than KLF4. KLF6 also reduced
the mean density in E20 and P5 RGCs. (b) mtDNA was detected by
amplifying incorporated EAU with Click-IT-Oregon green followed by
anti-Oregon green-HRP tyramide amplification (green), anti-B3-tubulin
(red), GC. (¢) KLF4 but not KLF6 reduced EdU incorporation in E20
(black) and P5 (white) RGCs. Error bars: SEM. Bar: 10 pm. n > 30
neurites per condition, *P < 0.0001, **P < 0.05.

minutes, total and polarized mitochondria were organized as
long filaments (Fig. 4a). Though mitochondrial complex
lengths doubled in E20 and P5 RGCs, complex lengths in P5
neurites were approximately 2-fold longer than in E20 neurites,
indicating developmental differences in mitochondrial fission/
fusion dynamics.

To determine if altering mitochondrial fission/fusion dy-
namics elicits changes in neurite growth, we analyzed high-
resolution, time-lapse recordings of RGC neurites perfused
with Mdivi-1 (20 pM). Coincident with increased mitochondrial
length, Mdivi-1 reversibly suppressed neurite growth rate and
lamellar, but not filopodial, protrusion, resulting in slow-
growing filopodial growth cones (Figs. 5a-c¢). Mdivi-1 suppres-
sion was protracted; neurite growth rate and lamellar
protrusion decreased continually over 20 to 40 minutes (e.g.,
Figs. 5b, 5¢) averaging 0.7% * 22% and 38 * 5%, respectively
(n = 5 neurites, Fig. 5d) of their pre-Mdivi-1 means. In one
RGC, the neurite slowed and then retracted after Mdivi-1
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perfusion. Neurite growth and lamellar protrusion returned to
normal after Mdivi-1 washout over a similar time course (Fig.
5d). Mdivi-1 also slightly reduced filopodial protrusions,
though not to statistical significance (Fig. 5d), that returned
to the pre-addition protrusion rate after washout. Reperfusing
Mdivi-1 after washout again suppressed neurite growth rate
and lamellar protrusion (n = 3; e.g., Figs. 5b, 5¢), suggesting
mitochondrial fission/fusion dynamics regulate neurite growth
rate and growth cone lamellar protrusion activity. Moreover,
increased mitochondrial length in neurites correlates with
reduced neurite growth.

To determine if Mdivi-1 suppresses neurite growth gener-
ally, Mdivi-1 was perfused before neurite initiation (Figs. 5e-g).
In the presence of Mdivi-1 (0-20 pM), E20 and P5 RGCs
extended neurites with phenotypically normal growth cones
(Fig. 5e) at rates equal to control RGCs at either age (Fig. 5f;
note embryonic RGC axon growth rate advantage compared to
postnatal RGCs). However, as detected by MitoTracker,
mitochondrial size and density were reduced in E20 neurites
78 and 83%, respectively (n = 30 neurites), and in P5 neurites
86 and 87%, respectively (n = 30 neurites, Fig. 5g) consistent
with decreased fission increasing net fusion in the cell body
and, thus, reducing mitochondrial transport into nascent
neurites.3* The small mitochondria present in nascent neurites
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in the presence of Mdivi-1 may differ with respect to their
fusion machinery or represent incomplete DRP-1 inhibition.
These results suggested that acutely increasing mitochondrial
fusion in neurites and in growth cones, but not Mdivi-1 toxicity
nor inhibiting DRP-1 activity per se, regulates neurite growth
rate and lamellar protrusion. Furthermore, like mitochondria in
E20 neurites and after KLFG over-expression, small mitochon-
dria in neurites support growth.

Mitochondrial Dynamics Regulate Growth Cone
Decision-Making

Since increasing mitochondrial fusion reduced lamellar protru-
sion and lamellar protrusion can regulate growth cone steering
responses to guidance cues,*® we asked if increasing mito-
chondrial fusion changes growth cone steering responses to
physiologically relevant molecules that either inhibit or permit
neurite growth. Mitochondrial fusion was increased either
pharmacologically with Mdivi-1 or genetically by overexpress-
ing mitofusin-2 (Mfn-2), which, like Mdivi-1, increased mito-
chondrial length without altering mitochondrial density (Figs.
6a-c). Growth cone steering responses then were analyzed in
an in vitro stripe assay*® pairing laminin stripes against either a
stripe with an inhibitory factor, CSPG, or a permissive factor,
either netrin-1 or fibronectin. In control cultures, RGCs
typically turn and do not cross on to CSPG stripes. However,
compared to 6.7% in control cultures (z = 100, Fig. 6e),
increasing mitochondrial fusion with Mdivi-1 increased CSPG
stripe crossing to 20% (n = 100), whereas Mfn-2 increased
stripe crossing to 45% (n = 100), without altering neurite
growth rate (Fig. 6f). Increasing mitochondrial fusion also
altered growth cone steering responses to stripes with
permissive cues. Mdivi-1 decreased crossing from netrin-1
and fibronectin to laminin (Figs. 6g, 6h). These results
indicated mitochondrial fission and fusion dynamics regulate
growth cone steering responses to inhibitory and permissive
cues, suggesting that mitochondrial dynamics have a general
role in growth cone decision-making.

DISCUSSION

These data showed that mitochondrial dynamics regulate
neurite growth rate and guidance by documenting several
new findings. First, mitochondrial reorganization in embryonic
and postnatal RGCs follows a similar pattern during early
neurite growth characterized initially by local biogenesis in
nascent neurites and growth cones. Consistent with previous
studies,®2-%% E20 and P5 RGC mitochondria were organized
primarily in clusters in nascent neurites and all growth cones
during growth consistent with de novo biogenesis in the
neurites and growth cones. These clusters contained newly
replicated mtDNA and a low Aym that increased as the clusters
reduced in size during neurite elongation, consistent with the
hypothesis that maturing mitochondria are transported out of
local biogenic clusters in neurites and growth cones to support
elongating neurites. This proposition extends the potential for
mitochondrial biogenesis described in peripheral neurites>®5°
to localized sites in CNS neuron neurites and to growth cones.

Second, optimal mitochondrial dynamics appear to support
enhanced neurite growth. In nonneuronal cells, mitochondrial
morphology, biogenesis, distribution, and signaling change with
the state of the cell.°>°° Our results suggested mitochondrial
dynamics also change with the state of neurite growth.
Suppressing mitochondrial fission pharmacologically with
acute Mdivi-1 (e.g., Figs. 5a-d) or increasing mitochondrial
fusion genetically with Mfn-2 overexpression suppressed
neurite growth (not shown) in embryonic and postnatal RGCs.
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Similarly, neurites with enhanced growth potential, for example
E20 RGCs! or KLF6-overexpressing RGCs,>” had smaller, less
dense polarized mitochondria, and similar mtDNA replication
rates in the distal neurite and growth cone. Conversely,
mitochondria in neurites with suppressed neurite growth
potential, for example KLF4-overexpressing and P5 RGCs,
deviated from these dynamics. In KLF4-overexpressing RGCs,
though mitochondria were smaller, mtDNA replication was
suppressed in distal neurites, suggesting dysfunctional mito-
chondrial biogenesis and likely reduced bioenergetics, which
depends on proper mtDNA replication in neurons.®” In P5
RGCs, polarized mitochondrial areas, density, and A\, were
greater than in E20 RGCs over the first 2 DIV before decreasing
dramatically by 3 DIV. A\, is dynamic, fluctuating regionally
and globally,>> in growth cones,®® in dendrites,>? during
axogenesis,®? during mitochondrial transport,> and in response
to synaptic activity,>® and growth factors and guidance cues.%®
We extended these findings by showing Ay, also is dynamic in
RGCs with differing intrinsic neurite growth potentials.
Altered mitochondrial polarization correlated with differenc-
es in embryonic and postnatal bioenergetics. Regenerating
axons appear to rely less on OXPHOS and more on glycolysis,
analogous to the low oxygen environment during prenatal
development.®® This may favor embryonic RGCs and explain
the variable Ay, in postnatal RGCs that may be under stress
adjusting from OXPHOS to glycolysis to meet the metabolic
demands required for neurite regeneration.”®”! Postnatal RGCs
exhibited increased respiratory capacity and reduced glycolytic
capacity compared to embryonic RGCs, indicating a switch
from glycolysis to OXPHOS as the main source of metabolic
energy in postnatal RGCs. A switch back to glycolysis, that is the
Warburg effect,”> may be necessary to support regenerative
neurite growth. In nonneuronal cells, the regulation of
glycolysis and OXPHOS is critical to proper progenitor
proliferation and biosynthesis, independent of ATP produc-
tion,”? indicating neurite growth signaling regulated by the
balance between glycolysis and OXPHOS warrants further study.
Third, inhibiting DRP-1-mediated mitochondrial fission
reversibly suppressed neurite growth rate and lamellar
protrusion in RGCs, suggesting mitochondrial fission/fusion
dynamics influence cytoskeletal remodeling regulating lamellar
protrusion. The temporal and spatial regulation of axon growth
rate and growth cone motility is fundamental to patterning in
the nervous system,”4 neuroplasticity in learning and memo-
ry,”> and regeneration.”® Though many cytoskeletal mecha-
nisms underlying neurite growth’”7® and growth cone
protrusive initiations**7° have been described, the control
over neurite growth rate, and the location, rate, and turnover
of lamellar protrusions in growth cones is unclear. Recently,
we showed that altering signaling endosome localization can
alter neurite growth rate, and lamellar and filopodial protru-
sion and turnover.*> Here, we extended those observations by
showing that mitochondrial dynamics also may modulate the
mechanisms regulating neurite growth rate and lamellar
protrusion, supporting the idea that organelle organization
and dynamics define subdomains that regulate locally cyto-
skeletal dynamics underlying axon growth and growth cone
protrusive activity. Like signaling endosomes,®° mitochondria
also regulate intracellular signaling pathways, including Ca?"
and cAMP signaling, that can regulate neurite growth rate and
lamellar protrusion.®!82 Thus, altering mitochondrial organiza-
tion may alter locally second messenger signaling regulating
neurite growth rate and cytoskeletal assembly in growth cones.
Finally, altering mitochondrial fission/fusion dynamics
altered RGC growth cone steering responses to guidance cues
that steer RGC axons in vitro and in vivo. Growth cones guide
axons to their targets by altering their motility in response to
intrinsic and extrinsic factors in the developing embryo.5?
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However, though progress has been made on the temporal and
spatial control of second messenger transients during growth
cone turning,3%85 how growth cones integrate information
from multiple second messengers simultaneously to effect
changes in axon growth remains unclear. Here, we showed
that mitochondrial fission/fusion dynamics may regulate
growth cone signaling generally, since altering mitochondrial
dynamics altered growth cone turning responses to inhibitory,
CSPG, and permissive, netrin-1, and fibronectin guidance cues.
Mitochondria are prominent in all growth cones in vitro®® and
in vivo®” during development®® and regeneration,®* and thus
mitochondria are positioned temporally and spatially to
modulate or integrate signals from multiple sources.

Dysfunctional mitochondrial dynamics and reduced bioen-
ergetics are linked to impaired neuroplasticity and neuronal
degeneration in Alzheimer’s disease, Parkinson’s disease,”®
diseases of the visual system,”® psychiatric disorders,®! and
stroke.”? The development of therapeutics aimed to enhance
mitochondrial function in these disorders is a persistent
challenge. Thus, understanding how mitochondrial dynamics
regulate neurite growth and local protrusive activity may reveal
novel strategies for developing therapeutics to treat diseases
and injury in the CNS.
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