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Abstract
Background—Most of the current designs used for Phase I dose finding trials in oncology will
either involve only a single cytotoxic agent or will impose some implicit ordering among the
doses. The goal of the studies is to estimate the maximum tolerated dose (MTD), the highest dose
that can be administered with an acceptable level of toxicity. A key working assumption of these
methods is the monotonicity of the dose–toxicity curve.

Purpose—Here we consider situations in which the monotonicity assumption may fail. These
studies are becoming increasingly common in practice, most notably, in phase I trials that involve
combinations of agents. Our focus is on studies where there exist pairs of treatment combinations
for which the ordering of the probabilities of a dose-limiting toxicity cannot be known a priori.

Methods—We describe a new dose-finding design which can be used for multiple-drug trials and
can be applied to this kind of problem. Our methods proceed by laying out all possible orderings
of toxicity probabilities that are consistent with the known orderings among treatment
combinations and allowing the continual reassessment method (CRM) to provide efficient
estimates of the MTD within these orders. The design can be seen to simplify to the CRM when
the full ordering is known.

Results—We study the properties of the design via simulations that provide comparisons to the
Bayesian approach to partial orders (POCRM) of Wages, Conaway, and O'Quigley. The POCRM
was shown to perform well when compared to other suggested methods for partial orders.
Therefore, we comapre our approach to it in order to assess the performance of the new design.

Limitations—A limitation concerns the number of possible orders. There are dose-finding
studies with combinations of agents that can lead to a large number of possible orders. In this case,
it may not be feasible to work with all possible orders.

Conclusions—The proposed design demonstrates the ability to effectively estimate MTD
combinations in partially ordered dosefinding studies. Because it relaxes the monotonicity
assumption, it can be considered a multivariate generalization of the CRM. Hence, it can serve as
a link between single and multiple-agent dosefinding trials.
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Introduction
The primary objective of a Phase 1 clinical trial in oncology is the estimation of the
maximum tolerated dose (MTD). The MTD is defined as the highest dose that can be
administered with a ‘tolerable’ level of toxicity. This ‘tolerable’ level is based upon the
probability that a patient in the trial experiences a dose-limiting toxicity (DLT), which is
typically defined by side-effects that are considered severe, and in certain cases, potentially
life threatening. The majority of the statistical methods underlying the experimental design
of dose-finding studies will entail the assumption that the probability of toxicity increases
monotonically with the dose. This assumption is generally a reasonable one, in particular in
studies involving a single cytotoxic agent. Here, the administration of higher doses can be
expected to result in DLTs in a higher percentage of patients. In the language of Robertson,
Wright and Dykstra [1], the probabilities of DLTs follow a ‘simple order.’ When studying
multiple agents, the goal of the trial is to locate a dose combination or combinations with an
acceptable toxicity rate. The set of dose combinations with acceptable toxicity forms a
contour in two dimensions. The monotonicity assumption may not hold since the ordering of
the toxicity probabilities could possibly be unknown for several of the available drug
combinations. This is clearly seen in the simplest case where we have two drugs at two
levels. Suppose that the second level corresponds to an increase in one of the drugs but a
decrease in the other. Then, the ordering of the toxic probabilities is not known. Returning to
multiple combinations and drug levels, some of the orderings between doses are known
while others are not. We describe the whole situation as that of a partial ordering. Various
possible partial order scenarios are described in [1], whereas parameter estimation subject to
order restrictions is discussed in Dunbar et al. [2], as well as in Hwang and Peddada [3]. In
this article we investigate a method for trials in which the toxicity order isn't fully known.
The proposed method builds off of the continual reassessment method (CRM), introduced
by O'Quigley et al. [4], which has demonstrated near-optimal properties in trials when the
order is known.

In its original form the CRM is a Bayesian method based on the use of a simple working
model and sequential updating of the dose–toxicity relationship to estimate the dose level at
which to treat the next available patient. O'Quigley and Shen [5] suggested a two-stage
design for MTD estimation that employs the same likelihood as that for the original CRM
but uses a distinct initial dose escalation stage until we have at least one toxicity and one
nontoxicity. The first stage of escalation is decided by the investigators and makes no appeal
to any model. The design we propose, in part, resembles that of the two-stage CRM of [5] in
that we have an initial escalation stage involving a scheme resembling that of the classic Up-
and-Down, followed by a second stage that leans upon maximum likelihood estimation. As a
consequence the approach has the advantage of building off the CRM. Suppose that we have
a discrete set of k preset dose levels, d1, …, dk. The usual CRM begins by assuming a
simplified working dose–toxicity curve, ψ(di, a), that is monotonic in both dose levels, di,
and the parameter, a, for instance, the logistic curve or power model. After having included j
subjects, we obtain an estimate, âj, based on the likelihood function of a. The dose given to;
the (j + 1)th patient is the level, di, that minimizes Δ(ψ(di, âj), θ), where θ is the target
probability of a DLT and Δ(v, w) is some measure of distance, such as Euclidean distance.
As in other areas of statistics the notion ‘distance’ can be taken in a looser sense than the
given mathematical one and, for example, we may allow it to be asymmetric [6]. The
procedure continues until some predetermined sample size of patients is exhausted or a
stopping rule takes effect.

Although the number of Phase 1 trials that use multiple-agent combinations is increasing,
there are relatively few statistical methods for designing these trials. Several themes emerge
from the published methods. These include the need to use as much of the ordering
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information as possible and the need to reduce the dimension of the problem in terms of the
number of combinations to be considered. In many trials involving combinations of agents,
investigators assume an ordering for a specific set of combinations at the start of the trial
and do standard dose escalation methods for the chosen ordering [7]. The disadvantage of
this method is that it limits the number of combinations that can be considered and could
produce misleading results if the initial ordering is incorrect. A second method fixes the
second agent at its lowest dose and does standard dose escalation for the first agent. When a
‘MTD’ combination is reached for the first agent by the usual ‘3+3’ rules, the first agent is
fixed at this point, and a standard ‘3+3’ scheme is performed for the second agent. The final
dose of this second phase is taken as the ‘MTD’ combination. It has been established that the
CRM has superior statistical properties to those of traditional escalation schemes [8]. Given
these properties, this approach is likely to have poor statistical properties for combinations
of agents and be wasteful of resources.

Wang and Ivanova [9] propose a Bayesian method for two agent combinations where the
prior information is based on the single agent toxicity profiles. The allocation of patients to
doses is done in a way that is similar to the CRM of O'Quigley et al. [4]. They lay out an
initial grid of points designed to move quickly towards a ‘solution’, specifically, a dose
combination with acceptable toxicity. These initial allocations are essentially a series of
individual ‘standard’ Phase 1 trials where the dose-toxicity relationship can be assumed to
be monotone. Yin and Yuan [10] propose a Bayesian dose-finding design that incorporates a
copula-type model for estimating the toxicity probabilities of drug combinations. Another
design proposed by Yin and Yuan [11] is a Bayesian design for dose-finding based on latent
contingency tables. The approach of Wages et al. [12], as well as the one described in this
current work, leans to some degree upon the framework of Conaway et al. [13], which
identifies all possible simple orders for the toxicity probabilities that are consistent with the
known orderings among the treatment combinations. Each of these simple orders consistent
with a partial order can be thought of as a model. The idea here is to focus estimation of
toxicity probabilities within a small number of simple orders, and allow the properties of the
CRM [14] to provide efficient estimates of MTD combinations within these orders. When
the toxicity order is fully known, the method we propose reduces to the CRM. The
remainder of the article is organized as follows: Second section gives an example of a
partially ordered trial. Third section presents the probability model and inference associated
with the new design, while fourth section provides simulation results comparing the new
method to the Bayesian approach to partial orders of Wages et al. [12]. We conclude this
article with some discussion on the implications of the new design together with some
additional topics of interest for further research.

An example of a partially ordered trial
Consider the dose finding study on combinations of topotecan and irinotecan described by
Lokich [15]. The treatment combinations chosen by the investigators are displayed in Table
1. The toxicity ordering between some of the treatment combinations is not known.
Specifically, the trial consists of eight drug combinations (doses), d1,…, d8. The toxicity
ordering between doses d1 and d2 is known due to the fact that the dose of Irinotecan
remains the same while the dose of Topotecan increases. This is also the case for the
ordering between doses d3 and d4. However, the order relationships between doses d2 and d3
and between d4 and d5 are not known because the dose of Topotecan decreases while the
dose of Irinotecan increases. If we continue to assess the known and unknown toxicity order
relationships in this way, we can determine that the following order relationships hold
among those that are known: (1) d1 → d2, (2) d3 → d4, (3) d5→ d6, and (4) d7 → d8. In
these diagrams, combinations whose orderings are known are connected by arrows, with the
treatment to the right being more toxic, that is, it is known that combination d8 is more toxic
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than d7, combination d6 is more toxic than d5, and so on. Escalation to a previously untried
dose depends on a specification prior to the trial of ‘possible escalation combinations’
associated with each dose. For example, the possible escalation combinations for d1 are d2
and d3, meaning that if d1 was tried and found to be well tolerated, then escalation could
proceed to the previously untried levels d2 or d3. Taking into account the subset of drug
combinations for which we know the toxicity order, we aim to formulate the possible
orderings of the toxicity profile. Denoting the probability of a DLT at combination di by
R(di), i = 1,…, 8, the simple order:

is consistent with the partial order. In general, we suppose that the dose combinations follow
a partial order for which there are M possible simple orders consistent with the partial order.

Therefore, we have a class of M models of interest indexed by m = 1,…,M. To gain further
generality, we can take account any prior information concerning the plausibility of each
model and so introduce p(m) = {p(1),…, p(M)}, where p(m) ≥ 0 and Σmp(m) = 1. This
would then assign a set of prior model weights so that if any initial knowledge allows us to
consider that some orders are more likely than others, then this knowledge can be used to
sharpen our inference. Even when there is no prior information available, we can formally
proceed in the same way by placing equal probability on each model and hence use p(m) =
1/M. In the context of the current example, the trial requires the investigation of the eight
simple orders in Table 2. In the table, we suppress the ‘R(·)’ notation and just display the
labels for the combinations. Our preference is to allow the toxicity probabilities, given an
ordering, to be modeled by a parametric model from the CRM class of models. Given the
properties of the CRM, it is reasonable to believe that a method that quickly reduces to the
CRM on the correct ordering would have excellent properties in terms of identifying dose
combinations with acceptable toxicity.

Dose escalation in partially ordered trials
Toxicity probability model

Our main focus is on Phase 1 trials with a small number of possible orders as illustrated in
the example in second section. In general, we assume that there are k drug combinations, d1,
…,dk, to be studied, and assume that the combinations follow a partial order for which there
are M distinct simple orders consistent with the partial order. A key idea to this design is
that each possible simple order can be thought of as a model. This ties in with the ideas of
Bayesian model choice. For a particular ordering, m(m = 1,…, M), we model R(xj), the true
but unknown probability of dose-limiting toxic response, Yj, at drug combination Xj = xj; xj
∈ {d1,…,dk}, via:

(1)

for some one parameter model Ψm(xj,a) and a defined on the set A. For each dose di, there
exists some ai ∈ A such that R(di) = Ψm(di,ai). Specifically, the model is rich enough to
exactly reproduce the true probability of toxicity at each dose. There is a wide variety of
choices for potential working models and the simple power model:

(2)
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has been used by several investigators and appears to work well in practice. Here, 0 < a < ∞
and 0 < αm1 < … < αmk < 1 represents the skeleton of the model [16,17]. Once a model has
been chosen and we have data in the form of Ωj = {x1,y1,…,xj,yj}, we obtain an estimate for
the parameter a and subsequently generate estimates Rˆ(di), i = 1,…, k of the true unknown
toxicity probabilities at each of the k drug combinations. The target dose level is that having
a corresponding toxicity probability as close as possible to the target rate θ. The drug
combination xj = di assigned to the jth patient enrolled in the trial is such that:

(3)

is minimized. For partial orders, there may exist more than one dose with toxicity
probability closest to the target. In this case, we would randomly choose among the set of
candidate treatments. Equation (3) translates the idea that the overall objective of the study
is also the objective for each included patient. The design is an iterative sequential design
whereby the treatment combination chosen for the hypothetical (n + 1)th patient is also the
current best estimate for an MTD combination.

Inference
The estimates for the toxicity probabilities at each of the available drug combinations can
either be likelihood based or Bayesian. In this article, we lean upon the likelihood approach
to the CRM of O'Quigley and Shen [5]. After inclusion of the first j patients into the study,
the logarithm of the likelihood under dose–toxicity ordering m is given by:

(4)

where any terms not involving the parameter a have been equated to zero. For each of the M
distinct orderings, the above expression can be maximized in order to generate an estimate,
âm, for a. When the method can effectively estimate a single ‘correct’ ordering, then the
approach reduces to a standard phase I trial. We weight each of the M candidate models as
we make progress. A plausible choice for model weights is then given by:

where a particular π(m) is considered as the weight of evidence in favor of model m. The
expression Lm(âm∣Ωj) is the value of the log-likelihood evaluated by substituting the
maximum likelihood estimate of the parameter. This maximum point on the log-likelihood
function corresponds to the value of the maximum likelihood estimate for each given value
of m.

Prior weights can be specified and Bayesian methods could be used to down-weight models
that are less plausible. Let p(m) be the prior probability that model m is the ‘best’ model.
Specifically, p(m) is our prior state of belief that model m, fitted to the data, provides the
‘best’ model for the design. For a set of prior probabilities, p(m), m = 1,…, M, generalized
weights are then given by:
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(5)

The inclusion of prior probabilities, p(m), in the π (m) is not a true Bayesian approach. A
true Bayesian approach to model selection requires both the prior p(m) on the model and a
prior probability distribution on the parameter a in model m for each model. Then the
derivation of posterior results requires integration. When a new patient is to be enrolled, we
will choose a single ordering h such that:

among the M contending models. Given h, we take the working model associated with this
ordering and apply the likelihood approach of the CRM to obtain estimates of the toxicity
probabilities at each of the k available treatment combinations. Using the dose-toxicity
model (1), the estimated probability of toxicity at each dose combination is given by:

(6)

On the basis of this formula, the dose combination to be given to the next patient enrolled in
the study is determined based on the minimization of (3). For partial orders, there may be
more than one treatment combination with toxicity probability closest to the target. If there
is a ‘tie’ between two or more dose combinations, the patient will be randomized to one of
the dose combinations with DLT probability closest to the target. A requirement to be able
to maximize the log-likelihood on the interior of the parameter space is that we have
heterogeneity (at least one toxic and one nontoxic) among the responses. Otherwise the
likelihood is maximized on the boundary of the parameter space and our estimates of R(di)
are trivially either zero or one, or, depending on the model we are working with, may be
undefined.

Two-stage design
O'Quigley and Shen [5] recommended including an initial escalation stage utilizing
traditional or non-traditional Up-and-Down schemes: that is, starting at the lowest available
dose, three patients are treated and only if all three fail to experience a DLT do we escalate
to a higher dose level. As soon as the first DLT is observed, the first stage is closed and the
second stage is subsequently opened based on CRM modeling, using the data accumulated
thus far in the trial. Such a design could be varied in several ways, for example, including a
cohort of one patient at the lowest level, a cohort of two patients at the second lowest and
then proceeding as above. Even though the first stage is closed, the toxicity response
information accrued by the initial scheme is retained and used in the second stage.

When the trial is being conducted subject to a partial order, it is necessary to use a variant of
the traditional Up-and-Down scheme in the initial stage. After establishing the M simple
orders that the toxicity probabilities can assume, the drug combinations can be partitioned
into sets of possible escalation treatments consistent with the partial order. For instance,
suppose a cohort of patients is observed at one of the k discrete dose combinations, di, and
none of the three experience a DLT. A standard Up-and-Down scheme, in the context of a
simple monotonic order, would require that the next cohort of patients be enrolled at the
next highest dose, di+1. However, when two drugs are being combined, the toxicity order of
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doses di and di+1 may not be clear. As a result, the most ‘appropriate’ dose to which the trial
should escalate could consist of more than one treatment combination.

Allocation algorithm in the first stage—Returning to the example described in second
section, there are eight possible simple orders of the dose-toxicity relationship. Accordingly,
we can use Table 2 to partition the available doses into sets A through E displayed in Table
3. For instance, we can see from Table 2 that d1 is the lowest dose in each possible ordering.
Therefore, the trial could begin in set A = {d1}. At the first observation of a toxicity in one
of the patients, the first stage is closed and the second stage is opened. As long as no
toxicities occur, cohorts of patients are examined at each dose within the currently occupied
set, before escalating to the next highest set. We can see in Table 2, if d1 was tried and
deemed ‘safe’, the trial would escalate to d2 in four of the possible orders and d3 in four of
the orders. In other words, the second ‘level’ of doses consists of d2 and d3. Therefore, if no
toxicity is observed in a cohort of patients at d1, the trial proceeds to set B = {d2, d3}. If
more than one dose is contained within a particular set, we can sample without replacement
from the doses available within the set. Therefore, the next cohort is enrolled on a dose that
is chosen randomly from d2 and d3. The trial is not allowed to advance to set C = {d4, d5} in
the first stage until a cohort of patients has been observed at both doses d2 and d3. This
procedure continues until a toxicity is observed or all available sets have been exhausted.
Subsequent to a DLT being observed, the second stage of the trial begins.

Allocation algorithm in the second stage—Based on heterogeneic data in form of the
set Ωj, the expression for the likelihood function (4) can be maximized with respect to a.
Given the ordering h, we make use of the maximum likelihood estimate, âh that was
generated through the maximization of (4) for model h. The resulting parameter estimate for
a can be used to generate an estimate of the toxicity probability at each of the k treatment
combinations by calculating Rˆ(di) =ψh (di, âh) = 1, …, k, from which the drug combination,
xj+1, given to the (j+1)th patient is determined according to some loss function such as (3).
Once the toxicity data, Ωn, has accumulated from the predetermined sample size of n
patients entered into the trial, the recommended dose for the hypothetical (n + 1)th patient
will be the estimate for an MTD combination. That is, an MTD is the treatment
combination, xn+1, that satisfies (3) based on Ωn.

Simulations
Illustration

In order to illustrate the proposed method, consider the example given in second section
involving k = 8 discrete treatment combinations, d1,…,d8. The partial order for this trial has
eight possible simple orders. For this simulation, we assume that the true order is d1 → d2
→ d3 → d4 → d5 → d6 → d7 → d8 and that the true toxicity probabilities are R(d1) = 0:05,
R(d2) = 0:10, R(d3) = 0:20, R(d4) = 0:30, R(d5) = 0:45, R(d6) = 0:58, R(d7) = 0:70 and R(d8)
= 0:81. The targeted toxicity probability is θ = 0:20, indicating that the ‘correct’ treatment
combination for an MTD is given by d3. Before getting the trial underway, the skeletons,
αmi, m = 1,…,8, i = 1,…,8, for the toxicity probabilities at each treatment combination need
to be specified for each ordering. We implemented the systematic approach of Lee and
Cheung [16] in order to establish the skeleton for the monotonic order m = 1. These values
were adjusted to correspond to each of the eight simple orders consistent with the partial.
Implementing the algorithm yielded the results given in Table 4. For the eight drug
combinations under investigation, the simulations use the simple power parameter working
model (2):

Wages et al. Page 7

Clin Trials. Author manuscript; available in PMC 2012 October 31.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



where the αmi have the values provided in Table 4.

The first entered patient will be treated on a treatment from among a set at the second lowest
level, which in this particular example, consists of d2 and d3. Since more than one treatment
is in the set at the second lowest level, we randomly select from those doses in the set. For
this example, d2 is the second least toxic treatment in four of the eight possible orderings, so
it is given probability 0.50 of being the dose administered to the first entered patient, with
probability 0.50 given to d3. The trial begins at the second lowest level because we are
observing responses in cohort sizes of one patient. Thus, if for the first entered patient, d2 or
d3 is deemed too toxic, we have the ability to de-escalate to the lowest treatment set, which
consists of d1, in order to continue the trial. The first patient is treated at d2 and did not
experience a dose-limiting toxic response. Before the method escalates to the next highest
set of treatment combinations, it must exhaust the treatments in the current set as long as
non-DLT's are observed. That is, the next patient is treated at d3 before escalating to the next
highest set of treatments, which consists of d4 and d5. The second patient is treated on d3
and does not experience a DLT. The trial then proceeds to the next highest set of treatments
and the next enrolled patient is treated on a dose that is randomly selected from d4 and d5.
The third and fourth patients are treated on d5 and d4, respectively, and neither experiences a
DLT. Next, the fifth patient is administered d7 and experiences a DLT. At this point in the
trial, heterogeneity in the responses exists because we have at least one toxic and one
nontoxic response. Consequently, the first stage of the trial is now closed and the second
stage is subsequently opened.

The model selection techniques described in third section were implemented and generated
estimated model weights π(1) = 0:15, π(2) = 0:15, π(3) = 0:15, π(4) = 0:10, π(5) = 0:15,
π(6) = 0:10, π(7) = 0:100 and π(8) = 0:10. Therefore, based on the model weights, the
ordering is randomly chosen from those with π (m) = 0:15 and determined to be h = 1.
Given h = 1, we take the working model associated with this ordering from Table 4 and
apply the likelihood based CRM. Heterogeneity in the responses means that the maximum
likelihood estimate for â1 now exists and can be seen to be equal to 1.5. We then have that

,i = 1,…,8 is given by Rˆ (d1) = 0:001, Rˆ (d2) = 0:005, Rˆ (d3) = 0:032, Rˆ (d4) =
0:089, Rˆ(d5) = 0:190, Rˆ (d6) = 0322, Rˆ (d7) = 0:465 and Rˆ (d8) = 0:586. The 6th entered
patient is then administered d5 for which Rˆ(d5) = 0:19 since, from the available estimates,
this is the closest to the target θ = 0:20. The 6th included patient suffers toxic side-effects
and the new model weights become π(1) = 0:16, π(2) = 0:16, π(3) = 0:10, π(4) = 0:13, π(5)
= 0:10, π(6) = 0:13, π(7) = 0:13 and π(8) = 0:09 from which his chosen to be 2. The new
maximum likelihood estimate, â2, becomes 0.90. Therefore, d4 becomes the treatment
combination with an estimated toxicity probability closest to the target. The dose that is
recommended as the treatment that would have been administered to the 22nd patient, had
one been included, is d3. Therefore it is identified (estimated) to be an MTD combination
with an estimated probability of toxicity of Rˆ(d3) = 0:23. Table 5 shows the results of the
simulation for which d3 is chosen as an MTD combination on the basis of all available
knowledge. In terms of the example provided in Lokich [15], d3 would correspond to a dose
combination of 75 mg/m2/week of Irinotecan and 1.0mg/m2/weekof Topotecan.

Simulation studies
The results in this section compare the new methodology for partial ordering, which
henceforth will be referred to as POCRML, with the design of Wages et al. [12] for the trial
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example of Lokich [15] described in second section, which has the eight possible orders
given in Table 2. We assume that the true order is d1 → d2 → d3 → d4 → d5 → d6 → d7
→ d8. The approach of Wages et al. [12] (POCRM) makes use of prior information on the
parameter a and begins modeling with the first entered patient, as opposed to the two-stage
design presented here. POCRM was shown to perform well against other suggested methods
for partial orders, such as Conaway et al. [13], Yin and Yuan [10], and Yin and Yuan [11],
so we comapre our approach to it in order to assess the performance of POCRML.

Each of the tables in this section is based on 1000 simulated trials and the target toxicity
probability is θ = 0:20 for each of the twelve toxicity scenarios presented in Tables 6 and 7.
The sample size for each simulated trial is n = 21. Our goal is to present a reasonably wide
spectrum of toxicity situations in order to get a feel of how things might work in practice.
For each toxicity scenario, the R(di) denotes the probability of toxicity at treatment
combination di, i = 1,…,8. In this set of simulations, we do not present any results for the
percentage of trials that each individual ordering was selected. The reason for this is that our
ultimate goal is the identification (estimation) of an MTD, not to choose the ‘correct’
ordering in a finite number of patients. Consequently, we are concerned with the method's
ability to recommend an MTD at the conclusion of the trial as opposed to recommend an
ordering. Ultimately, our goal with these simulations is to demonstrate the performance of
the CRM when the dose–toxicity order is only partially known compared to the case where
it is fully known. The first stage of the likelihood approach uses single patient cohorts
during escalation and each trial enrolled a pre-specified sample size of 21 patients. We again
used the skeletons provided in Table 4 that were generated using the algorithm of Lee and
Cheung [16]. Since we assume there is no prior information available on the ‘correct’
ordering, we place equal probability on each model and use p(m) = 1/8, m = 1,…,8 prior to
the beginning of the trial.

Table 6 and 7 indicate that POCRML is performing quite well, correctly recommending
MTD combinations in a large percentage of simulated trials (Table 6), as well as treating a
large percentage of patients at and around MTD combinations (Table 7). Even in cases
where POCRML performs less well, it is recommending MTD combinations and a
neighboring dose in a large percentage of trials. For instance, in the fourth scenario, in 87%
of the simulated trials, the POCRM identifies treatments as an MTD that have toxicity
probabilities between 0.11 and 0.35. Similarly, in the fifth scenario, 89% of the time, the
method chooses one of the treatments with toxicity probabilities between 0.10 and 0.35.
Further, in terms of in-trial allocation, in scenario 4, 72% of patients are treated at doses
with toxicity probabilities ranging from 0.08 to 0.22. Overall, the simulation results of
POCRML are competitive with that of POCRM, a design that demonstrated a comparable
performance to the methods of Conaway et al. [13], Yin and Yuan [10], and Yin and Yuan
[11] in Wages et al. [12]. Therefore, POCRML can be considered a practical alternative as a
multiple-agent trial design. Because it is an extension of the well known CRM, it is believed
that our approach will be easily understood by clinicians and review boards. At the very
least, the method gives the investigator an alternative to his or her design preference when
presented with a multiple-agent Phase 1 trial.

Discussion
The new design which leans upon the CRM method shows itself to be effective in estimating
MTD combinations in Phase 1 clinical trials when the toxicity order of the treatments is only
partially known. The goal remains accurate estimation of MTD combinations, subject to the
ethical constraints of treating as many patients as possible at and around MTD
combinations. It is only of indirect interest to establish the correct order and, in as much as
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the estimate of an MTD itself may remain unaffected by certain orders, we do not attempt to
identify which order is the more correct. That is only an indirect goal.

Because the CRM for partial orders is a design that relaxes the monotonicity assumption of
the CRM, it can be regarded as a multivariate generalization of CRM. When the order of
toxicity probabilities is fully known as in single-agent trials, our approach reduces to the
CRM. Our design is therefore suitable for dose-finding problems where toxicity orders are
fully or partially known. Hence, it can serve as a link between single and multiple-agent
dose-finding trials. Furthermore, in theoretical investigations or those involving simulations,
we can use a CRM with known ordering to provide an upper bound as a gauge on how much
information is lost as a result of the partial ordering. Operating characteristics appear to be
good although further study, under a broader range of possible situations, may provide more
insight into general behavior. Wages et al. [12] present a Bayesian CRM approach for partial
orders, in which they provide simulation results comparing their approach to the designs of
Conaway et al. [13] and Yin and Yuan [10,11].

There may be further alternatives to those already published and those outlined here. One
possibility may be to continue the first stage allocation algorithm throughout the entire trial
in order to estimate MTD combinations. This alternative warrants further study. Another
possibility may be, instead of selecting the ordering with the greatest model weight, π(m),
and reducing the problem to a standard phase I trial, we could estimate the dose to
recommend to the next entered patient for each distinct ordering and use the dose that is
most agreed upon across all possible orders. That is, we could work with the cumulative
probabilities for an MTD given the set of models. This would then correspond to using some
sort of weighted average rather than the mode. Simulation results for this alternative
approach are presented in the supplementary web appendix of Wages et al. [12]. A
comparison between the POCRM and this alternative design show the two approaches to
behave similarly.
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Table 2
Eight possible simple dose–toxicity orders

Ordering (m) Simple order

1 d1 → d2 → d3 → d4 → d5 → d6 → d7 → d8

2 d1 → d3 → d2 → d4 → d5 → d6 → d7 → d8

3 d1 → d2 → d3 → d5 → d4 → d6 → d7 → d8

4 d1 → d2 → d3 → d4 → d5 → d7 → d6 → d8

5 d1 → d3 → d2 → d5 → d4 → d6 → d7 → d8

6 d1 → d3 → d2 → d4 → d5 → d7 → d6 → d8

7 d1 → d2 → d3 → d5 → d4 → d7 → d6 → d8

8 d1 → d3 → d2 → d5 → d4 → d7 → d6 → d8
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