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Abstract

Seizures have profound impact on synaptic function and plasticity. While kainic acid is a popular method to induce seizures
and to potentially affect synaptic plasticity, it can also produce physiological-like oscillations and trigger some forms of
long-term potentiation (LTP). Here, we examine whether induction of LTP is altered in hippocampal slices prepared from
rats with different sensitivity to develop status epilepticus (SE) by systemic injection of kainic acid. Rats were treated with
multiple low doses of kainic acid (5 mg/kg; i.p.) to develop SE in a majority of animals (72–85% rats). A group of rats were
resistant to develop SE (15–28%) after several accumulated doses. Animals were subsequently tested using chronic
recordings and object recognition tasks before brain slices were prepared for histological studies and to examine basic
features of hippocampal synaptic function and plasticity, including input/output curves, paired-pulse facilitation and theta-
burst induced LTP. Consistent with previous reports in kindling and pilocapine models, LTP was reduced in rats that
developed SE after kainic acid injection. These animals exhibited signs of hippocampal sclerosis and developed
spontaneous seizures. In contrast, resistant rats did not become epileptic and had no signs of cell loss and mossy fiber
sprouting. In slices from resistant rats, theta-burst stimulation induced LTP of higher magnitude when compared with
control and epileptic rats. Variations on LTP magnitude correlate with animals’ performance in a hippocampal-dependent
spatial memory task. Our results suggest dissociable long-term effects of treatment with kainic acid on synaptic function
and plasticity depending on its epileptogenic efficiency.
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Introduction

Seizures have profound physiological and neurological sequelae.

Recurrent seizures and status epilepticus presumably trigger an initial

cascade of events including kinase activation, oxidative stress,

neuronal damage and glial activation that change cellular and

synaptic function [1]. In the particular case of synaptic function,

seizures affect cellular processes accompanying a form of plasticity,

namely long-term potentiation (LTP). LTP involves persistent

changes of synaptic efficacy and is proposed to capitalize cellular

processes required for learning [2]. Electrophysiological studies in

animal models of epilepsy show that repeated seizures have

deleterious consequences on LTP [3,4]. Such effects have been

proposed to be linked to the saturation of synaptic responses or

due to impairment of LTP-associated molecular mechanisms

caused by epileptiform bursts of activity [5–8]. Seizure-induced

saturation of cellular resources available for plasticity would in

turn potentially affect memory function [9–11].

To understand the molecular mechanisms underlying these

changes, several animal models have been developed, with

kindling stimulation and systemic injection of pilocarpine or

kainic acid being the most popular methods. Repeated systemic

injections of low doses of kainic acid, a glutamate receptor agonist,

has revealed as good strategy to model the clinical and

neuropathogical features of temporal lobe epilepsy (TLE) with

reduced mortality [12,13]. In vitro, kainate produces both

physiological-like gamma oscillations and increases of excitability

resulting in epileptiform activity. Presumably, low concentration of

kainate presynaptically favour GABAergic release resulting in the

rhythmic entrainment of pyramidal cell firing giving rise to local

field potential gamma oscillations [14,15]. At higher concentra-

tions, increases of excitability dominate network dynamics pro-

voking seizure-like events [15]. Intriguingly, recent evidence

suggests that the ability of a circuitry to produce gamma activity

is inversely related with its intrinsic epileptogenicity [16]. Given

that kainate can directly regulate receptor trafficking and synaptic

plasticity [17,18], it is therefore possible that the epileptogenic

efficiency of kainate directly interfere with plasticity function in

TLE models.
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In the present article, we determined whether the induction of

LTP by theta-burst stimulation was altered in hippocampal slices

obtained from rats treated with multiple, low-doses of intraper-

itonal injections of kainic acid in order to develop status epilepticus

and chronic epilepsy. Consistent with previous findings in kindling

models, LTP magnitude was reduced in epileptic rats when tested

in the chronic phase. Interestingly, we found a group of rats

resistant to develop status even after several accumulated doses of

kainate. Resistant rats did not become epileptic and exhibited no

signs of hippocampal sclerosis, i.e. neuronal loss and mossy fibre

sprouting. In these animals, theta-burst stimulation induced a LTP

of higher magnitude than that obtained from control rats. We

found mild but significant positive correlation between the

magnitude of LTP and the animal’s performance only in the

hippocampal-dependent version of an object recognition task

which also included evaluation of recognition memory. These

findings indicate that kainic acid injections differentially modulate

synaptic function depending on its epileptogenic efficiency.

Materials and Methods

All procedures met the European guidelines for animal

experiments (86/609/ECC). Protocols were approved by ‘‘Comité

Ético de Experimentación Animal del Instituto Cajal’’ and

‘‘Comité Ético de Bienestar Animal’’ at Hospital Ramón y Cajal

(animal facilities ES280790002001) for application grants Mem-

Stick (201600), BFU2009-07989 and PIU081067.

Animals
Adult male Wistar and Sprague-Dawley rats weighing 180–

200 g (45–50 days) were obtained both from the Harlan

Laboratories and from our animal facilities (Instituto Cajal;

Hospital Ramón y Cajal). Rats were i.p. injected with kainic acid

(5 mg/kg) at hourly intervals until they reached the status epilepticus

[12]. Seizures were scored according to Racine [19] (see first

section of Results). The status was defined as a continuous

convulsive condition lasting longer than 30 min. Diazepam

(4 mg/kg, i.p.) was injected 1 hour after and repeated during

the following 24 hours if convulsive behaviour persisted. To reduce

mortality post-status, rats were i.p. injected with 2.5 ml 5%

dextrose several times a day, and diet was supplemented with fruit

and powder milk during the following 2–3 days. The control group

was composed of rats treated with vehicle (saline) instead of kainic

acid and received similar treatment than the experimental group.

The observations described in this paper regarding different

sensitivity of animals to systemic kainate injections were obtained

from a large cohort of rats under the framework of different

research projects in the lab of LMP (96 Wistar rats and 57

Sprague-Dawley animals). The present study was carried out in

subgroups depending on the particular experimental design and

the laboratory working plan. The number of animals and the

sampling criteria are specified for each experimental procedure.

Object Recognition Task
We checked for hippocampal-dependent spatial memory and

novel object recognition memory using an object recognition task

[20] between 6–8 weeks post-injection. Rats were randomly

assigned to one of three groups in each strain: a) Wistar control

n = 11, resistant n = 4, epileptic n= 13; b) Sprague-Dawley control

n = 14, resistant n= 5, epileptic n= 12. Importantly, behavioral

tests were suspended for at least two hours for those rats exhibiting

spontaneous seizures. We also considered possible pre-seizure

effects by excluding from the analysis those animals experiencing

at least one seizure within the next hour after completing the test.

Reactions to spatial changes and novel objects were evaluated by

the exploration of objects placed in an open field (rectangular:

50656 cm683 cm). Animals had access to room visual cues

during the whole experiment. Black curtains surrounded the field

and a ceiling video camera was used to monitor rats behavior for

offline analysis using a computer tracking system (Ethovision 1.90,

Noldus IT). All objects were heavy enough not to be displaced by

the rats and pilot experiments confirmed animals did not have

preferences for them. Rats were habituated to the open field 4

times once a day (15 min free exploration) over 4 consecutive days.

Immediately after habituation, animals were tested in five sessions

(3 min each) separated by 5 min interval and grouped in three

different phases: familiarization, spatial change and novel object

recognition. During the familiarization phase (two trials) five

objects were simultaneously placed in the open field. In the spatial

change phase (two trials) two objects were displaced. In the novel

object recognition phase (1 trial), a new object was substituted for

the upper-left object. After each trial, the field and the objects were

cleaned with acetic acid (0.1%) to remove odor cues. Exploration

was evaluated by the time spent in active contact with the objects

(e.g. sniffing). A contact was defined as the rat’s snout touching an

object or directing at least 1 cm to it. Reaction to spatial changes

was assessed by the comparison between the time spent on

exploring the displaced objects during the familiarization phase

and the time spent on exploring the same objects during the spatial

change phase. Reactions to novel objects were assessed by

comparing average time spent on exploring the familiar objects

(never moved objects) versus that spent on exploring the new

object. Chance level was thus defined at zero.

Chronic Electrophysiology
Some rats were implanted for electrographic depth recordings

from the dorsal hippocampus typically 6–8 weeks post-injection:

n = 6 control, n = 4 resistant and n= 6 epileptic. For electrode

implantation, animals were anesthetized with isofluorane (1.5–2%)

in oxygen (30%) and continuously monitored with an oximeter

(MouseOX, Starr Life Sci). Local field potential recordings were

obtained either from 50 mm nichrome/formvar wires (impedance

0.3–0.5 MV) or 16-channel silicon probes (NeuroNexus Tech;

0.7–1.2 MV). Implantation coordinates were between 3.9–

4.8 mm posterior to bregma and 3 mm from the midline. We

typically adjusted the implantation depth guided by intra-

operative electrophysiological recordings. Two screws served as

a reference and ground at the occipital region. After recovering

from surgery, hippocampal activity was monitored during several

behavioral conditions (walking, running, immobility, sleep).

Electroencephalographic recordings were performed daily, be-

tween 8 a.m. and 7 p.m. over the course of up to 2–3 weeks per

rat. During these sessions, animals were submitted to several

behavioral tasks (including object-recognition tasks) and monitor-

ization of basal activity during large periods of spontaneous

exploration, immobility and sleep. Animals were also continuously

video-taped in periods of 48–72 hours for seizure detection.

Spontaneous seizures were classified according to clinical signs

using the Racine scale [19]. Electrographic signals were pre-

amplified using field-effect transistors and further amplified and

digitized at different sampling rates. For offline analyses,

recordings were band-pass FIR filtered between 1 and 5000 Hz

and down-sampled at 4800 Hz. Electrographic seizures were

identified as a typical ictal pattern using the following criteria: a)

discharge amplitude larger than 2.5SD baseline and b) continuous

(.20 sec) large power spectrum in the 5–20 Hz band. Potential

seizure events were double checked for the typical appearance of

rhythmic spike-and-wave discharges. After completing recordings

Enhanced LTP in Kainate-Resistant Rats
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brains were fixed in 4% paraformaldehyde for electrode place-

ment verification. Wire electrodes were found in the dorsal CA1

region typically below the pyramidal layer at sites within the

stratum radiatum or near to the stratum lacunosum moleculare.

With 16-channel silicon probes, LFP signals were selected from

electrodes at equivalent strata to match similar recording sites

using wires.

Slice Preparation
Slices were prepared from a group of epileptic (Wistar n= 7,

Sprague-Dawley n= 6), resistant (Wistar n= 2, Sprague-Dawley

n= 8) and control (Wistar n= 4; Sprague-Dawley n= 7) rats, after

completing behavioural tasks (.10–12 weeks post-injection).

Different number of slices was used for input-output and plasticity

studies. No more than 2 slices per rat were included for each type

of experiments. Rats were decapitated after applying isoflurane

anesthesia, and the brain was quickly removed and dropped into

chilled Krebs-Ringer bicarbonate (KRB) solution containing (in

mM): 119 NaCl, 26.2 NaHCO3, 2.5 KCl, 1 KH2PO4, 1.3

MgSO4, 2.5 CaCl2 and 11 glucose, gassed with 95% O2 and

5% CO2. Transverse dorsal hippocampal slices (400 mm) were

obtained using a vibratome (Pelco 101) and then placed in

a holding chamber for at least 3 h at room temperature (20–25uC)
following standard methods. A single slice was transferred to

a submersion-type recording chamber continuously perfused (1.9–

2 ml/min) with standard KRB solution. Experiments were carried

out at 31–32uC.

In vitro Electrophysiology
Evoked field excitatory postsynaptic potentials (fEPSP) and

presynaptic fiber volleys (FV) were recorded in CA1 stratum

radiatum with tungsten microelectrodes (1 MV) connected to an

AI-401 preamplifier (Axon Instruments, Foster City, CA) plugged

to a CyberAmp 320 signal conditioner (Axon Instruments). These

field responses were evoked every 15 seconds by stimulating

Schaffer collateral (SC)-commisural fibers with biphasic constant-

current pulses (20–40 mA; 100 ms per polarity; 0.066 Hz) delivered

through bipolar tungsten insulated microelectrodes (0.5 MV) at
CA1 mid-stratum radiatum. Stimulus strength was adjusted to

evoke a fEPSP approximately half of its maximal amplitude.

Electrical pulses were supplied by a pulse generator A.M.P.I. Mod.

Master 8 (Jerusalem, Israel) connected to a biphasic stimulus

isolator unit (Cibertec, Madrid, Spain). After a baseline period of

at least 20 min, LTP was elicited with theta burst stimulation

(TBS) consisting of 10 trains of four pulses at 100 Hz separated by

200 ms.

Evoked responses were digitized at 20 kHz using a Digidata

1200AE-BD board (Axon Instruments), and stored on a personal

computer running WindowsTM and using pCLAMP 8.0.2 software

(Axon Instruments). The synaptic strength was calculated using the

initial rising slope phase of the fEPSP to avoid contamination of

the response by the population spike. We also used pCLAMP-

8.0.2 software for these calculations. Data were normalized with

respect to the mean values of the responses at the last 20 min of

baseline period in standard medium.

Histology: Immunohistochemistry and Timm Staining
Upon completion of behavioral and chronic electrophysiological

experiments (.10–12 weeks post-injection), some rats were

perfused intracardially with 30 ml of phosphate buffered saline

0.1 M, pH=7.3 (PBS), 0.2% heparin, followed by 200 ml of 4%

paraformaldehyde in PBS. See Results for details on the number

of animals. Coronal sections of 100 or 50 mm were cut on

a vibratome. For immunostaining, free-floating sections from

levels between 25.0 mm to 25.5 mm from bregma were

incubated in 1% H2O2 for 15 min. After PBS washing several

times, sections were maintained during 1 hour in PBS containing

10% fetal bovine serum (FBS) and 0.25% Triton and then

incubated overnight at 4uC in monoclonal anti-NeuN antibody

(1:1000, Bachem) diluted in PBS containing 1% FBS and 0.25%

Triton. On the second day, sections were washed and incubated

for 2 hours in biotinylated secondary antibody (anti-mouse IgG,

1:200, Jackson) and for 1 hr in avidin-biotin- peroxidase complex

(1:1000, Vector) diluted in PBS-1% FBS. Sections revealed with

0.05% 3,3-diaminobenzidine and 0.01% H2O2, and mounted on

slides coverslipped with glycerol and Eukitt (Fluka). We also

validated the presence of mossy fiber sprouting (MFS) using the

Timm staining in coronal slices from levels 25.5 mm to about

26 mm from bregma. For Timm staining, rats were perfused with

Na2S 0.1% in PBS 0.1 M (heparin 0.2%) at 4uC before fixation.

Free-floating sections (70 mm) were developed in dark, using

arabig gumm, citric acid, hydroquinone and silver nitrate.

Electrode verification from animals chronically implanted were

performed using coronal sections (100 mm) and the thionin

staining.

Statistical Analysis
Data are expressed as mean 6 SEM. Statistical analyses were

performed using SPSS 18.0 for Windows. Mean values of fEPSP

slope or FV amplitude given throughout the text correspond to

averages of 5 min periods. Statistical differences were assessed by

one- or two-way analysis of variance (ANOVA) followed by

Bonferroni t-test or by two-tailed unpaired Student’s t-tests with

P,0.05 for statistically significance. To evaluate discrimination

ratios from the object recognition task we used one-way ANOVA

that considered group (control, resistant and epileptic) and strain

factors. Discrimination ratios for each group were also compared

with chance level performance (zero) using one-sample t-tests. To

test for specific correlations between LTP magnitude and

behavioral variables, the Pearson’s correlation analysis was

applied.

Results

Effect of Systemic Injection of Kainate: Epileptic and
Resistant Phenotypes
Using multiple low doses (5 mg/kg) of kainic acid resulted in the

development of status epilepticus in a majority of both Wistar (n = 82

out of 96, 85%) and Sprague-Dawley rats (n = 41 out of 57, 72%).

Rats required between 2–3 accumulated doses of kainate to enter

status with no difference between strains (Fig. 1A). Progression to

status was characterized by a consistent sequence of events [12,19]

including (Fig. 1B): a) orofacial automatisms (stage 1); b) head

nodding (stage 2); c) forelimb clonus (stage 3); d) forelimb clonus

with rearing (stage 4) and e) forelimb clonus with rearing and

fallings (stage 5). Clear separation between stages 1 and 2 was

difficult in the kainate model, which was typically characterized by

the presence of wet-dog shakes (latency W 5365 min; SD

6769.3 min). Individually, rats required different accumulated

doses to enter the status which was typically preceded by stage 3

and 4 seizures. Status took longer to start in Sprague-Dawley

(188612 min) than in Wistar rats (15464 min; p = 0.0035), but

was more abrupt in Wistar animals (Fig. 1B).

Rats that entered the status became epileptic when tested at least

6–8 weeks after treatment (Fig. 1C,E), typically exhibiting

spontaneous seizures of grade 3–4 [13]. Chronic electrophysio-

logical recordings from the dorsal hippocampus of these rats

(n = 6) showed also the presence of abnormal forms of activity,

Enhanced LTP in Kainate-Resistant Rats
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including interictal spikes (Fig. 1D). These epileptiform patterns

were recorded irregularly during some, but not all, episodes of

slow-wave sleep and awake immobility. During most episodes of

walking and behavioural immobility hippocampal EEG patterns

appeared normal in epileptic rats, characterized by theta and large

irregular activity, respectively (Fig. 1C).

A group of rats (Wistar n= 14 out of 96, 15%; Sprague-Dawley

n= 16 out of 57; 28%) were resistant to develop status, rarely

reaching Racine stages larger than 2 when injected with kainate

(Fig. 1B). In some of these animals, we accumulated up to 6 doses

of kainate 5 m/kg without any further clinical effect. Some

resistant animals experienced brief seizing episodes of forelimb

clonus during the induction phase but behaved apparently

normally in between, i.e. they were reactive to stimulation; walked

around, eat, etcetera. Spontaneous seizures were never observed in

resistant rats when recorded after 6 weeks post-injection (n= 4

Figure 1. Effect of systemic injections of kainate in Wistar and Sprague-Dawley rats. (A) Multiple doses of 5 mg/kg kainate were used to
induce status epilepticus (SE) in adult male rats. The histograms show percentage of rats exhibiting SE in Wistar (n = 96) and Sprague-Dawley animals
(n = 57). No differences were found between strains. (B) Progression to SE in Wistar and Sprague-Dawley rats as evaluated with the Racine scale. Data
from for n= 10 rats entering SE with 2 and 3 doses in each strain. A group of rats were resistant to develop SE (n = 10 Wistar and n=7 Sprague-
Dawley). (C) Chronic electroencephalographic (EEG) recordings were obtained from the dorsal hippocampus in a group of animals. Representative
examples of EEG recording during walking and awake immobility are shown for control, resistant and epileptic animals. (D,E) Epileptic rats also
exhibited epileptiform events like interictal spikes (D) and spontaneous seizures (E). The discontinous line box group data obtained from the same
epileptic rat.
doi:10.1371/journal.pone.0048128.g001
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animals). Instead, resistant rats exhibited EEG patterns similar to

control animals (n = 6) in comparable behavioural conditions: i.e.

theta activity during waking and running and large irregular

sharp-wave activity during immobility (Fig. 1C).

Histological Changes in the Hippocampus of Kainate-
injected Rats
We used NeuN immunostaining and histological techniques to

look at brain differences between epileptic (Wistar n= 10;

Sprague-Dawley n= 7) and resistant rats (Wistar n= 3; Sprague-

Dawley n= 4) when compared with control animals (Wistar n = 3;

Sprague-Dawley n= 3; Fig. 2). Overall, immunostained sections

from control and resistant rats were indistinguishable when blindly

evaluated by two independent researchers with no apparent strain

differences neither. However, obvious differences were observed

for epileptic animals with Sprague-Dawley rats exhibiting larger

damage than Wistar, as previously reported [13]. In epileptic rats,

neuronal loss was detected both in the dorsal and the ventral

hippocampus typically affecting CA1 and CA3 regions, together

with cell layer dispersion in the dentate gyrus (Fig. 2A3, A4 versus

A1). No apparent cell damage was observed in the hippocampus of

resistant rats (Fig. 2A2 versus A1). We also checked for the

presence of mossy fiber sprouting (MFS), a hallmark of TLE

characterized by the sprouting of recurrent excitatory collaterals of

granule cell axons, using Timm staining. Both control and

resistant rats exhibited no signs of mossy fiber sprouting (Fig. 2B1

versus B2), which was present in the ventral hippocampus of

epileptic rats (Fig. 2B3,B4 versus B1). Timm scores values of

resistant rats (dorsal 0.3860.16, ventral 1.860.28) were similar to

those we reported previously for control animals [13]. Altogether,

our electrophysiological and histological data suggest that rats

resistant to kainate-induced status did not develop TLE in contrast

to animals that entered the status, which became epileptic and had

histological signs of hippocampal sclerosis.

Basal Synaptic Transmission and Paired-pulse Facilitation
in Kainate-injected Rats
We then tested for changes of CA1 synaptic function using slices

prepared from resistant, epileptic and control rats. We first tested

for basal synaptic transmission using input-output (I/O) curves to

look at the relationship between slopes of the field excitatory

postsynaptic potential (fEPSP) and the intensity of Schaffer

collateral stimulation. A two-way ANOVA of these curves yielded

a significant effect of group factor (F(2,281) = 25.54; P,0.001).

Difference in slope values for group factor was greater than would

be expected by chance after allowing for effects of differences in

strain factor. We therefore pooled data from control (n = 16 slices

from 11 rats), resistant (n = 15 slices from 10 rats) and epileptic rats

(n = 16 slices from 13 animals) of the two strains (Fig. 3A,B). Post-

hoc analysis revealed that I/O curve of resistant rats was

statistically different from control group (P,0.05; Bonferroni t-

test), whereas no significant differences were observed in I/O

curve obtained in epileptic rats when compared with control

animals (P.0.05; Bonferroni t-test). This upward shift of I/O

curves in resistant rats suggests facilitated synaptic responses in this

group.

We wonder whether larger synaptic responses in resistant rats

were caused by enhanced pre-synaptic excitability of the Schaffer

afferent pathway. To this purpose, we looked at the stimulus

dependency of the fiber volley (FV) amplitude, which is pro-

portional to the number of presynaptic axons recruited by

stimulation (Fig. 3C). We also found an upward shift of FV

amplitudes in resistant rats when compared with control and

epileptic animals (P,0.0001; Bonferroni t-test), indicating that

enhanced post-synaptic responses were at least partly reflecting

larger fiber recruitment. In order to reliably determine whether

the synaptic efficacy was modified in resistant rats we plotted

fEPSP slopes against FV amplitudes (Fig. 3D). We observed

a rightward shift in resistant rats respect to control and epileptic

animals, suggesting that recruitment of equivalent number of fibers

evoked lower responses in resistant rats. The statistical significance

of this change was revealed when grouping FV/fEPSP ratios

against stimulus intensities (Fig. 3E; P,0.05, Bonferroni t-test).

These results indicate that although resistant rats presented an

upward shift in I/O curves for both fEPSP and FV, the net result

was a reduction of synaptic efficacy at CA3-CA1 synapses in these

animals. Strikingly, epileptic rats showed similar I/O behaviour

compared with control animals indicating maintained synaptic

efficacy. Moreover, similarities of FV/fEPSP ratios and I/O

curves in epileptic and control rats, suggest poor heterosynaptic

contamination of SC-evoked responses by potential activation of

the temporoammonic pathway in the sclerotic hippocampus.

We also examined paired-pulse facilitation (PPF) by measuring

the ratio between the second and the first fEPSP slopes at different

inter-stimulation intervals (50, 80, 100, 150 and 250 ms). This

stimulation paradigm is widely used to detect changes in release

probability [21]. Figure 4 shows that PPF ratios were indistinguish-

able in the three experimental groups (F(2,220) = 2.835;

P= 0.061), suggesting that presynaptic release of glutamate was

not permanently altered after kainate treatment. Remarkably, the

second stimulation pulse evoked synaptic potentials with multiple

propagated population spikes in slices from epileptic rats (Fig. 4A),

as previously described [22].

LTP Induction in Kainate-treated Rats
Status induced by kindling stimulation or pilocarpine injection

impairs LTP [3,6,8]. To examine whether this form of plasticity is

also affected in the kainate model of TLE, we carried out a set of

experiments where, after a baseline recording period of at least

20 min, trains of 10 theta bursts were applied to the Schaffer

collateral pathway to evoke LTP (Fig. 5). Induction of LTP in

slices from epileptic rats resulted in a smaller synaptic potentiation

than that obtained in control slices (n = 16 slices; 14564% from

n=11 control rats, vs. 12464% in n=16 slices from n= 10

epileptic rats, at 1 h after TBS; P,0.001; Students t-test), which is

in accordance with deficits of LTP found in other experimental

models of TLE. Unexpectedly, in slices from resistant rats (n = 7

slices from 7 rats) we found that TBS stimulation induced a robust

and higher LTP (18569% at 1 h after TBS) than that obtained in

control animals (P,0.001; Students t-test).

Spatial memory function correlates with LTP

magnitude. We next wondered whether difference in the

magnitude of LTP correlate with animal’s performance in

a hippocampal-dependent memory task. To this purpose we had

tested rats’ abilities in reacting to spatial changes using an object

recognition task ([20]; Fig. 6A) well before preparing slices for LTP

studies. Analysis of discrimination ratios to spatial change during

the task showed a significant effect for groups in both strains

[Wistar F(2,27) = 4.09, P,0.05; Sprague-Dawley F(2,30) = 3.47,

P,0.05]. Differences between epileptic and control rats reached

significance for Sprague-Dawley (P,0.05) but not for Wistar

animals (Fig. 6B). Importantly, one-sample t-test revealed that

discrimination ratios were significantly above chance level for all

groups both in Wistar (control: t(10) = 12.35, P,0.001, resistant:

t(3) = 13.34, P,0.01, epileptic: t(12) = 11.90, P,0.001) and

Sprague-Dawley rats (control: t(13) = 18.38, P,0.001, resistant:

t(4) = 12.27, P,0.001, epileptic: t(11) = 3.58, P,0.01), confirming
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that memory for spatial changes was preserved in the kainate

model of TLE, in agreement with our previous findings using the

Morris water maze [13].

We also controlled for hippocampal-independent memory

abilities by testing the rat ability to recognize novel objects.

Discrimination ratios showed no differences between groups for

both strains [Wistar F(2,27) = 0.10, P= 0.90; Sprague Dawley

F(2,30) = 0.45, P= 0.64] (Fig. 6C), with all ratios above chance

level (Wistar control: t(10) = 24.76, P,0.001, resistant:

t(3) = 19.30, P,0.001, epileptic: t(12) = 12.17, P,0.001; Sprague

Dawley control: t(13) = 18.10, P,0.001, resistant: t(4) = 15.27,

P,0.001, epileptic: t(11) = 12.52, P,0.001 ), revealing that all rats

were similarly competent to recognize a novel object.

We next checked for relationship between the magnitude of

LTP and the animal’s ability to discriminate for spatial changes.

We found a mild positive correlation between the percentage of

synaptic potentiation and the discrimination ratio in the spatial

change task (r2 = 0.14, P= 0.017; Figure 6D). This interaction was

also significant when considering only data from control and

epileptic rats (r2 = 0.27, P = 0.003) or resistant and epileptic

animals (r2 = 0.23, P = 0.021), but not for any group alone. These

results indicate that part of the variation in animal’s performance

could be explained by differences in available LTP resources.

Remarkably, no correlation was found between synaptic potenti-

ation and the discrimination ratio in the novel object recognition

task (r = 0.02, P= 0.90; Fig. 6E), confirming that potential effects

of plasticity changes are hippocampal-dependent.

Discussion

In the present study, we show that LTP induction was impaired

in hippocampal slices obtained from rats rendered epileptic after

kainate-induced status. Notably, we found a group of rats resistant

to develop status even after several accumulated doses of kainate.

Slices prepared from these animals exhibited larger LTP

magnitudes compared with control. We also report a mild but

significant correlation between the magnitude of LTP and the

animal’s performance in a hippocampal-dependent spatial mem-

ory task, suggesting that kainic acid differently modulate cellular

processes involved in synaptic plasticity depending on its

epileptogenic efficiency.

With the experimental procedure of multiple injections of a low-

dose of kainate (5 mg/kg) status epilepticus is usually attained

between two and three doses at high incidence but drastically

reduced mortality rate [12]. Kainate-resistant rats tolerate

accumulated doses of kainate without developing recurrent

convulsive seizures and status. This group represents about 20%

of our kainate-treated animals. A similar rate of resistant rats has

Figure 2. Histological studies. (A) NeuN immunostaining was used to evaluate cell loss in coronal slices from control (A1), resistant (A2) and
epileptic (A3,A4) animals. No strain differences were apparent for control and resistant rats, while different degree of cell loss was evident in Sprague-
Dawley (SD) epileptic rats as compared with Wistar (W) [13]. (B) Timm staining was used to evaluate mossy fiber sprouting (MFS). Again, no apparent
changes were found in control (B1) and resistant animals (B2), while MSF was obvious in the ventral hippocampus of epileptic animals (B3,B4). Scale
bars are 500 mm.
doi:10.1371/journal.pone.0048128.g002
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been found with the lithium-pilocarpine model [23]. However,

such a percentage contrasts with the success obtained by others

using kainate [12] which reported that nearly all treated animals

developed status epilepticus.

Data indicate that genetic and circuit factors interfere with the

expression of epileptic phenotypes [24–28]. However, it is unclear

why some rats are protected against the epileptogenic effects of

kainate while others are sensible to develop recurrent seizures.

One possibility is that in our hands the effective dose of kainate

attained in the brain of resistant rats was lower than in the case of

rats entering the status. This seems unlikely, because some of these

animals displayed brief convulsive seizures although they did not

develop status. Another possibility is that the initial kainate

injections cause a post-translational modification of kainate

receptors by SUMOylation or phosphorylation which promotes

the internalization of these receptors in some animals [18]. This

would render these rats potentially resistant to develop status

epilepticus with subsequent kainate injections. Indeed, resistant rats

Figure 3. Basal synaptic transmission is altered after kainate treatment. (A) Superposition of fEPSPs (5 consecutive responses) evoked by
various stimulus strengths in single representative experiments obtained from control, resistant and epileptic rat. Stimulus-response curves for fEPSP
(B) and the fiber volley FV (C) obtained in slices from the control (16 slices from 11 rats), resistant (15 slices from 10 rats) and epileptic (16 slices from
13 rats) groups. (D) Input-output curves were created by comparing FV amplitudes with fEPSP slopes from data depicted in B and C. (E) FV/fEPSP
ratios for different ranges of stimulus strength shown in D confirm that resistant rats present a reduction of synaptic efficacy when compared with
control animals (*P,0.05).
doi:10.1371/journal.pone.0048128.g003
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share similar clinical signs with animals entering the status over the

first 10 minutes after kainte injection (Fig. 1B). Such a process of

epileptic tolerance has been observed with preconditioning

seizures evoked by kainate injections [29]. Resistance to kainate-

induced epilepsy has been also observed in immature rats where

multiple kainate injections did not cause major hippocampal

damage or electrographic seizures [30]. Inhibition of BDNF

synthesis renders hippocampus of immature rats sensitive to

damage caused by kainate injections [31]. Nevertheless, the role of

BDNF on epilepsy is controversial, because both antiepileptic [32]

and pro-epileptic effects have been reported [33]. Another

possibility might be attributable to genotype differences among

rats. For example, differences of subunit composition of kainate

receptors might account for altered sensitivity to develop status.

Polymorphisms in kainate receptors have been associated with

response to anti-depressants [34] and experimental transgenic

strategies suggest different seizure susceptibility for GluR5- and

GluR6-containing receptors [14,35]. Whether resistant rats have

different genetic background that renders them less sensible to

kainate injection remain unclear to us.

We did not find differences between control and epileptic rats

when comparing their input/output curves indicating that basal

synaptic transmission is not altered after an episode of status

epilepticus, in agreement with in vivo data [22]. Even though, we

detected that the magnitude of TBS-induced LTP was reduced

in epileptic rats. This result is similar to that obtained with

electrographic seizures [36,37], pharmacological induced epilep-

tiform activity [4,38] and other experimental models such as

kindling [3,6,39] and pilocarpine injections [23]. In general,

impairment of this form of synaptic plasticity has been

attributed to seizure related alterations of signalling cascades

involved in the modulation of synaptic strength [2,4], which

would occlude or saturate subsequent generation of LTP by

electrical stimulation. We think that our results are not

consistent with this proposal because if such seizure-induced

synaptic potentiation had taken place in our epileptic rats, we

should have detected an increase of basal synaptic transmission

in these animals. Other authors have argued against saturation

mechanisms to explain kindling-induced impairment of LTP [6].

Interestingly, in hippocampal slices it has been shown that brief

application of domoate, a kainate receptor agonist, causes a long-

lasting potentiation of fEPSP which occludes further LTP

Figure 4. Presynaptic release probability, estimated from
paired-pulse facilitation ratios, was modified neither in re-
sistant nor epileptic rats. (A) Representative traces recorded at
different inter-pulse intervals indicated by the numbers above the
records. The first record in a row corresponds to fEPSPs evoked by the
first pulses. (B) Summary data of paired-pulse facilitation ratios obtained
in the same slices used to induce LTP in figure 5. No significant
differences were found among experimental groups (P.0.05). Data
from n=16 slices from 11 control rats; n = 7 slices from 7 resistant rats
and n= 16 slices from 10 epileptic rats.
doi:10.1371/journal.pone.0048128.g004

Figure 5. Theta-burst-induced LTP was enhanced in resistant
rats but reduced in epileptic animals. Upper row shows
representative averaged fEPSPs recorded at the time indicated by the
letters on the graph to exemplify LTP induction in different
experimental groups. Graphs plot summary data of experiments where
theta burst tetanization was applied (indicated by the arrow) in control
(n = 16 from 11 rats), resistant (n = 7 from 7 rats) and epileptic (n = 16
from 10 rats) slices.
doi:10.1371/journal.pone.0048128.g005
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induction by electrical tetanization, whereas prolonged applica-

tion, which does not evoked synaptic potentiation, dramatically

reduces subsequent induction of LTP [40]. This last situation

might have occurred in our epileptic rats. We therefore propose

that LTP deficits observed in these animals are more

compatible with a failure of LTP induction mechanisms caused

by the status than with saturation of synaptic potentiation.

Importantly, we have detected an enhancement of LTP

magnitude in the group of rats where kainate administration did

not generate status. These synaptic changes resemble those

found in hippocampal CA1 area one day after lithium-

pilocarpine injection although 6 weeks later these animals

presented LTP impairment [23]. In our study, the increment of

LTP magnitude in resistant rats was observed several weeks

after kainate treatment, disclosing, thereafter, that these changes

were due to the presence of kainate during LTP induction.

Persistent changes of synaptic efficacy are considered a cellular

substrate underlying learning and memory processes. LTP is

proposed to capitalize those cellular resources and it is used as

a marker of cognitive abilities [41,42]. Consistently, we found

positive correlation between LTP and performance in a hippo-

campal-dependent spatial memory task. Possibly, in resistant

animals kainate-activated receptors might undergo metaplastic

alterations facilitating LTP expression and potentially impacting

learning capabilities. Further work is required to better target the

underlying mechanisms involved in this seizure resistant pheno-

type.
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Figure 6. Relationships between LTP magnitude and memory function. (A) Animals were tested in five sessions (3 min each) separated by
5 min interval and grouped in three different phases: familiarization, spatial change and novel object recognition. During the familiarization phase
(two trials) five objects were simultaneously placed in the open field. In the spatial change phase (two trials) two objects were displaced (arrows). In
the novel object recognition phase (1 trial), a new object was substituted for the upper-left object (arrow). (B) Discrimination ratios for the spatial
change tasks for Wistar (W) and Sprague-Dawley (SD) rats. * P,0.05 for pair-wise comparisons between groups; ## P,0.01; ### P,0.001 for
comparisons with chance level. Note poor performance of epileptic rats in Sprague-Dawley (n = 12) but not in Wistar animals (n = 13). The control
grop is composed of n = 11 Wistar and n=12 Spague-Dawley rats. Resistant rats are n = 4 Wistar and n= 5 Spraque-Dawley. (C) Discrimination ratios
for the novel object recognition. Note that deficits specifically affect hippocampal-dependent spatial memory and not recognition memory. (D)
Positive correlation between LTP magnitude and discrimination ratios in the spatial memory task (r2 = 0.14, P = 0.017). (E) No correlation was found
between LTP magnitude and discrimination ratios in the novel object recognition task.
doi:10.1371/journal.pone.0048128.g006
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