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Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization
problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated
battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed
to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the
improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal
UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the
threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong
robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to
make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance
of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed
approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.

1. Introduction

Unmanned combat aerial vehicles (UAVs) are remotely
piloted or self-piloted aircrafts that can carry many different
types of accessories such as cameras, sensors, and com-
munications equipment. They have a very wide range of
applications that include both civil and military areas. Some
important features that make them very popular are their low
cost, smaller size, and their extended maneuver capability
because of absence of a human pilot [1]. In particular,
UCAV is one of the inevitable trends of the modern aerial
weapon equipment, which develop in the direction of
unmanned attendance and intelligence. Research on UCAV
directly affects battle effectiveness of the air force and is a
fundamental and significant research related to safeness of
a nation. Trajectory generation and path planning is one
of the key technologies in cooperative UCAV combatting.
The flight path planning in a large mission area is a typical
large-scale optimization problem, a series of algorithms have

been proposed to solve this complicated multiconstrained
optimization problem, such as differential evolution [2], ge-
netic algorithm [3], ant colony algorithm [4] and its variant
[5, 6], chaotic artificial bee colony [7], and intelligent water
drops optimization [8]. However, those methods can hardly
solve the contradiction between the global optimization and
excessive information.

In 1995, Storn and Price firstly proposed a novel evolu-
tionary algorithm (EA): differential evolution (DE) [9, 10],
which is a new heuristic approach for minimizing possibly
nonlinear and nondifferentiable continuous space functions.
It converges faster and with more certainty than many other
acclaimed global population-based optimization methods
[11]. This new method requires few control parameters,
which makes DE more robust, easy to implement, and lends
itself very well to parallel computation.

Cuckoo search (CS) is an optimization algorithm devel-
oped by Yang and Deb in 2009 [12, 13], which was inspired
by the obligate brood parasitism of some cuckoo species by
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laying their eggs in the nests of other host birds (of other
species) [14]. Each egg in a nest represents a solution, and
a cuckoo egg represents a new solution. The aim is to use
the new and potentially better solutions (cuckoos) to take the
place of a not-so-good solution in the nests. In the simplest
form, each nest has one egg. An important advantage of CS
algorithm is its simplicity. In principle, comparing with other
population-based metaheuristic algorithms such as particle
swarm optimization and harmony search, there is essentially
only a single parameter pa in CS (apart from the population
size). Therefore, it is very easy to implement [15].

However, in the field of UCAV path planning, no
application of CS algorithm exists yet. In this work, the
Differential Evolution (DE) algorithm is combined with
CS algorithm, which uses the DE mutation and crossover
operator instead of Lévy flights to form the new cuckoo
egg updating strategy, in order to reduce the number of
exact evaluations of candidate solutions. The candidate
paths are modeled in the physical space and evaluated
with respect to the task space. A smooth path is essential
for a real UCAV, because nonsmooth path cannot satisfy
the turning constraint. In the UCAV community, most
researchers apply the Dubins algorithm to generate a smooth
path [16]. In this paper, to improve the quality of the
paths, we used a computationally efficient path-smoothing
method called B-Spline curve smoothing strategy [17].
B-Spline curve is used for path line modeling, and compli-
cated paths can be produced with a small number of control
variables. To verify the feasibility and effectiveness of our
proposed approach, the series experiments conducted under
complicated combating environment demonstrate that our
hybrid metaheuristic approach with B-Spline curve path
smoothing can generate a feasible optimal three-dimension
path of UCAV more quickly than the basic CS algorithm.

The remainder of this paper is structured as follows.
Section 2 describes the mathematical model in UCAV three-
dimension path planning problem. In Section 3, preliminary
knowledge of DE and CS algorithm is introduced. Then,
an improved CS algorithm for UCAV three-dimension
path planning is presented in Section 4 and the detailed
implementation procedure is also described. Subsequently,
a B-Spline curve method for UCAV path smoothing is
described in Section 5. The simulation experiments are
conducted in Section 6. Finally, Section 7 concludes the
paper and discusses the future path of our work.

2. Mathematical Model in UCAV
Three-Dimension Path Planning

As a key component of mission planning system [18], path
planning for UCAV is the design of optimal flight route
to meet certain performance requirements according to the
special mission objective and is modeled by the constraints
of the terrain, data, threat information, fuel, and time. The
goal for three-dimension path planning is to calculate the
optimal or near-optimal flight route for UCAV within the
appropriate time, which enables the UCAV to break through
the enemy threat environments and self-survive with the
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Figure 1: Typical UCAV battle field model in three-dimension.

perfect completion of mission. In our work, we use the
mathematical model for UCAV 3-dimension path planning
described as follows [5].

In order to simplify the UCAV three-dimension path
planning problem, the UCAV task region can be divided into
three-dimensional mesh, thus forming a three-dimensional
network diagram connecting the starting point and end
point. In this way, the problem of UCAV optimal three-
dimension path planning is the general path optimization
problem essentially. The typical UCAV battle field model in
three-dimension can be shown in Figure 1.

In Figure 1, suppose the flight task for UCAV is from
node S to node D. There are some threatening areas in the
task region. We divide the space into m subcubes equally,
so there are n nodes in the area, which can be labeled with
L1,L2, . . . ,Ln. Let Li(xi, yi, zi) be the ith node. It is obvious
that there are 26 candidate nodes which could be chosen at
most by the UCAV in each step. The nodes in the vertical
direction of current point are unaccepted, so the number of
the candidate nodes decreases to 24. Then, all the selected
nodes could be connected one by one as the step going on
until getting the target. In this way, the path from the starting
node to the end node can be described as follows:

Path = {
S,L1

(
x1, y1, z1

)
,L2

(
x2, y2, z2

)
, . . . ,

Lm−1
(
xm−1, ym−1, zm−1

)
,D
}
.

(1)

A performance indicator of three-dimension path plan-
ning for UCAV mainly contains the completion of the
mandatory safety performance indicator, fuel performance
indicator, and height performance indicator, that is, indica-
tors with the least threat, the least fuel, and optimal height.

Minimum of performance indicator for threat

min Jt =
∫ L

0
wtdl, L is the length of the path. (2)

Minimum of performance indicator for fuel

min J f =
∫ L

0
wf dl, L is the length of the path. (3)
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Minimum of performance indicator for height

min Jh =
∫ L

0
whdl, L is the length of the path. (4)

Then the total performance indicators for UCAV route

min J = k1Jt + k2J f + (1− k1 − k2)Jh (0 ≤ k1, k2 ≤ 1),
(5)

where wt, wf , and wh are the threat cost, fuel cost, and height
cost for each point on the path that depend on path length,
respectively. The choice of k1 and k2 all between 0 and 1 gives
the designer certain flexibility to dispose relations among
the threat exposition degree, the fuel consumption, and the
height information. When k1 is more approaching 1, more
attention is paid to the radar’s exposed threat, and it requires
avoiding the threat as far as possible at the sacrifice of the
trajectory length and flight height. Similarly, when k2 is
more approaching 1, a shorter path is needed to be planned
regardless of the cost of other two factors.

When the UCAV is flying along the subpath Li j , the total
threat cost generated by Nt threats is calculated as follows:

wt,Li j =
∫ Li j

0

Nt∑

k=1

tk
[

(x − xk)2 +
(
y − yk

)2
]2 dl. (6)

A computationally more efficient and acceptably accurate
approximation to the exact solution is to calculate the threat
cost at several locations along an edge and take the length
of the edge into account. In this work, the threat cost
was calculated at five points along each edge, as shown in
Figure 2. To simplify the calculations, each path segment
is discretized into five subsegments and the threat cost is
calculated on the end of each subsegment. If the distance
from the threat point to the end of each subsegment is within
threat radius, we can calculate the responding threat cost
according to

wt,Li j =
L5

i j

5

Nt∑

k=1

tk

(
1

d4
0.1,k

+
1

d4
0.3,k

+
1

d4
0.5,k

+
1

d4
0.7,k

+
1

d4
0.9,k

)

,

(7)

where Li j is the length of the subsegment connecting node i
and node j; d0.1,k is the distance from the 1/10 point on the
subsegment Li j to the kth threat; tk is threat level of the kth
threat. Moreover, we can simply consider the fuel cost wf to
L, and height cost wh,i equals to H which is the flight height
of the UCAV when the speed is a constant. The total cost for
traveling along the path comes from a weighted sum of the
threat and fuel costs shown as in (5).

3. Preliminary Knowledge

3.1. Differential Evolution. The differential evolution (DE)
algorithm, proposed by Storn and Price [9, 10], is a simple
evolutionary algorithm (EA), which generates new candidate
solutions by combining the parent individual and a few other
individuals of the same population. A candidate substitutes
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Figure 2: Modeling of the UCAV threat cost [5].

the parent only if it has better fitness. This is a rather greedy
selection scheme, which often overtakes traditional EAs.
Advantages of DE are easy implementation, simple structure,
speed, and robustness. Due to these advantages, it has many
real-world applications, such as power dispatch, parameters
estimation, economic emission load dispatch, and neural
network training.

The mainframe of the original DE algorithm is described
in Algorithm 1, whereD is the number of decision variables.
NP is the size of the parent population P. F is the mutation
scaling factor. CR is a constant for crossover operator. Xi( j)
is the jth variable of the solution Xi. Ui is the offspring. �NP∗
rand� is a uniformly distributed random integer number
between 1 and NP. And rand is a uniformly distributed
random real number in interval (0, 1). Different types of
strategies of DE have been proposed depending on the target
vector selected and the number of difference vectors used. We
use the DE/rand/1/bin scheme shown in Algorithm 1. From
Algorithm 1, we can see that there are only three control
variables in this algorithm, which are NP, F, and CR.

3.2. Cuckoo Search (CS). Cuckoo has a smart reproduction
strategy that involves the female laying her fertilized eggs
in the nest of another species so that the replaced parents
unwittingly raise her brood. Sometimes the cuckoo’s eggs in
the nest are discovered and the surrogate parents throw them
out or leave the nest and start their own brood elsewhere
[14].

Cuckoo search (CS) is a new metaheuristic algorithm
for solving optimization problems, which is based on the
obligate brood parasitic behavior of some cuckoo species in
combination with the Lévy flight behavior of some birds and
fruit flies. In the case of CS, the walking steps of a cuckoo are
determined by the Lévy flights.

A Lévy flight is a random walk in which the steps are
defined in terms of the step-lengths, which have a certain
probability distribution, with the directions of the steps
being isotropic and random. Lévy flights is a class of random
walk in which the jumps are distributed according to a power
law, that is,

y = x−β, (8)

where 1 < β < 3 and therefore has an infinite variance.
Barthelemy et al. [19] had reported the relationship

between light, and Lévy flights has subsequently been applied
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Begin
Step 1: Initialization. Set the generation counter t = 1; randomly generate a population of NP

individuals P; set the weighting factor F and a crossover constant CR
Step 2: Evaluate the fitness for each individual in P
Step 3: while the halting criteria is not satisfied do

for i = 1 to NP do
Select uniform randomly r1 /= r2 /= r3 /= i
rand j = �NP∗ rand�

for j = 1 to D do
if rand ≤ CR or j == rand j then

Vi( j) = Xr1 ( j) + F × (Xr2 ( j)− Xr3 ( j))
else

Vi( j) = Xi( j)
end if

end for
end for

for i = 1 to NP do
Evaluate the offspring Ui

if Ui is better than Pi then
Pi = Ui

end if
end for
Memorize the best solution achieved so far
t = t + 1

Step 4: end while
End.

Algorithm 1: Algorithm of DE with DE/rand/1/bin scheme.

to improve and optimize searching. In the case of CS, the
walking steps of a cuckoo are determined by the Lévy flights.

For simplicity in describing cuckoo search in [12], Yang
and Deb used the following three idealized rules.

(1) Each cuckoo lays only one egg at a time, and places
its egg in a selected nest at random.

(2) The best nests with high quality of eggs will carry over
to the next generation.

(3) The number of available host nests is fixed, and the
egg laid by a cuckoo is discovered by the host bird
with a probability pa ∈ [0, 1]. In this case, the host
bird can either throw the egg away or leave the nest,
and build a fully new nest. For simplicity, this last
assumption can be approximated by the fraction pa
of the n nests which are displaced by new nests (with
new random solutions) [15].

Based on these three rules, the basic steps of the CS can
be summarized as shown in Algorithm 2.

In CS, each egg in a nest represents a solution, and a
cuckoo egg represents a new solution. The aim is to use
the new and potentially better solutions (cuckoos) to replace
a not-so-good solution in the nest. In the simplest form,
each nest has one egg. The algorithm can be extended to
more complicated cases in which each nest has multiple eggs
representing a set of solutions.

When generating new solutions x(t+1) for, say, a cuckoo i,
a Lévy flight is performed

x(t+1)
i = x(t)

i + α⊕ Lêvy(λ), (9)

where α > 0 is the step size which should be related to the
scales of the problem of interests. In most cases, we can
use α = 1. The above equation is essentially the stochastic
equation for random walk. In general, a random walk is a
Markov chain whose next status/location only depends on
the current location (the first term in the above equation)
and the transition probability (the second term). The
product ⊕ means entrywise multiplications. This entrywise
product is similar to those used in PSO, but here the random
walk via Lévy flight is more efficient in exploring the search
space as its step length is much longer in the long run.

The Lévy flights essentially provides a random walk,
while the random step length is drawn from a Lévy
distribution

Lêvy(λ) ∼ u = t−λ (1 < λ ≤ 3), (10)

which has an infinite variance with an infinite mean. Here
the steps essentially form a random walk process with a
power-law step-length distribution with a heavy tail. Some
of the new solutions should be generated by Lévy walk
around the best solution obtained so far; this will speed up
the local search. However, a substantial fraction of the new
solutions should be generated by far field randomization and
whose locations should be far enough from the current best
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Begin
Step 1: Initialization. Set the generation counter G = 1; initialize the population P of n host

nests randomly and each egg in a nest corresponding to a potential solution to the
given problem; set the discovery rate pa.

Step 2: While the termination criteria is not satisfied or G < MaxGeneration do
Sort the population/nest from best to worst.
Get a cuckoo randomly (say, i) and replace its solution by performing Lévy flights.
Evaluate its quality/fitness Fi.
Choose a nest among n (say, j) randomly.
if (Fi < Fj)

Replace j by the new solution.
end if
A fraction (pa) of the worse nests is abandoned and new ones are built.
Keep the best solutions/nests.
Sort the population/nest from best to worst and find the current best.
Pass the current best to the next generation.
G = G + 1.

Step 3: end while
Step 4: Post-processing the results and visualization.

End.

Algorithm 2: The algorithm of cuckoo search (CS) via Lévy flights.

solution; this will make sure the system will not be trapped
into a local optimum.

4. Differential Evolution/Cuckoo Search: DE/CS

Generally speaking, the standard DE algorithm is adept at
exploring the search space and locating the region of global
optimal value, but it is not relatively good at exploiting
solution. On the other hand, standard CS algorithm is
usually quick at the exploitation of the solution though its
exploration ability is relatively poor. Therefore, in this paper,
a hybrid metaheuristic algorithm by integrating differential
evolution into cuckoo search, so-called DE/CS, is used to
solve the three-dimension path planning for UCAV. The
difference between DE/CS and CS is that the mutation and
crossover of DE is used to replace the original CS selecting a
cuckoo. In this way, this method can explore the new search
space by the mutation of the DE algorithm and exploit the
population information with CS and therefore can conquer
the lack of the exploitation of the DE algorithm. In the
following, we will show the algorithm DE/CS, which is a
variety of DE and CS.

4.1. Mainframe of DE/CS. The critical operator of DE/CS is
the hybrid differential evolution selecting cuckoo operator,
which embeds the differential evolution into the CS. The core
idea of the proposed differential evolution selecting cuckoo
operator is based on two considerations. First, the mutation
operator of DE can add diversity of the population to
improve the search efficiency. Second, the mutation operator
of DE can improve the exploration of the new search space.
Pseudocode of hybrid differential evolution selecting cuckoo
operator can be described as in Algorithm 3. In Algorithm 3,
D is the number of decision variables. NP is the size of the

parent population P. F is the mutation scaling factor. CR is
a constant for crossover operator. Xi( j) is the jth variable of
the candidate solution Xi. Xu is the offspring. �NP ∗ rand�
is a uniformly distributed random integer number between
1 and NP. And rand is a uniformly distributed random real
number in interval (0, 1). We use the DE/rand/1/bin scheme
shown in Algorithm 3.

By incorporating above-mentioned hybrid differential
evolution selecting cuckoo operator into original CS algo-
rithm, the DE/CS has been developed as a new algorithm.
DE/CS algorithm is given as in Algorithm 4, where a fraction
of worse nests are discovered with a probability pa.K is a
status matrix with NP × D whose value is logical value 0 or
1, meaning the egg in the nest discovered or not, and K(i, :)
represents the ith row elements in the status matrix K . The
Hadamard product of two matrices μ 	 υ is defined as the
entrywise product, that is, [μ	υ] = μi jυi j . In the real world, if
a cuckoo’s egg is very similar to host’s eggs, then this cuckoo’s
egg is less likely to be discovered, thus the fitness should be
related to the difference in solutions. Therefore, it is a good
idea to do a random walk in a biased way with some random
step sizes. Vector Step is the step size that determines how
far a random walker can go for a fixed number of iterations.
P1 and P2 are the copy of the population P; Yi and Zi are
the individuals in the population P1 and P2, respectively.
From Algorithm 4, we can see that there are only four control
parameters in this algorithm, which are NP, F, CR, and pa.

4.2. Algorithm DE/CS for UCAV Three-Dimension Path
Planning. In essence, UCAV three-dimension path planning
is to reach minimum value for the objective function shown
as in (5). For a minimization problem, the quality or fitness
of a solution can simply be inversely proportional to the
value of the cost function (5). For simplicity, we can use
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Begin
for i = 1 to NP do

Select uniform randomly r1 /= r2 /= r3 /= i
Xv = Xr1 + F × (Xr2 − Xr3 )
r4 = �NP∗ rand�
for j = 1 to D do

if rand ≤ CR or j == r4 then
Xu( j) = Xv( j)

else
Xu( j) = Xi( j)

end if
end for
if F(Xu) < F(Xr4 ) then

Xu = Xr4

F(Xr4 ) = F(Xu)
end if

end for
End.

Algorithm 3: Algorithm of selecting cuckoo for DE/CS.

the following simple representations that each egg in a nest
represents a solution, and a cuckoo egg represents a new
solution; the aim is to use the new and potentially better
solutions (cuckoos) to replace a not-so-good solution in
the nests. For this present work, we will use the simplest
approach where each nest has only a single egg. In this
case, there is no distinction between egg, nest, or cuckoo, as
each nest corresponds to one egg which also represents one
cuckoo. Therefore, in the following, we do not distinguish
the egg, nest, and cuckoo all of which represent a candidate
solution.

Let NP cuckoos be in the starting node; the cuckoos will
choose the next nodes in the grid network diagram according
to the selecting cuckoo rule shown as in Algorithm 3 instead
of the Lévy flights used in CS shown in (8). A cuckoo lays
an egg in a nest which may be found by the hosting bird; if
then, the egg would be discarded, and then it is replaced by
another cuckoo’s egg. Thus cuckoo birds are always looking
for a better place in order to decrease the chance of their eggs
to be discovered. The process can be approximated by the
fraction pa of the NP nests which are displaced by new nests
(with new random solutions). Consequently, it will enhance
the original quality of the candidate solution. Thus, the more
cuckoos a UCAV path is passed by, the bigger possibility that
a path can be selected by the other cuckoos. This process can
guarantee nearly all cuckoos walk along the shortest UCAV
path in the end.

Based on the above analysis, the pseudocode of improved
CS-DE/CS for UCAV three-dimension path planning is
described as follows (Algorithm 5).

5. Path-Smoothing Strategies

The generated UCAV optimal three-dimension path using
the proposed hybrid metaheuristic method DE/CS is usually
hard for exact flying. There are some turning points on the

optimized path [20, 21]. In this section, we adopt a class
of dynamically feasible trajectory smooth strategy called B-
Spline curves smoothing strategy [17]. B-Splines are adopted
to define the UCAV desired path, providing at least first-
order derivative continuity. B-Spline curves are well fitted
in the evolutionary procedure; they need a few variables
(the coordinates of their control points) in order to define
complicated curved paths. Each control point has a very
local effect on the curve’s shape and small perturbations
in its position produce changes in the curve only in the
neighborhood of the repositioned control point.

B-Spline curves are parametric curves, with their
construction based on blending functions [22]. Their
parametric construction provides the ability to produce
nonmonotonic curves. If the number of control points
of the corresponding curve is n + 1, with coordi-
nates w0(x0, y0, z0), . . . ,wn(xn, yn, zn), the coordinates of the
B-Spline curve may be written as

x(u) =
n∑

i=1

xi ·Ni,p(u),

y(u) =
n∑

i=1

yi ·Ni,p(u),

z(u) =
n∑

i=1

zi ·Ni,p(u),

(11)

where u is the free parameter of the curve, Ni,p(u) are the
blending functions of the curve, and p is its degree, which is
associated with curve’s smoothness (p + 1 being its order).
Higher values of p correspond to smoother curves.

The blending functions are defined recursively in terms
of a knot vector U = {u0, . . . ,um}, which is a nondecreasing
sequence of real numbers, with the most common form
being the uniform nonperiodic one, defined as

ui =

⎧
⎪⎪⎨

⎪⎪⎩

0 if i < p + 1,

i− p if p + 1 ≤ i ≤ n,

n− p + 1 if n < i.

(12)

The blending functionsNi,p are computed, using the knot
values defined above, as

Ni,0 =
{

1 ui ≤ u ≤ ui+1,

0 otherwise,

Ni,p(u) = u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u).

(13)

If the denominator of either of the fractions is zero, that
fraction is defined to have zero value. Parameter u varies
between 0 and (n− p+ 1) with a constant step, providing the
discrete points of the B-Spline curve. The sum of the values
of the blending functions for any value of u is always 1.

The use of B-Spline curves for the determination of a
flight path provides the advantage of describing compli-
cated nonmonotonic 3-dimensional curves with controlled
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Begin
Step 1: Initialization. Set the generation counter G = 1; initialize the population P of NP

host nests randomly and each egg in a nest corresponding to a potential solution to
the given problem; set the mutation scaling factor F and crossover constant CR.

Step 2: While the termination criteria is not satisfied or G < MaxGeneration do
Sort the population/nests from best to worst.
Store the best nests to KeepNest.
Get a cuckoo (say, i) and replace its solution by performing Algorithm 3.
K = rand(NP,D) > pa.
P1 = P; P2 = P.
for i = 1 to NP do

Step = rand∗ (Yi − Zi);
Xnew = Xi + Step	 K(i, :);

end for
for i = 1 to NP do

if F(Xnew) < F(Xi) then
Xnew = Xi; F(Xnew) = F(Xi)

end if
end for
Keep the best solutions/nests.
Sort the population/nest from best to worst and find the current best.
Replace the worst nests with the best nests KeepNest stored.
Pass the current best to the next generation.
G = G + 1.

Step 3: end while
Step 4: Post-processing the results and visualization.

End.

Algorithm 4: The main procedure of DE/CS.
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B

Figure 3: A quadratic (p = 2) 2-dimensional B-Spline curve,
produced using a uniform nonperiodic knot vector, and its control
polygon.

smoothness with a small number of design parameters, that
is, the coordinates of the control points. Another valuable
characteristic of the adopted B-Spline curves is that the curve
is tangential to the control polygon at the starting and end
points. This characteristic can be used in order to define the
starting or end direction of the curve, by inserting an extra
fixed point after the starting one, or before the end control

point. Figure 3 shows a quadratic 2-dimensional B-Spline
curve (p = 2) with its control points and the corresponding
control polygon.

After this process, the original path wi−1wi → wiwi+1

could be replaced by the path ̂wi−1B → ̂Bwi+1. In this way,
the optimized path can be smoothed for feasible flying. This
trajectory smoothing algorithm has a small computational
load and can be run in real time.

6. Simulation Experiments

In this section, we look at the performance of the proposed
hybrid metaheuristic DE and CS to UCAV three-dimension
path planning through a series of experiments conducted
under complex combat field environment.

To allow a fair comparison of running times, all the
experiments were implemented on a PC with a Pentium
IV processor running at 2.0 GHz, 512 MB of RAM, and a
hard drive of 160 Gbytes. Our implementation was compiled
using MATLAB R2012a (7.14) running under Windows
XP3. No commercial CS tools or other population-based
optimization tools were used in the following experiments.

To our knowledge, parameter setting has a great effect
on the performance of optimization method. According
to simulation experiments [12], Yang and Deb found that
population size NP = 15 to 40 and discovery rate pa = 0.25
are sufficient for most optimization problems. Their results
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Begin
Step 1: Initializing. Set the generation counter G = 1; randomly generate UCAV path

(population/nest) of n individuals and each egg in a nest corresponding to a
potential optimal path to the given problem; set discovery rate pa; set the mutation
scaling factor F and crossover constant CR.

Step 2: Evaluate the population of P according to (5).
Step 3: While the termination criteria is not satisfied or G < MaxGeneration do

Sort the UCAV path (population/nest) from best to worst.
Store the Keep best nests to KeepNest.
Get a cuckoo (say, i) and replace its solution by performing Algorithm 3.
Evaluate its cost (fitness) Ji according to (5).
Choose a path among n (say, j) randomly.
if (Ji > Jj)

Replace j by the new solution.
end if
K = rand(NP,D) > pa.
P1 = P; P2 = P.
for i = 1 to NP do

Step = rand∗ (Yi − Zi);
Xnew = Xi + Step

⊙
K(i, :);

end for
for i = 1 to NP do

if F(Xnew) < F(Xi) then
Xnew = Xi; F(Xnew) = F(Xi)

end if
end for
Keep the best solutions/paths.
Sort the population/nest/paths from best to worst and find the current best.
Replace the Keep worst nests with the Keep best nests KeepNest stored.
Pass the current best to the next generation.
G = G + 1.

Step 4: end while
Step 5: Inversely transform the coordinates in final optimal path into the original coordinate,

and output
End.

Algorithm 5: Algorithm of DE/CS for UCAV three-dimension path planning.

and analysis also illustrate that the convergence rate, to some
degree, is insensitive to the parameters selected. This means
that we do not need to fine-tune parameters for any given
problems. Therefore, in all experiments, we will use the same
set of CS algorithm parameter, which are step size α = 1,
discovery rate pa = 0.25, population size NP = 30, and
maximum generation Maxgen = 200.

Figure 4 shows the UCAV path planning results com-
parison between basic CS and the proposed hybrid meta-
heuristic CS and DE algorithm in three-dimension and two-
dimension space with NP = 30, pa = 0.25, and the curve path
comparison by the smooth algorithm, and also the evolution
curves comparison. The symbol “©” denotes the starting
point, the cone denotes the threaten area, while the symbol
“�” denotes the end point. And the green line is the path
generated by the basic CS, while the red one is generated by
the improved CS.

The values of each optimal solution searched by the dif-
ferent algorithm could be given by the value of the “shortest
length,” which can be shown in Table 1. Table 1 shows

the results found by basic CS and improved CS algorithm
over 100 Monte Carlo runs. From the experimental results
presented in Figure 4 and Table 1, it is apparent that the pro-
posed hybrid metaheuristic CS and DE method can find fea-
sible and optimal three-dimension path for the UCAV very
quickly and can effectively solve the three-dimension path
planning of UCAV in complicated combating environments.
This method provides a new way for three-dimension path
planning of UCAV in real application.

7. Conclusion and Future Work

This paper presented a hybrid metaheuristic CS and DE
algorithm for UCAV three-dimension path planning in
complicated combat field environments. A novel type of CS
model has been described for single UCAV path planning,
and DE is applied to optimize selecting cuckoo operator
during the process of egg updating in nest. Then, the UCAV
can find the safe path by connecting the chosen nodes while
avoiding the threat areas and costing minimum fuel. This
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Figure 4: Parameter values were NP = 30, pa = 0.25. (a) Path-planning original results comparison between basic CS and improved CS in
a three-dimension space. (b) Route comparison after using the smoothing strategy in a three-dimension space. (c) Path-planning original
results comparison between basic CS and improved CS in a two-dimension space. (d) Route comparison after using the smoothing strategy
in a two-dimension space. (e) Evolution curves comparison between the basic CS and the improved CS.
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Table 1: Shortest length comparison between the basic CS and the
improved CS in UCAV three-dimension path planning problem.
The numbers shown are the results found after 100 Monte Carlo
simulations of each algorithm.

Basic CS Improved CS

Mean 193.1960 165.5124

Std 34.9554 25.0811

Best 127.1038 105.1268

Worst 282.3626 207.9992

Time (sec) 75.6491 26.1248

new approach can accelerate the global convergence speed
while maintaining the strong robustness of the basic CS. The
detailed implementation procedure for this metaheuristic
approach is also described. In order to make the optimized
UCAV path more feasible, the B-Spline curve is adopted for
smoothing the path, and this trajectory smoothing algorithm
has a small computational load and can be run in real
time. Compared with the basic CS algorithm, the simulation
experiments show that this method is a feasible and effective
way in UCAV path planning. It is also flexible, in complicated
dynamic battle field environments, and pop-up threats are
easily incorporated.

In the algorithm of UCAV three-dimension path plan-
ning, there are many issues worthy of further study, and effi-
cient route planning method should be developed depending
on the analysis of specific combat field environments.
Currently, the hot issue contains self-adaptive route planning
for a single UCAV and collaborative route planning for a
fleet of UCAVs. As the important ways of improving aircraft
survivability, adaptive route planning should analyze real-
time data under the uncertain and dynamic threat condition,
it can even remodify preplanned flight path to improve the
success rate of completing mission. The difficulty of the
collaborative route planning for a fleet of UCAVs exists in
coordination between the various UCAVs, including the fleet
formation, target distribution, arrival time constraint, and
avoidance conflict, each of which is a complicated question
worthy of further study. Our future work will focus on the
two hot issues and develop new methods to solve problem in
UCAV 3-dimension path planning.
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